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Abstract— Malicious use of anonymity techniques makes net-
work attackers difficult to track. The problem is even worse in
stepping-stone attacks, where multiple anonymous connections
are linked to form an intrusion path. The tracking of a stepping-
stone attacker requires the detection of all the connection pairs
on the intrusion path. In this paper, we consider the problem
of identifying a stepping-stone connection pair at an interme-
diate host. We formulate the problem as one of nonparametric
hypotheses testing. Our attacker model allows the attacker to
encrypt the traffic and modify the timing. We propose two
algorithms which do not depend on the content of the traffic.
Our techniques only make generic assumptions such as delay or
memory constraints, and therefore they are applicable in most
practical systems. We show that our algorithms can detect all the
stepping-stone connections while falsely accusing normal traffic
with exponentially-decaying probabilities.

Index Terms— Intrusion detection, Nonparametric detection,
Network security, Point processes.

I. I NTRODUCTION

Network attackers can maintain anonymity by launching the
so-called stepping-stone attack [1]. In a stepping-stone attack,
as illustrated in See Fig. 1, the attacker constructs a routeto
the victim through a collection of compromised hosts. Instead
of attacking the victim directly, the attacker uses these hosts
as stepping stones to relay attacking commands to the victim.
Because each host can only see the identity of its immediate
predecessor, the victim only sees the identity of the last host.
Therefore, the identity of the attacker is hidden.

With the development of anonymity technology, attackers
have more powerful ways to evade tracking. In the study of
anonymity and privacy in wired networks, various techniques
have been developed to help the network users to maintain
anonymity while communicating efficiently. When it comes to
defense against stepping-stone attacks, however, the situation
becomes the other side of a coin. A malicious attacker can
change the compromised hosts into his anonymity servers, and
borrow ideas from existing anonymity techniques to conceal
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Fig. 1. A stepping-stone attack.

his traffic. Specifically, link level encryption can be used to
change the bit pattern of the attacking packets, and other
strategies can be used to change the activity of the traffic.
For example, the attacker can mix his attacking traffic with
other outgoing traffic at the hosts [2], impose random delay
on the packets [3], change the order of packets [4], [5], or
insert dummy packets [4]–[6]. Mixing attacking traffic with
other traffic at the hosts puts the attacker at risk because it
is easy to be detected by the destinations of the other traffic.
Inserting dummy packets requires changing the content of the
traffic and will not be considered in this paper.

In this paper, we assume the attacker encrypts his traffic and
pads the packets to a constant length. The attacker is allowed
to change the behavior of the traffic, but not the content.
Specifically, we consider packet-conserving transformations
such as imposing random delay or reordering packets.

A. Related Work

Staniford and Heberlein [1] are the first to consider the prob-
lem of detecting stepping-stone connections. Early techniques
are based on the content of the traffic. See,e.g.,[1], [7]. These
techniques, however, are not applicable to detecting encrypted
connections. An alternative is to exploit timing characteristics
of the traffic. Zhang and Paxson [8] propose to match the
“off” periods of one connection to the “on” periods of another
connection. Their approach requires that the connections are
synchronized. Yoda and Etoh [9] propose an algorithm to
identify streams having the same traffic pattern but with
possible unknown time shift. Wang, Reeves, and Wu [10]
propose to correlate streams by examining packet interarrivals,
and they show that their method works well if connections
on different paths have distinctive timing characteristics. The



drawback of these approaches is that they are vulnerable to
active timing perturbation by the attacker.

There are a few results on detecting encrypted, timing
perturbed stepping-stone connections; see [11]–[13]. Thekey
assumption of these methods is that the attacker has limited
ability to alter the traffic. Donohoet al. [11] are the first
to consider the bounded delay perturbation, where there is a
maximum tolerable delay for each attacking packet. Assuming
that a stepping-stone pair is a renewal process and its relay
(detailed analysis is done for Poisson processes), they show
that substantial correlation can be revealed even with timing
perturbation. Wang and Reeves in [12] take a watermark-
based approach. They show how to correlate stepping-stone
connections with independent and identically distributedper-
turbation by introducing watermark into packet interarrivals.
Blum, Song and Venkataraman [13] work along the same line
as [11] except that they also assume that the attacker has a
bounded peak rate, and they remove the Poisson assumption on
the attacking traffic. They propose several detection algorithms
with no miss detection, and they are the first to prove that their
algorithms require a polynomial number of packets to satisfy
certain false alarm constraint.

