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Abstract— Malicious use of anonymity techniques makes net- Stepﬂlggt—stone Kp
work attackers difficult to track. The problem is even worse in ¢
stepping-stone attacks, where multiple anonymous connections K . ;
are linked to form an intrusion path. The tracking of a stepping- Attacker ‘ @/g
stone attacker requires the detection of all the connection pairs \ /
on the intrusion path. In this paper, we consider the problem N
of identifying a stepping-stone connection pair at an interme- E%%ﬂggﬁgtﬁg Victim

diate host. We formulate the problem as one of nonparametric
hypotheses testing. Our attacker model allows the attacker to Fig. 1. A stepping-stone attack.
encrypt the traffic and modify the timing. We propose two
algorithms which do not depend on the content of the traffic.

Our techniques only make generic assumptions such as delay Of Lis traffic Specifically, link level encryption can be used t
memory constraints, and therefore they are applicable in most . '

practical systems. We show that our algorithms can detect all the change the bit pattern of the attacking packets, and other
stepping-stone connections while falsely accusing normal traffic Strategies can be used to change the activity of the traffic.
with exponentially-decaying probabilities. For example, the attacker can mix his attacking traffic with
Index Terms—Intrusion detection, Nonparametric detection, other outgoing traffic at the hosts [2], impose random delay
Network security, Point processes. on the packets [3], change the order of packets [4], [5], or
l. INTRODUCTION insert dummy packets [4]-[6]. Mixing attacking traffic with
other traffic at the hosts puts the attacker at risk because it

Network attackers can maintain anonymity by launching tqg easy to be detected by the destinations of the other traffic

so-called stepping-stone attack [1]. In a stepping-stdtzla . . :
) ; ) I k h h f th
as illustrated in See Fig. 1, the attacker constructs a raute nserting dummy packets requires changing the contenteof t

o k ) traffic and will not be considered in this paper.
the victim through a collection of compromised hosts. ladte pap

. o In this paper, we assume the attacker encrypts his traffic and
of attacking the victim directly, the attacker uses thesemo.pads the packets to a constant length. The attacker is alowe

as stepping stones to relay attacking qomn_wands_to _the V'CF'tm change the behavior of the traffic, but not the content.
Because each host can only see the identity of its |mmed|£e o . . )
- . . pecifically, we consider packet-conserving transforomesti
predecessor, the victim only sees the identity of the laSt'hosuch as imposing random delay or reordering packets
Therefore, the identity of the attacker is hidden. P 9 y ap '
With the development of anonymity teghnology, attacker, Related Work
have more powerful ways to evade tracking. In the study o . . . _
anonymity and privacy in wired networks, various technigue Staniford and Heberlein [1] are the first to consider the prob
have been developed to help the network users to mainttgm of detecting stepping-stone connections. Early tepres
anonymity while communicating efficiently. When it comes t@re based on the content of the traffic. Seg,.[1], [7]. These
defense against stepping-stone attacks, however, thatisitu techniques, however, are not applicable to detecting ptedy
becomes the other side of a coin. A malicious attacker c&annections. An alternative is to exploit timing charaistirs
change the compromised hosts into his anonymity serveds, @ the traffic. Zhang and Paxson [8] propose to match the
borrow ideas from existing anonymity techniques to conce#ff” periods of one connection to the “on” periods of anathe
connection. Their approach requires that the connectioas a
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February 2006. on different paths have distinctive timing characterstithe



drawback of these approaches is that they are vulnerable t@he rest of the paper is organized as follows. Section
active timing perturbation by the attacker. Il defines the problem. Section Ill presents two algorithms
There are a few results on detecting encrypted, timirigr stepping-stone detection, analyzes their performaand
perturbed stepping-stone connections; see [11]-[13].KBye compares their error exponents. Then Section IV presents
assumption of these methods is that the attacker has limitthulation results to verify our analysis.
ability to alter the traffic. Donohcet al. [11] are the first
to consider the bounded delay perturbation, where there is a
maximum tolerable delay for each attacking packet. Assgmin Let the packet arrivals on streanbe represented by a point
that a stepping-stone pair is a renewal process and its refd{cess
(detailed analysis is done for Poisson processes), they sho Si=1(... RORNORNORNO! L), i=1,2
that substantial correlation can be revealed even withnimi ' R L ’
perturbation. Wang and Reeves in [12] take a watermanghere s,g’) (k > 1) is the kth arrival epoch of stream (If
based approach. They show how to correlate stepping-stane 0, it is the (—k+1)th packet before the monitor starts). Let
connections with independent and identically distribuped- 7, = {.. .| s {7 {9 s{ .} be the set of the elements
turbation by introducing watermark into packet interaal$ in S;. Let S; be the incoming and, the outgoing streams at a
Blum, Song and Venkataraman [13] work along the same lipgyrticular gateway node. Normallg; andS, are independent.
as [11] except that they also assume that the attacker hag, fowever,S, is a relay ofS; in a stepping-stone attack, then
bounded peak rate, and they remove the Poisson assumptiofh@fe will be strong correlation between them as formalized
the attacking traffic. They propose several detection &lgos  in the following definition.
with no miss detection, and they are the first to prove that the Definition 2.1: A pair of streamg S, S,) is anormal pair
algorithms require a polynomial number of packets to satisff $, and S, are independent point processes. It stepping-
certain false alarm constraint. stone pairif there exists a bijectiony : 7; — 75 such that
g(s) —s>0foranyse 7.

