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ABSTRACT

Network intruders often hide their identities by sending attacks
through a chain of compromised hosts that are used as “stepping
stones”. The difficulty in defending against such attacks lies in de-
tecting stepping-stone connections at the compromised hosts. In
this paper, to distinguish normal from attacking connections, we
consider strategies that do not depend on the content of the traf-
fic so that they are applicable to encrypted traffic. We propose a
low complexity detection algorithm that has no miss detection and
an exponentially-decaying false alarm probability. A sequential
strategy is then developed to reduce the required number of testing
packets.

Keywords: Stepping-stone detection, intrusion detection al-
gorithms, encrypted stepping-stone attacks, interactive stepping-
stone attacks.

1. INTRODUCTION

Stepping-stone attack is a common way for network intruders to
conceal their identity. In a stepping-stone attack, the attacker com-
promises (multiple) hosts as relay machines, constructs a chain of
connections through these hosts using remote login such as Telnet
or SSH, and then sends attacking commands through this chain to
the victim [1]. Because each connection is made by a separate re-
mote login, the next host in the chain can only see the identity of
its immediate upper stream neighbor, and the victim only sees the
identity of the last host. Therefore, we have to trace back the chain
to find the origin of an attack. Such tracing can be overwhelm-
ing because of the huge volume and highly dynamic nature of the
network traffic.

To address this issue, Donohoet al. propose in [2] to install
stepping-stone monitors at each gateway node to detect stepping-
stone pairs1 by examining the incoming/outgoing traffic. In prac-
tice, the monitor has to make decisions by observing live traffic,
which may not include the beginning or the end of the connec-
tion. Therefore, it is desirable that the detection strategy does not
require synchronization between incoming and outgoing streams.
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1A pair of incoming and outgoing streams is called astepping-stone
pair if it is part of a stepping-stone attack. Otherwise, the pairis normal.

Besides, the connections may be encrypted (e.g., SSH sessions) so
that the monitor cannot rely on the content of the traffic. Further-
more, a careful attacker may even actively modify the traffic each
time it passes through a host in order to confuse the monitor.

1.1. Related Work

Staniford and Heberlein [1] are the first to consider the problem
of stepping-stone connection detection. The early work is based
on the content of the traffic,e.g., see [1,3]. These techniques help
to recognize connections on the same intrusion path by analyzing
the content of the packets. Later on timing characteristics of the
traffic are used to detect encrypted stepping-stone connections, ex-
amples of which include [4–6]. The drawback of these techniques
is that they are vulnerable to the active timing perturbation by the
attacker.

There are a few results on detecting encrypted, perturbed stepping-
stone connections; see [2, 7, 8]. The key assumption of these ap-
proaches is that there is a limit on the attacker’s ability to alter
the traffic. Specifically, in [2] it is assumed that there is amaxi-
mum tolerable delay for attacking packets, in [7] the attacker’s tim-
ing perturbation is independent and identically distributed across
packets, and in [8] there are constraints not only on the maximum
delay, but also on the maximum number of packets that can be sent
during the delay. From an algorithmic point of view, Blum, Song
and Venkataraman [8] develop the first detection algorithms which
require provable (polynomial) sample sizes to achieve certain false
alarm probabilities.

1.2. Summary of Results and Organization

Our work is based on the same assumptions as in [8]. In this paper,
we consider detecting encrypted, interactive stepping-stone con-
nections. By “encrypted” we mean that we cannot use the content
of packets. “Interactive connections” means that the new com-
mands to be sent depend on the feedback of previous commands.
Therefore, the attacker cannot wait too long for the packets to be
relayed, and cannot issue packets too fast because he needs time to
process the feedback. With these constraints, we reduce the prob-
lem to testing pairs of independent point processes against relayed
point processes with bounded delay and bounded peak rate.