B. Summary of Results and Organization

We want to design a stepping-stone monitor installed either
at the network gateway node (proposed by Donohoet al.
in [11]) or as an independent process at the stepping-stone
host. The monitor examines the incoming and the outgo-
ing traffic, and identifies the stepping-stone connection pairs
among normal connections. The monitor runs a hypotheses
testing algorithm to test whether a pair of connections have
the property of stepping-stone connections. In this paper,we
consider an attacker model where the packets can be randomly
delayed or permuted at the stepping-stone hosts. Two basic
constraints exist for such an attacker model: the maximum
packet delay and the maximum number of packets stored
at a host. We derive two algorithms based on these two
constraints. Our algorithms do not require synchronization of
the connections, so the monitor can start working in the middle
of a connection and make decisions before the connection
ends. Our algorithms do not depend on either the content or
the length of the packets, and therefore they are applicableto
encrypted and padded connections.

Under the bounded delay constraint, we develop a timing-
based algorithm which makes decisions by searching for a
map between the incoming and the outgoing streams subject
to the delay constraint. By restricting the search to maps that
preserve the order of packets, we reduce the complexity from
exponential to linear. Under the bounded memory constraint,
we use a variation-based algorithm which makes decisions by
comparing the maximum variation between the connections
to a threshold. Both of the proposed algorithms are proved
to have zero miss detection probabilities, and exponentially-
decaying false alarm probabilities for independent Poisson
processes. We compare the error exponents of the proposed
algorithms and support our results by simulation.

The rest of the paper is organized as follows. Section
II defines the problem. Section III presents two algorithms
for stepping-stone detection, analyzes their performance, and
compares their error exponents. Then Section IV presents
simulation results to verify our analysis.

II. T HE PROBLEM STATEMENT

Let the packet arrivals on streami be represented by a point
process

Si = (. . . , s
(i)
−1, s

(i)
0 , s

(i)
1 , s

(i)
2 , . . .), i = 1, 2

where s
(i)
k (k ≥ 1) is the kth arrival epoch of streami (If

k ≤ 0, it is the(−k+1)th packet before the monitor starts). Let
Ti = {. . . , s

(i)
−1, s

(i)
0 , s

(i)
1 , s

(i)
2 , . . .} be the set of the elements

in Si. Let S1 be the incoming andS2 the outgoing streams at a
particular gateway node. Normally,S1 andS2 are independent.
If, however,S2 is a relay ofS1 in a stepping-stone attack, then
there will be strong correlation between them as formalized
in the following definition.

Definition 2.1: A pair of streams(S1, S2) is anormal pair
if S1 andS2 are independent point processes. It is astepping-
stone pair if there exists a bijectiong : T1 → T2 such that
g(s) − s ≥ 0 for any s ∈ T1.

The bijectiong is a mapping between the arrival and the
departure times of packets, allowing permutation of packets
during the relay1. The condition thatg is a bijection imposes
a packet-conservationconstraint,i.e.,no packets are generated
or dropped at the stepping stones. The conditiong(s)− s ≥ 0
is the causalityconstraint, which means that a packet cannot
leave the host before it arrives.

We want to test the following binary hypotheses:

H0 : (S1, S2) is a normal pair,

H1 : (S1, S2) is a stepping-stone pair

by observing(s(i)
1 , s

(i)
2 , s

(i)
3 , . . .) (i = 1, 2). Since no statistic

property is imposed on(S1, S2), the problem becomes one of
nonparametric hypothesis testing. More specific assumptions
will be imposed when analysis is presented.

III. D ETECTION ALGORITHMS AND COMPARISON

We take an algorithmic point of view to the problem of
detecting stepping-stone connections. We consider a couple of
basic constraints that the attacker will encounter in concealing
his attacks, and design algorithms to detect attacking traffic
by testing these basic constraints.

