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ABSTRACT
In this paper, we describe the design and implementation
of a distributed operating system for ad hoc networks.
Our system simplifies the programming of ad hoc net-
works and extends total system lifetime by making the
entire network appear as a single virtual machine. It au-
tomatically and transparently partitions applications into
components and dynamically finds them a placement on
nodes within the network to reduce energy consumption
and to increase system longevity. This paper describes
our programming model, outlines the design and imple-
mentation of our system and examines the energy effi-
ciency of our approach through extensive simulations as
well as validation of a deployment on a physical testbed.
We evaluate practical, power-aware, general-purpose al-
gorithms for component placement and migration, and
demonstrate that they can significantly increase system
longevity by effectively distributing energy consumption
and avoiding hotspots.

1 Introduction

Ad hoc networks simultaneously promise a radically new
class of applications and pose significant challenges for
application development. Recent advances in low-power,
high-performance processors and medium to high-speed
wireless networking have enabled new applications for
ad hoc and sensor networks, ranging from large-scale
environmental data collection to coordinated battlefront
and disaster-relief operations. Ad hoc networking appli-
cations differ from traditional applications in three fun-
damental ways. First, ad hoc networking applications are
inherently distributed. Operating on a distributed plat-
form requires mechanisms for remote communication,
naming, and migration. Second, ad hoc networks are
typically highly dynamic and resource-limited. Key per-
formance metrics, such as bandwidth, may vary through
several orders of magnitude, and mobile nodes are typi-
cally limited in energy. Consequently, applications need
policies for using available resources efficiently, and
sharing them among competing applications fairly. Fi-
nally, ad hoc networking applications are expected to
outlast the lifetime of any one node. Performing long-
running computations in a dynamic environment requires
facilities for dynamically introducing new functionality
and integrating it with existing computations present in

the network. Current operating systems, however, pro-
vide little support for ad hoc networks.

The current state of the art in developing applications
for ad hoc networks is to treat the network as a system of
standalone systems, that is, a network comprised of in-
dependent, autonomous computers. This programming
model forces applications to provide all of their requisite
mechanisms and policies for their operation themselves.
Mechanisms, such as those for distributing code and mi-
grating state, as well as policies, such as how to react to
diminishing battery supply on a given node, need to then
be embedded, independently, in all applications. Such
a limited programming model not only makes develop-
ing ad hoc networking applications tedious and error-
prone, but the lack of a global operating system acting
as a trusted arbiter between mutually distrusting applica-
tions allows inter-application conflicts to emerge. Crit-
ical global properties of the network, such as system
longevity, are dictated by distributed policies encoded in
applications; network operators have little control over
the operation of their systems, as there is no network-
wide system layer. This situation is analogous to the
early standalone operating systems implemented entirely
in user-level libraries, in that assuring global properties
of the system requires whole system analysis, including
auditing all application code.

In this paper, we investigate an alternative program-
ming model for ad hoc networks where a thin distributed
operating system layer makes the entire network appear
to applications as a single virtual machine. We describe
the design and implementation of a distributed operating
system based on this model, called MagnetOS. We show
that the high level of abstraction presented to applica-
tions with such a model not only simplifies the develop-
ment of applications substantially, but also enables the
underlying system to make energy-efficient placement
and migration decisions. Unlike distributed program-
ming on the Internet, where energy is not a constraint,
delay is low, and bandwidth is plentiful, physical limi-
tations of ad hoc networks lead to some unique require-
ments. Technology trends indicate that the primary lim-
itation of mobile ad hoc and sensor networks is energy
consumption, and communication is the primary energy
consumer [38]. Consequently, the goals of MagnetOS
are as follows:



Efficiency: The system should execute distributed ad
hoc network applications in a manner that conserves
power and extends system lifetime. Policies and mecha-
nisms used for adaptation in the systems layer should not
require excessive communication or power consumption.

Adaptation: The system should respond automat-
ically to significant changes in network topology, re-
source availability, and the communication pattern of the
applications. Adaptation should not require a priori in-
volvement from the application programmer.

Generality: The system should support a wide range
of applications. Developing new applications that exe-
cute efficiently on an ad hoc network should require little
effort. The system should provide effective default adap-
tation policies for applications that are not power-aware.
Applications should be able to direct and, when executed
with sufficient privilege, override the default adaptation
using application-specific information.

Extensibility: The system should provide facilities
for deploying, managing and modifying executing appli-
cations whose lifetime may exceed those of the network
participants.