Il. THE PROBLEM STATEMENT

B. Summary of Results and Organization

We want to design a stepping-stone monitor installed eith (The buec_tlong 'S a mapping be.tween the amval and the
at the network gateway node (proposed by Dontcal, eparture times of packets, allowing permutation of packet

in [11]) or as an independent process at the stepping—st&“ﬁrmg the relaj. The condm.on. thay is a bijection imposes

host. The monitor examines the incoming and the Outggpacket-conservatloooqstralnt,l.e.,no packet§ are generated

ing traffic, and identifies the stepping-stone connectioinspa_or dropped ?‘ the stepplng st_ones. The condifien) —s 2 0

among normal connections. The monitor runs a hypotheglgsthecausalltyconstra!nt, Wh'Ch means that a packet cannot

testing algorithm to test whether a pair of connections have? Ve the host before it arrves.

the property of stepping-stone connections. In this paper, We want to test the following binary hypotheses:

consider an attacker model where the packets can be randomly Ho (S1, So) is a normal pair

delayed or permuted at the stepping-stone hosts. Two basic M,

constraints exist for such an attacker model: the maximum o

packet delay and the maximum number of packets storbd observing(sg’)., sg), séz), ...) (i =1, 2). Since no statistic

at a host. We derive two algorithms based on these twooperty is imposed ofS;, S3), the problem becomes one of

constraints. Our algorithms do not require synchronizatd nonparametric hypothesis testing. More specific assumptio

the connections, so the monitor can start working in the teiddwill be imposed when analysis is presented.

of a connection and make decisions before the connection

ends. Our algorithms do not depend on either the content or

the length of the packets, and therefore they are applicable Ve take an algorithmic point of view to the problem of

encrypted and padded connections. detecting stepping-stone connections. We consider a eamfpl
Under the bounded de'ay Constraint we deve'op a t|m|nga3|c constraints that the attacker will encounter in CaﬁI(Ig

based algorithm which makes decisions by searching forhi attacks, and design algorithms to detect attackindidraf

map between the incoming and the outgoing streams subje¥ttesting these basic constraints.

to the delay constraint. By restricting the search to ma}ps th. Detection Based on Delay Constraint

preserve the order of packets, we reduce the complexity from

exponential to linear. Under the bounded memory constrair%}]

we use a variation-based algorithm which makes decisions . delav. | tice. | gel th ket
comparing the maximum variation between the connectio Ximum defay. In practice, long delay can cause the packets

to a threshold. Both of the proposed algorithms are prové?j be dropped.. Furthermore,'ln mtera'ctlve attacks, there i
to have zero miss detection probabilities, and exponéytial usually a certain order according to which the packets shoul

decaying false alarm probabilities for independent Pcuissfi‘rrive at the victim, and delaying the earlier packet wilise

procgsses. We compare the error equnentS_ of the prOpOSQQere we do not consider the possibility of inserting chaftkets. See
algorithms and support our results by simulation. [11] for the description of such scenario.

(S1, S2) is a stepping-stone pair

IIl. DETECTIONALGORITHMS AND COMPARISON

If the attacker wants to impose random delay on packets, or
nge the order of packets, a critical constraint he factei



all the subsequent packets to be delayed. Therefore, thg dethereh;(t) is the index of the first arrival epoch ifi; on or
in stepping-stone attacks is usually bounded. In this @ecti after timet, i.e.,
we consider detecting stepping-stone pairs with boundkyde
as defined in the following statement. ha()2inf{k: 5 > 1),

Definition 3.1: A pair of streams(S;, S2) is a stepping- The implementation of DM is shown in Table |. The complex-
stone pair with bounded delak if it is a stepping-stone pair, ity of DM is at most
andg(s) —s < A foranys € 7;. (1)

The above definition is equivalent to the definition of n((# anvals infs;, A) in $) + 1),
stepping-stone pairs proposed by Dondaial. in [11]. which grows linearly withn.