A. Detection Based on Delay Constraint

If the attacker wants to impose random delay on packets, or
change the order of packets, a critical constraint he faces is the
maximum delay. In practice, long delay can cause the packets
to be dropped. Furthermore, in interactive attacks, there is
usually a certain order according to which the packets should
arrive at the victim, and delaying the earlier packet will cause

1Here we do not consider the possibility of inserting chaff packets. See
[11] for the description of such scenario.



all the subsequent packets to be delayed. Therefore, the delay
in stepping-stone attacks is usually bounded. In this section,
we consider detecting stepping-stone pairs with bounded delay,
as defined in the following statement.

Definition 3.1: A pair of streams(S1, S2) is a stepping-
stone pair with bounded delay∆ if it is a stepping-stone pair,
andg(s) − s ≤ ∆ for any s ∈ T1.

The above definition is equivalent to the definition of
stepping-stone pairs proposed by Donohoet al. in [11].

We derive a timing-based detection algorithm “DETECT-
MATCH” (DM) to detect such stepping-stone pairs. The
intuition behind DM is that if we map the arrivals of a
stepping-stone pair to their corresponding departures, then the
mapping will satisfy causality and bounded delay. Therefore,
if the detection algorithm makes decisions by searching for
mappings that preserve causality and bounded delay, then
we guarantee that no stepping-stone pair will be missed. For
normal pairs, however, such matching may not be possible.
Algorithm DM uses this property to detect stepping-stone pairs
with bounded delay.

We introduce the following definitions used in the algo-
rithm.

Definition 3.2: A matchbetweenT1 andT2 is a collection
of pairs {(sk, s′k)}k∈Z where sk ∈ T1 and s′k ∈ T2, such
that si 6= sj and s′i 6= s′j for any i 6= j. A length-n match
{(sk, s′k)}k=1,..., n is valid if 0 ≤ s′k − sk ≤ ∆ for all k =
1, . . . , n. A match{(sk, s′k)}k∈Z is order-preservingif there
exists an integerm such thats′k = s

(2)
k+m−1 for all k.

Since a stepping-stone pair with bounded delay must have
a valid match, a direct approach is just exhaustively searching
all the possible matches to find a valid one. The complexity
of this approach is, however, exponential. A key observation
we make here is that there may be more than one valid match
for a given pair of streams, and at least one of them preserves
the order of packets, as stated in the following proposition.

Proposition 3.3: If {(sk, s′k)}k=1,..., n is a valid match,
then there exists a valid match between{sk}k=1,..., n and
{s′k}k=1,..., n that is order-preserving.

Proof: See Appendix.

By Proposition 3.3, we see that instead of searching for
any valid match, it suffices to consider only the matches that
preserve the order of packets. Now the problem is reduced
to finding the departure that corresponds to the first arrival,
and this reduction enables us to develop a linear complexity
algorithm—DM.

The detector using DM is defined as follows2:

δDM(S1, S2, ∆, n)

=











1 if ∃m ∈ [h2(s
(1)
1 ), h2(∆)] s.t. the match

{(s
(1)
k , s

(2)
k+m−1)}k=1,..., n is valid,

0 o.w.

2The detector gives the value1 for H1 and0 for H0.

wherehi(t) is the index of the first arrival epoch inSi on or
after timet, i.e.,

hi(t)
∆
= inf{k : s

(i)
k ≥ t}.

The implementation of DM is shown in Table I. The complex-
ity of DM is at most

n((# arrivals in [s
(1)
1 , ∆) in S2) + 1),

which grows linearly withn.

TABLE I

DETECT-MATCH (DM).

DETECT-MATCH(S1, S2, ∆, n):

for m = h2(s
(1)
1 ), . . . , h2(∆)

for k = 1, . . . , n

if s
(2)
k+m−1 − s

(1)
k

< 0 or s
(2)
k+m−1 − s

(1)
k

> ∆ break;
end
if k == n + 1 return ATTACK;

end
return NORMAL;

For the performance of DM, we first show that DM has
no miss detection. To see the reason, note that the match of
s
(1)
1 has to satisfy certain constraints. The first constraint is

causality,i.e., s(2)
m ≥ s

(1)
1 . The second constraint is thats

(2)
m ≤

s
(2)
h2(∆). This is due to bounded delay condition. The first few

departures can be caused by arrivals befores
(1)
1 , but departures

after∆ have to correspond to arrivals on or afters
(1)
1 . Hence,

m has to satisfyh2(s
(1)
1 ) ≤ m ≤ h2(∆), as shown in Fig. 2.