We take an algorithmic approach. Noticing that under the
bounded delay and bounded peak rate assumption, the maximum
variation (defined later) for stepping-stone pairs is always bounded,
we develop a detection algorithm based on the maximum variation
statistics. The algorithm has no miss detection and an exponentially-
decaying false alarm probability. Moreover, we explore the possi-
bility of reducing sample size by using sequential detection. Specif-
ically, we propose an iterative algorithm which distributes the total
false alarm constraint among iterations. For given false alarm con-
straint, we show how to decide the detection threshold adaptively



so that the constraint is satisfied. We also consider how to dis-
tribute the false alarm constraint to minimize the maximum sam-
ple size, and we show that the minimax distribution reduces the
sequential algorithm to a fixed-sample-size algorithm. Our analy-
sis focuses on the error exponent of various algorithms. We show
that although our algorithm needs the same order of sample size
as the algorithm proposed in [8], our algorithm has a much larger
error exponent.

The rest of the paper is organized as follows. Section 2 de-
fines the problem. Section 3 presents several detection algorithms
together with the performance analysis and comparison. There are
also simulation results to verify our analysis.

2. THE PROBLEM STATEMENT

Let S1, S2 (Si = (. . . , s
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Assume that if(S1, S2) is a normal pair, they are independent
Poisson processes. If(S1, S2) is a stepping-stone pair, then there
exists a bijectiong : T1 → T2 such that0 ≤ g(s)−s ≤ ∆ for any
s ∈ T1; furthermore,|{s ∈ S1 : s ∈ [t, t + ∆]}| ≤ p∆ for any
t. Here∆ is the maximum tolerable delay, andp∆ is the largest
number of packets the attacker can send within∆3. We want to
test the following binary hypotheses:

H0 : (S1, S2) is a normal pair, (1)

H1 : (S1, S2) is a stepping-stone pair. (2)
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3. DETECTION ALGORITHMS AND PERFORMANCE
ANALYSIS
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whereI· is the indicator function. Define the cumulative difference
d(w) and the maximum variationv(w) as

d(w)
∆
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3.1. DETECT-MAXIMUM-VARIATION (DMV)

Given intervalI, let Ni(I) be the number of packets onSi in the
interval I. We notice that the stepping-stone pairs have bounded
difference inNi(I), as stated in the following proposition:

Proposition 3.1 For stepping-stone pairs, we have

|N1(I) − N2(I)| ≤ p∆ ∀ interval I.

Proof: Let I = [a, b]. N1(I) is the number of incoming
packets inI. By the bounded delay assumption,N2(I) can include
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Fig. 1. (i): N2(I) > N1(I); (ii): N1(I) > N2(I).

at most the packets transmitted in[a − ∆, b], and at least those
transmitted in[a, b − ∆]; see Fig. 1.

Therefore, for any intervalI, −p∆ ≤ N1(I) − N2(I) ≤ p∆.

We can use the maximum difference|N1(I)−N2(I)| over all
I to detect stepping-stone pairs. Noticing that

max
1≤i≤j≤w

|(N1(j) − N1(i)) − (N2(j) − N2(i))| = v(w),

we can equivalently use the maximum variation to detect stepping-
stone pairs. The algorithm is shown in Table 3.1.

DETECT-MAXIMUM-VARIATION (S1, S2, p∆, n):

dmax = dmin = 0;
for w = 1 : n

d(w) =

{

d(w − 1) + 1 if sw ∈ S1

d(w − 1) − 1 if sw ∈ S2
;

dmax = max(dmax, d(w));
dmin = min(dmin, d(w));
if dmax − dmin > p∆ return NORMAL;

end
return ATTACK;

Table 1. DETECT-MAXIMUM-VARIATION (DMV).

Algorithm DMV has time complexityO(n) and uses only
constant memory (O(log p∆), to be precise). By Proposition 3.1,
any stepping-stone pair will be detected aftern packets,i.e., miss
detection is totally avoided. We only need to be concerned about
the false alarm probability, which is bounded as follows.

Theorem 3.2 The false alarm probability of DMV is bounded by

PF (DMV) ≤
(p∆ + 1)

1 − ρ
ρ

n
,

where ρ = cos π
p∆+2

. Furthermore,

lim
n→∞

−
1

n
log PF (DMV) = − log ρ.