We derive a timing-based detection algorithm “DETECT-
MATCH” (DM) to detect such stepping-stone pairs. The
intuition behind DM is that if we map the arrivals of a
stepping-stone pair to their corresponding departures the
rnapping WiII_ satisfy c_ausality and borrn_ded delay. Ther&gfo: DETECT-MATCH(S1, 3, A, n);
if the detection algorithm makes decisions by searching for 0
mappings that preserve causality and bounded delay, then(©r 7 = ha(s; ) » ha(A)
we guarantee that no stepping-stone pair will be missed. For ¢ (@ e <0ors® M S A preak:

TABLE |
DETECT-MATCH (DM).

=]

. . . s o1 = 5k k+m—1 " Sk
normal pairs, however, such matching may not be possible. end
Algorithm DM uses this property to detect stepping-storiespa en'g k==n+1 retum ATTACK;
with bounded delay. return NORMAL:
We introduce the following definitions used in the algo-
rithm.

For the performance of DM, we first show that DM has
no miss detection. To see the reason, note that the match of
) has to satisfy certain constraints. The first constraint is

Definition 3.2: A matchbetween7; and7; is a collection
of pairs {(sx, s},)}kez Wheres, € 7, ands) € T, such
thats; # s; ands; # s} for anyi # j. A lengthn match

{(sks $4) ... is valid if 0 < s, — s, < A for all k = causalrty,r e, s > s{"). The second constraint is theff <
L...,n. A m7at,Ch{(5k7 s}.) }rez is order-preservingf there ngz)(A)' This is due to bounded delay condition. The first few
exists an integer such thats), = s,(flm , for all &. departures can be caused by arrivals beﬁélr)e but departures

Since a stepping-stone pair with bounded delay must haaier A have to correspond to arrivals on or aftaér) Hence,
a valid match, a direct approach is just exhaustively séagch m, has to sat|sfyh2(sl ) < m < hy(A), as shown in Fig. 2.
all the possible matches to find a valid one. The complexihis condition combined with Proposition 3.3 guaranteed th
of this approach is, however, exponential. A key obserati@ll stepping-stone pairs with bounded delawill be detected
we make here is that there may be more than one valid matghg,,,
for a given pair of streams, and at least one of them preserves
the order of packets, as stated in the following proposition

Proposition 3.3:1f {(sg, s})}k=1,...,» IS @ valid match,
then there exists a valid match betweés, }r—.
{8} }r=1,..., n that is order-preserving.

Proof: See Appendix. ]

S

.....

By Proposition 3.3, we see that instead of searching for
any valid match, it suffices to consider only the matches that }e ]
preserve the order of packets. Now the problem is reduced Shg(sgn) Sha(a)
to finding the departure that corresponds to the first asrival
and this reduction enables us to develop a linear complexity

S

Fig. 2. The match ofs<1 ): there are three possible candidates.

algorithm—DM. S Next, we show that if normal pairs are pairs of independent
The detector using DM is defined as folldws Poisson processes, the false alarm probability of DM goes to
zero exponentially, as stated in the following theorem.
dom(S1, S2, A, n) Theorem 3.4:If normal pairs are independent Poisson pro-

1 if 3m € [ha(s{?), ha(A)] s.t.the match cesses of equal rate then the false alarm probability of DM

= {(s I(€1)’ ng Dot n is valid, is bounded by
0 ow Pr(6on) < min{‘;’ —M(2 +AA), } -l

2The detector gives the valuefor 1 and0 for H. Wherey =1- e’AA/z.



Proof: See Appendix. B whered(w)2 Ny (w) — Na(w), and Ny (w)2 3 I, cs,;. Note
=1

Remark: Note thaty — 0 asA — 0. Therefore, the false that (5, s,, s5,...) is the ordered union of; and Ss. By
alarm probability of DM decays much faster for slow trafﬁcsimme manipulation, we see that
An intuitive explanation is thah — 0 means the inter-arrival
time — oo, which, when the ratio between inter-arrival time  v(w) = max [(N1(j) — Ni(7)) — (N2(j) — N2(0))]-
and delay is considered, is equivalent to having finite inter J‘j_‘w ] ) ]
arrival time butA — 0. That is, for extremely slow traffic, Therefore,u(n) is the maximum difference in the number of
DM raises alarms only if the departure times match the arriv@fivals and the number of departures in any period of time
times perfectly, and this is unlikely to happen between twdP t© thenth packet (either an arrival or a departure). By
independent connections. On the other hand,  co, then Definition 3.5,4(n) is bounded byM.
Ais far larger than inter-arrival timese., the delay constraint  AS for the false alarm probability of DMV, we refer to the