This condition combined with Proposition 3.3 guarantees that
all stepping-stone pairs with bounded delay∆ will be detected
by δDM.

S1

S2

s
(1)
1

∆ s
(2)
h2(∆)s

(2)

h2(s
(1)
1 )

Fig. 2. The match ofs(1)
1 : there are three possible candidates.

Next, we show that if normal pairs are pairs of independent
Poisson processes, the false alarm probability of DM goes to
zero exponentially, as stated in the following theorem.

Theorem 3.4:If normal pairs are independent Poisson pro-
cesses of equal rateλ, then the false alarm probability of DM
is bounded by

PF (δDM) ≤ min

{

3

2
− e−λ∆(

3

2
+ λ∆), 1

}

γn−1

whereγ = 1 − e−λ∆/2.



Proof: See Appendix.

Remark: Note thatγ → 0 as λ → 0. Therefore, the false
alarm probability of DM decays much faster for slow traffic.
An intuitive explanation is thatλ → 0 means the inter-arrival
time → ∞, which, when the ratio between inter-arrival time
and delay is considered, is equivalent to having finite inter-
arrival time but∆ → 0. That is, for extremely slow traffic,
DM raises alarms only if the departure times match the arrival
times perfectly, and this is unlikely to happen between two
independent connections. On the other hand, ifλ → ∞, then
∆ is far larger than inter-arrival times,i.e., the delay constraint
is essentially removed. Therefore, DM will always raise alarms
in that case.

B. Detection Based on Memory Constraint

Another basic constraint for the attacker is how much
memory he can use on the host. No matter whether he chooses
to randomize the departure times or the departure order,
there is one fundamental constraint that he can not hide—the
memory usage. In the random delay strategy, packets have to
be stored in the host while waiting for the delay to expire. In
the permutation strategy, packets have to be put in a pool while
the host is waiting for more packets to mix in a batch. We
notice that by looking at the number of arrivals and departures
at the two ends of a host, a monitor can still discover consistent
property about the stepping-stone pairs without knowing what
happens to the packets in the host. Specifically, assume that
the host’s memory can hold at mostM packets. Then the
difference between the number of incoming and the number of
outgoing packets during any period of time can never exceed
M . We abstract this property to the following definition.

Definition 3.5: A pair of streams(S1, S2) is a stepping-
stone pair with bounded memoryM if it is a stepping-stone
pair, and for anya ≤ b,

∣

∣|{s ∈ T1 : s ∈ [a, b]}| − |{s ∈ T2 : s ∈ [a, b]}|
∣

∣ ≤ M.

In [14], we have proposed an algorithm, “DETECT-
MAXIMUM-VARIATION” (DMV), to detect stepping-stone
pairs by comparing the maximum variation with a predefined
threshold3. For stepping-stone pairs with bounded memoryM ,
the detector is defined as

δDMV(S1, S2, M, n) =

{

1 if v(n) ≤ M,
0 o.w.

wherev(n) is the maximum variation computed by DMV.
We will show in the sequel why DMV can be applied to

stepping-stone with bounded memory and its performance.
We first show that any stepping-stone pairs with bounded
memory M will be detected by DMV. The reason follows
from a reinterpretation of the maximum variation. In [14], the
maximum variationv(w) is defined as follows

v(w)
∆
= max

1≤i≤w
d(i) − min

1≤i≤w
d(i),

3In [14], it is proposed to use DMV to detect stepping-stone pairs with
bounded delay and bounded number of arrivals within the maximumdelay,
which is a subset of stepping-stone pairs with bounded memory

whered(w)
∆
=N1(w)−N2(w), andNi(w)

∆
=

w
∑

j=1

I{sj∈Si}. Note

that (s1, s2, s3, . . .) is the ordered union ofS1 and S2. By
simple manipulation, we see that

v(w) = max
1≤i≤j≤w

|(N1(j) − N1(i)) − (N2(j) − N2(i))|.