Proof: See Appendix.

2s
(i)
k is the arrival epoch of thekth packet on streami since the monitor

starts (ifk ≤ 0, it is the(−k + 1)th packet before the monitor starts).
3The notion of∆ andp∆ is first used in [2] and [8] respectively. Here

we do not consider inserting chaff packets. See [2] for the description of
such scenario.



Remarks: For given false alarm constraintδ, making the up-
per bound in Theorem 3.2 equal toδ yields a sample size

n =
log δ(1 − ρ) − log (p∆ + 1)

log ρ
= O

(

p
2
∆ log

p∆

δ

)

.

Blum et al. [8] proposed an algorithm called “DETECT-ATTACKS”
(DA) for stepping-stone detection. Algorithm DA divides samples
into groups of2(p∆ + 1)2 packets each, and computes the cu-
mulative differenced(w) for each group. It returns NORMAL
if |d(w)| > p∆ in any of the groups. Blumet al. prove that
2(p∆ + 1)2 log 1

δ
packets are required to guarantee a false alarm

probability no more thanδ.
We point out that DMV always outperforms DA4. The reason

is that sincev(w) ≥ max
1≤i≤w

|d(i)|, for every realization, if DMV

has a false alarm, DA must have a false alarm too.
Now we compare their false alarm probabilities. We have the

following lemma:

Lemma 3.3 For independent Poisson processes and large p∆,
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Proof: See Appendix.

From Lemma 3.3 we have that for largep∆, the error exponent
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Therefore, for largep∆, the false-alarm error exponent of DMV is
at least3.38 times larger than that of DA.

Fig. 2 plots the simulated false alarm probabilities of DA and
DMV and their bounds5. It confirms our claim that the false alarm
probability of DMV decays much faster than that of DA.

3.2. SEQUENTIAL-DMV (SDMV)

In both DA and DMV, the decision of ATTACK requires a fixed
sample size. We hope to make ATTACK decisions sequentially so
that we can possibly use fewer packets. To this end, we propose
to use an iterative algorithm and divide the total false alarm con-
straint among iterations. Specifically, we split the total false alarm
probabilityδ into q1δ, q2δ, q3δ, . . ., whereq = (q1, q2, . . .) sat-

isfiesqw ≥ 0 and
∞
∑

w=1

qw = 1. If, in each iterationw, the false

alarm probability is bounded byqwδ, then by union bound we see
that the total false alarm will be bounded byδ.

4Note that in terms of the order of sample size with respect top∆ and
δ, DMV and DA are comparable.

5Note that the sample size of DA has to be a multiple of the group size
2(p∆ + 1)2.
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Fig. 2. PF of algorithms DA and DMV. (Assume normal pairs are
independent Poisson processes with the same rate.)

Usingv(w) as statistics, we obtain from the proof of Theorem
3.2 that, for normal pairs,

Pr{v(w) < τw} ≤
τw

(

cos π
τw+1

)w

1 − cos π
τw+1

∆
=f(τw, w), for anyτw ≥ 1.

If τw
∆
= sup{integerk : f(k, w) ≤ qwδ}, and the decision rule is

to return ATTACK if v(w) < τw, then the false alarm probability
of the wth iteration is bounded byqwδ. Therefore we have the
sequential algorithm in Table 3.2.

SEQUENTIAL-DMV(S1, S2, p∆, δ, q):

dmax = dmin = 0;
for w = 1, 2, . . .

d(w) =

{

d(w − 1) + 1 if sw ∈ S1

d(w − 1) − 1 if sw ∈ S2
;

dmax = max(dmax, d(w));
dmin = min(dmin, d(w));
if dmax − dmin > p∆ return NORMAL;
τ = sup{integerk : f(k, w) ≤ qwδ};
if dmax − dmin < τ return ATTACK;

end

Table 2. SEQUENTIAL-DMV (SDMV).