is essentially removed. Therefore, DM will always raiseralg following theorem in [14]: _ _ _
in that case. Theorem 3.6:If normal pairs consist of independent Pois-

son processes, then the false alarm probability of DMV is
B. Detection Based on Memory Constraint bounded by
Another basic constraint for the attacker is how much Pr(0om) < (M+1) ,
memory he can use on the host. No matter whether he chooses - 1-p
to raqdomize the departure tim_es or the departurg Ord@here p = cos 575 Furthermore, the upper bound is tight
there is one fundamental constraint that he can not hide—{{gn respect to the error exponeie.,
memory usage. In the random delay strategy, packets have to 1
be stored in the host while waiting for the delay to expire. In lim —= log Pr (8o ) = — log p.
the permutation strategy, packets have to be put in a podéwhi noee
the host is waiting for more packets to mix in a batch. We- Comparing the Algorithms
notice that by looking at the number of arrivals and depagur In practice, the attacker's strategy may cause his traffic
at the two ends of a host, a monitor can still discover coastst to satisfy both the bounded delay and the bounded memory
property about the stepping-stone pairs without knowingtwhconditions. We are interested in which algorithm performs
happens to the packets in the host. Specifically, assume thetter in detecting such stepping-stone fairs
the host's memory can hold at mosf packets. Then the Theorems 3.6 and 3.4 suggest that DM is preferable<f
difference between the number of incoming and the number &f, i.e., when the rate\ of the normal traffic satisfies
outgoing packets during any period of time can never exceed 4 -
M. We abstract this property to the following definition. A< N log <sin g 2). Q)
Definition 3.5: A pair of streams(S;, S2) is a stepping-
stone pair with bounded memony if it is a stepping-stone Otherwise, DMV is preferable.
pair, and for anya < b, The threshold rate estimated in (1) may not be exact because
Theorem 3.4 only gives a lower bound on the error exponent of
{s€Ti: s€la, b} - {s € Ta: s €a, b}|| <M. 5ou- We believe, however, that the existence of such a threshold
In [14], we have proposed an algorithm, “DETECT+ate is true in general because on the one hand, rate does
MAXIMUM-VARIATION” (DMV), to detect stepping-stone not affect the performance of DMV, and on the other, the
pairs by comparing the maximum variation with a predefingaerformance of DM changes with rate as argued in Subsection
threshold. For stepping-stone pairs with bounded memafy 1lI-A.
the detector is defined as

)

IV. SIMULATIONS

We implement DM and DMV to verify their performance.
Since each algorithm has no miss detection under its own
wherev(n) is the maximum variation computed by DMV.  assumptions, we are only interested in false alarm proba-

We will show in the sequel why DMV can be applied tjlities. In our simulation, we assume that normal pairs are
stepping-stone with bounded memory and its performangadependent Poisson processes of equal rates. The exact rat
We first show that any stepping-stone pairs with boundggll be specified later.
memory M will be detected by DMV. The reason follows We compare DMV and DM by plotting their simulated false
from a reinterpretation of the maximum variation. In [14iet alarm probabilities together in Fig. 3. We set =4, A =1,

1 if <M

maximum variations(w) is defined as follows and simulate DM for several traffic ratés= 2, 3, 4, 5 (note
A . . ) that Pr(dpuv ) does not depend on rate). Our simulation verifies
v(w)= max d(i) — min d(3), : : .
1<i<w 1<i<w that Pr(dp) increases with the growth of traffic rate, as argued
3In [14], it is proposed to use DMV to detect stepping-ston@spwith “Note that for largen, dom(S1, S2, A, n) uses approximately twice

bounded delay and bounded number of arrivals within the maxirdatay, as many samples a8pmv(S1, S2, M, m). Thus we should compare
which is a subset of stepping-stone pairs with bounded memory domv (S1, S2, M, 2n) with dpm(S1, S2, A, n).