Therefore,v(n) is the maximum difference in the number of
arrivals and the number of departures in any period of time
up to thenth packet (either an arrival or a departure). By
Definition 3.5,v(n) is bounded byM .

As for the false alarm probability of DMV, we refer to the
following theorem in [14]:

Theorem 3.6:If normal pairs consist of independent Pois-
son processes, then the false alarm probability of DMV is
bounded by

PF (δDMV) ≤
(M + 1)

1 − ρ
ρn,

whereρ = cos π
M+2 . Furthermore, the upper bound is tight

with respect to the error exponent,i.e.,

lim
n→∞

−
1

n
log PF (δDMV) = − log ρ.

C. Comparing the Algorithms

In practice, the attacker’s strategy may cause his traffic
to satisfy both the bounded delay and the bounded memory
conditions. We are interested in which algorithm performs
better in detecting such stepping-stone pairs4.

Theorems 3.6 and 3.4 suggest that DM is preferable ifγ ≤
ρ2, i.e., when the rateλ of the normal traffic satisfies

λ ≤ −
4

∆
log

(

sin
π

M + 2

)

. (1)

Otherwise, DMV is preferable.
The threshold rate estimated in (1) may not be exact because

Theorem 3.4 only gives a lower bound on the error exponent of
δDM. We believe, however, that the existence of such a threshold
rate is true in general because on the one hand, rate does
not affect the performance of DMV, and on the other, the
performance of DM changes with rate as argued in Subsection
III-A.

IV. SIMULATIONS

We implement DM and DMV to verify their performance.
Since each algorithm has no miss detection under its own
assumptions, we are only interested in false alarm proba-
bilities. In our simulation, we assume that normal pairs are
independent Poisson processes of equal rates. The exact rate
will be specified later.

We compare DMV and DM by plotting their simulated false
alarm probabilities together in Fig. 3. We setM = 4, ∆ = 1,
and simulate DM for several traffic ratesλ = 2, 3, 4, 5 (note
thatPF (δDMV) does not depend on rate). Our simulation verifies
thatPF (δDM) increases with the growth of traffic rate, as argued

4Note that for largen, δDM(S1, S2, ∆, n) uses approximately twice
as many samples asδDMV (S1, S2, M, n). Thus we should compare
δDMV (S1, S2, M, 2n) with δDM(S1, S2, ∆, n).



in Subsection III-A. The plot clearly shows a threshold on the
rate beyond which DMV outperforms DM. In our simulation,
the threshold rate estimated by (1) is about2.7726, whereas
the actual threshold rate is shown by the simulation to be
somewhere between3 and 4. Therefore, we conclude that
the lower bound on the error exponent ofδDM obtained from
Theorem 3.4 is not tight. We expect the actual threshold rate
to be larger than the one estimated by (1).
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Fig. 3. PF (δDMV ) andPF (δDM).

APPENDIX

Proof of Proposition 3.3

As illustrated in Fig. 4, if{(s1, s′1), (s2, s′2)} is a valid
match which does not preserve the order of packets, we can
switch the match to be{(s1, s′2), (s2, s′1)} such that it is still
valid but the order is preserved. By this idea, we can reorder
the match as

s′′k = min
k≤i≤n

s′i.

Then{(sk, s′′k)}k=1,..., n is valid and order-preserving.

S1

S2

s1 s2

s′2 s′1

Fig. 4. More than one valid match: both the solid and the dottedlines are
valid matches.

Proof of Theorem 3.4

Given a match{(si, s′i)}i=1, 2,..., defineYi
∆
=s′i − si. Algo-

rithm DM has a false alarm if and only if there existss′1 s.t.the
order-preserving match{(si, s

′
i)}i=1,..., n satisfies0 ≤ Yi ≤ ∆

for all i = 1, . . . , n.
Define Zi (i ≥ 2) as the difference in theith interarrival

time, i.e.,
Zi

∆
=(s′i − s′i−1) − (si − si−1).