Algorithm SDMV also uses the maximum variation as the
statistic, and therefore can be thought of as a sequential version
of DMV. The vectorq is part of the algorithm design. Ideally, we
want to chooseq to minimize the average sample size. If the at-
tacker’s strategy is unknown, then we may wish to minimize the
largest sample size. Specifically, if the attacker does the best to
evade detection by keepingv(w) = p∆ for all w ≥ p∆, then the
bestq is

qn = 1 for n = inf







w :
(p∆ + 1)

(

cos π
p∆+2

)w

1 − cos π
p∆+2

≤ δ







andqw = 0 for all w 6= n. That is, the minimaxq reduces SDMV
to the fixed-sample-size algorithm DMV.



4. CONCLUSION

In this paper, we consider detecting stepping-stone connections
with bounded delay and bounded peak rate. Our techniques can
rule out independent connection pairs with provable confidence
and hopefully leave a much smaller number of suspicious connec-
tions for further examination. Therefore, they are most useful in
the scenario when the total volume of the traffic to be analyzed
is large. In [9], we consider detecting stepping-stone connections
with bounded delay only or bounded memory. These more general
assumptions will make the detection techniques easier to apply in
practice.

5. APPENDIX

5.1. Proof of Theorem 3.2 and Lemma 3.3

Proof:
The proof is based on the theory of random walk. Let{Xn}n≥0

be a simple random walk,i.e.,

X0 = 0, Xn = Z1 + Z2 + . . . + Zn, (n > 0)

where{Zi}i=1, 2,... are i.i.d. random variables taking value in
{−1, 0, 1}. Let p = Pr{Zi = 1}, q = Pr{Zi = −1}. Define
the hitting time of −b or a (a, b ≥ 0) as

N−b, a = inf{n ≥ 1 : Xn = −b or a}.

In [10], it is proved that

Pr{N−b, a = n} ≤
1

2

(

p

q

)a/2
1

sn−1
1

+
1

2

(

q

p

)b/2
1

sn−1
1

, (4)

wheres1 = 1

1−p−q+2(pq)
1
2 cos ( π

a+b )
, and

lim
n→∞

−
1

n
log Pr{N−b, a > n} = log s1. (5)

If a = b, then for largen,

Pr{N−b, a = n} ≥
sin π

2a

2asn−1
1

. (6)

For the proof of Theorem 3.2, note that for independent Pois-
son processes, it is known thatd(w) is a simple random walk. De-
fine extreme valuesUn = max

i=0,..., n
d(i), Ln = min

i=0,..., n
d(i). A

false alarm occurs in DMV if and only ifUn−Ln < p∆+1. Note
that the false alarm probability is the largest ifd(w) is symmetric
(i.e., p = q = 1

2
). We have

PF (DMV) = Pr{Un − Ln < p∆ + 1}

= Pr{

p∆+1
⋃

a=1

{Un < a, Ln > −(p∆ + 2 − a)}}

≤

p∆+1
∑

a=1

Pr{Un < a, Ln > −(p∆ + 2 − a)}(7)

≤ (p∆ + 1)
ρn

1 − ρ
, (8)

whereρ = cos π
p∆+2

. Here (7) is by union bound, and (8) is by
noticing

Pr{Un < a, Ln > −(p∆+2−a)} = Pr{N−(p∆+2−a), a > n},

and then applying (4) withp = q = 1
2
. Furthermore, by (5) it is

easy to see thatlim
n→∞

− 1
n

log PF ( DMV) = − log ρ.

For the proof of Lemma 3.3, note that DA has false alarm in
a given group if and only if the maximum|d(i)| in that group is
within p∆. Observing that

Pr{ max
i∈{1,..., 2(p∆+1)2}

|d(i)| ≤ p∆} =

Pr{N−(p∆+1), (p∆+1) > 2(p∆ + 1)2},

we apply (6) witha = b = p∆ + 1 to lower bound the false alarm
of DA on one group. Then taking the product over all groups gives
the desired result.
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