in Subsection IlI-A. The plot clearly shows a threshold oe thProof of Theorem 3.4
rate beyond which DMV outperforms DM. In our simulation, . . o match{(ss, /) Vit 2. ., defineYiés; _ s:. Algo-

the threshold rate estimated by (1) is abutr26, whereas rithm DM has a false alarm if and only if there existss.t.the

the actual threshold rate is shown by the simulation to %‘?der-preserving match(ss, )} satisfies) < V. < A
somewhere betweef and 4. Therefore, we conclude thatfor alli— 1 N v 2=l -t =

the lower bound on the error exponent dj, obtained from Define Z; (i > 2) as the difference in théth interarrival
Theorem 3.4 is not tight. We expect the actual threshold ra}}%e ie vV =

to be larger than the one estimated by (1).
9 y ) Zi2(sh — s)_1) = (si — si-1)-

10

, P vs. sample size n M=4,A=1 Then
10 T
x DMV , , ,
DM, A=2 T . — . . — Q. i . G- — . .
. DM A-s Yi= (i1 —si—1) +(si = s5_1) = (ss = sim1) =Yia + Zs.
+ DM, A=4
v

om a=5]i  Note that for independent Poisson processes of equal\tate
s, —s;_, ands; — s;_1 are independent Exponential random
variables with meari/\. ThusZ;’s (i > 2) are i.i.d. random
variables with p.d.fp(z) = 3e*/*I. Therefore, givert; =
y1, {Yi}52, is a general random walk starting froga with

1 step distributionp(z).

107

Let YQ”Q(YQ, ..., Y,). SinceZ; has zero mean, it is easy
107 | to see that
\\\\\ A
A Pr{Yy' € [0, A]|Y1 € [0, A]} < Pr{Yy' €0, Al|Y; = 5}
10°F B A
= Pr{|Yy'| < 5|Y1 = 0}.
07 = - . We see that the false alarm probability satisfies
_ Pr(dpy) = Pr{3s}, st.0<Y" <A}
F9. 3. Pr(bow) and P (Gou). < Pr{3s),st0<Y; <A}
A
Pr{|Yy| < Y1 = 0}, 2

APPENDIX ) ) )
We first bound the second term in (2). Define

Proof of Proposition 3.3

A n—1 A
. A . . . n(2)dz=Pr{|Y- < —,z2<Y,< dz|Y7 = 0},
As illustrated in Fig. 4, if{(s1, s}), (s2, s4)} is a valid Pa(2)dz=Pr{|¥;"| 27”7 @+ dzYy }

match which does not preserve the order of packets, we GgReren = 2, 3,... and —oco < z < co. Note that
switch the match to bé(sy, s5), (s2, s|)} such that it is still
valid but the order is preserved. By this idea, we can reorder

A
/\ )
Pr{|Y?| < =y, =0} = - (2)dz.
the match as r{[Y2'] < 2‘ 1 =0} /%p (2)dz

s = kg}gn i In [15] it is shown that
A
. . . 2
Then{(sk, s} )}k=1,..,» iS valid and order-preserving. pn(z) = / R Pr_1(z)p(z —2)dz (n=2,3,...)
2
g wherep,(z) = §(z) (Dirac delta function), ang(z) is the
L step distribution. Then we have
A
Pr{|Yy'| = 5 Y1 =0}
2
Sy -4
/ / A A
So S 2 d 2 d
Fig. 4. More than one valid match: both the solid and the dditess are N /, P-1(zn-1)dzn— /3 P(n = 2n-1)dzn

valid matches. A
2

ol

. = /gp(zz)d@/

p(ZB - ZQ)dZB o / p(Zn - anl)dzn

o>
wlb>



Let ’yé
thaty =1 —

Simple calculation yields

max

f a 2)dz.
CG[—577 C

e *A/2 Then

A
Pr{|Yy"| < §\Y1 =0} <9""

Now we bound the first term in (2) as follows:

Pr{3s}, st.0<Y; <A} < Pr{3 departurese [s1, A)}

+Pr{0 < 3222)@) —s1 <A}

This is a union bound: the first probability corresponds ® th

case whers} is some packet ity betweens; and A, and
the second corresponds to the case whignr= s, -

(2)

(A): It is

easy to show that

Since 5222)<A> -

(13]

Pr{3 departurese [s1, A

/ e M1 (1 —e”

=1—(1+MA)e .

)\(Afsl))dsl

(18]

s1 LA+ 7,

Pr{0 <s”  —s <A} = / 2)dz = %(1 —e ),
Hence
Pr{3s},s.t.0<V; <A} < min{; —*A(2 +AA), }
Therefore, by (2) we have proved that
Pp(6ou) < min{‘;’ *M(2 +24), } e

wherey =1 —

(1]

(2]

K]

(4]

(5]

(6]

(7]

e /2 satisfying0 < v < 1.
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