Then

Yi = (s′i−1 − si−1) + (s′i − s′i−1)− (si − si−1) = Yi−1 + Zi.

Note that for independent Poisson processes of equal rateλ,
s′i − s′i−1 andsi − si−1 are independent Exponential random
variables with mean1/λ. ThusZi’s (i ≥ 2) are i.i.d. random
variables with p.d.f.p(z) = λ

2 e−λ|z|. Therefore, givenY1 =
y1, {Yi}

∞
i=2 is a general random walk starting fromy1 with

step distributionp(z).

Let Y n
2

∆
=(Y2, . . . , Yn). SinceZi has zero mean, it is easy

to see that

Pr{Y n
2 ∈ [0, ∆]|Y1 ∈ [0, ∆]} ≤ Pr{Y n

2 ∈ [0, ∆]|Y1 =
∆

2
}

= Pr{|Y n
2 | ≤

∆

2
|Y1 = 0}.

We see that the false alarm probability satisfies

PF (δDM) = Pr{∃s′1, s.t. 0 ≤ Y n
1 ≤ ∆}

≤ Pr{∃s′1, s.t. 0 ≤ Y1 ≤ ∆}

·Pr{|Y n
2 | ≤

∆

2
|Y1 = 0}. (2)

We first bound the second term in (2). Define

pn(z)dz
∆
=Pr{|Y n−1

2 | ≤
∆

2
, z < Yn < z + dz|Y1 = 0},

wheren = 2, 3, . . . and−∞ < z < ∞. Note that

Pr{|Y n
2 | ≤

∆

2
|Y1 = 0} =

∫ ∆
2

−∆
2

pn(z)dz.

In [15] it is shown that

pn(z) =

∫ ∆
2

−∆
2

pn−1(x)p(z − x)dx (n = 2, 3, . . .)

where p1(z) = δ(z) (Dirac delta function), andp(z) is the
step distribution. Then we have

Pr{|Y n
2 | ≤

∆

2
|Y1 = 0}

=

∫ ∆
2

−∆
2

pn(zn)dzn

=

∫ ∆
2

−∆
2

pn−1(zn−1)dzn−1

∫ ∆
2

−∆
2

p(zn − zn−1)dzn

=

∫ ∆
2

−∆
2

p(z2)dz2

∫ ∆
2

−∆
2

p(z3 − z2)dz3 · · ·

∫ ∆
2

−∆
2

p(zn − zn−1)dzn



Let γ
∆
= max

c∈[−∆
2 , ∆

2 ]

∫
∆
2 −c

−∆
2 −c

p(z)dz. Simple calculation yields

that γ = 1 − e−λ∆/2. Then

Pr{|Y n
2 | ≤

∆

2
|Y1 = 0} ≤ γn−1.

Now we bound the first term in (2) as follows:

Pr{∃s′1, s.t. 0 ≤ Y1 ≤ ∆} ≤ Pr{∃ departures∈ [s1, ∆)}

+Pr{0 ≤ s
(2)
h2(∆) − s1 ≤ ∆}.

This is a union bound: the first probability corresponds to the
case whens′1 is some packet inS2 betweens1 and ∆, and
the second corresponds to the case whens′1 = s

(2)
h2(∆). It is

easy to show that

Pr{∃ departures∈ [s1, ∆)}

=

∫ ∆

0

λe−λs1(1 − e−λ(∆−s1))ds1

= 1 − (1 + λ∆)e−λ∆.

Sinces
(2)
h2(∆) − s1

d
= ∆ + Zi,

Pr{0 ≤ s
(2)
h2(∆) − s1 ≤ ∆} =

∫ 0

−∆

p(z)dz =
1

2
(1 − e−λ∆).

Hence

Pr{∃s′1, s.t. 0 ≤ Y1 ≤ ∆} ≤ min

{

3

2
− e−λ∆(

3

2
+ λ∆), 1

}

.

Therefore, by (2) we have proved that

PF (δDM) ≤ min

{

3

2
− e−λ∆(

3

2
+ λ∆), 1

}

γn−1

whereγ = 1 − e−λ∆/2 satisfying0 < γ < 1.
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