Compatibility: The system should not require mas-
tering a new paradigm in order to deploy applications.
Standard development tools should continue to work in
building applications for ad hoc networks. The system
should enable applications to execute on ad hoc networks
of heterogeneous nodes.

MagnetOS meets these goals by making the entire net-
work operate as an extended Java virtual machine. Mag-
netOS applications are structured as a set of intercon-
nected, mobile event handlers, specified statically by the
programmer as objects in an object-oriented system. The
MagnetOS runtime uses application partitioning and dy-
namic migration to distribute the event handlers to nodes
in the ad hoc network and finds an energy-efficient place-
ment of handlers. MagnetOS applications are comprised
of event handlers that communicate with each other by
raising well-typed events. Event signatures specify the
types of the arguments passed with the event, as well as
the return type of the handler. By default, all externally
visible entry points, such as methods in a Java object
specification, serve as event declarations, and method
bodies constitute the default handler for that event in the
absence of overriding runtime event bindings. Conse-
quently, the MagnetOS programming model closely par-
allels the Java virtual machine, providing access to stan-
dard Java libraries and enabling familiar development
tools to be used to construct distributed applications.

Our MagnetOS implementation consists of a static ap-
plication partitioning service that resides on border hosts
capable of injecting new code into the network, a run-
time on each node that performs dynamic monitoring and
component migration and a set of policies to guide object

Figure 1: A static partitioning service converts monolithic
Java applications into distributed applications that can run on
an ad hoc network and transparently communicate by raising
events.

placement at run time. The static partitioning service
takes regular Java applications and converts them into
distributed components that communicate via events by
rewriting them at the bytecode level (Figure 1). The code
injector then finds a suitable initial layout of these com-
ponents and starts the execution of the application. The
runtime monitors the performance of the application and
migrates application components when doing so would
benefit the system.

The algorithms for event handler placement form the
core of our system. We present practical, online algo-
rithms for finding an energy-efficient distribution of ap-
plication components in an ad hoc network (Figure 2).
This paper examines the effectiveness of these algo-
rithms in reducing energy consumption and extending
system lifetime in the context of three application bench-
marks, and examine their impact on system longevity.
These algorithms operate by dividing time into epochs,
monitoring the communication pattern of the application
components within each epoch, and migrating compo-
nents at the end of the epoch when doing so would result
in more efficient power utilization.

We have implemented the system described in this pa-
per and deployed it on x86 laptops, Transmeta tablets,
and StrongArm PocketPC devices. Since current Java
virtual machines place significant minimum memory re-
quirements from their platforms, we have developed our
own space-optimized JVM, suitable for “headless Pock-
etPCs” which are cheap, have low energy requirements,
and approximate what one might find in an embedded
commodity device a few years from now. We report
on our experience with developing and deploying appli-
cations in a physical testbed of 16 mobile nodes using
this implementation. To increase the scale of our eval-
uation, we report results from simulation studies, vali-
dated against our implementation, which show that the
MagnetOS system can achieve significant improvement
in system longevity over static placement and standard
load-balancing techniques.

This paper makes three contributions. It proposes a
novel programming model for ad hoc networks where the
entire network appears as a single unified system to the



Figure 2: Migrating components closer to their data sources
increases system longevity and decreases power consumption
by reducing total network communication cost.

programmer. It describes the design and implementation
of an operating system based on this model, where the
distributed application is expressed at the language level
as a single, cohesive application. The system operates
by automatically partitioning applications and transpar-
ently migrating event handlers at runtime. Second, we
propose practical, adaptive, online algorithms for find-
ing an energy-efficient placement of application com-
ponents in an ad hoc network. These algorithms form
the central challenge to automatic energy-efficient exe-
cution in the system layer, and we demonstrate that lim-
ited, locally-collected information can lead to effective
placement decisions. Finally, we demonstrate that these
algorithms achieve high-energy utilization, extract low
overhead, and improve system longevity.

In the next section, we describe related work on op-
erating system support for ad hoc networks and their
applications. Section 3 outlines our system implemen-
tation, including the code partitioning and distribution
technique. Section 4 presents our network and appli-
cation model, describes our simulation framework and
evaluates within this environment. We summarize our
contributions in Section 5.

2 Related Work

Past work has examined distributed operating systems,
ad hoc networks, power management and programma-
bility of ad hoc sensor network, though few systems have
examined all of them.

2.1 Distributed Systems
Data and code migration have been examined exten-
sively in the context of wired networks of workstations.
Early landmark systems, such as V [9], Sprite [35], Ac-
cent [39], and LOCUS [37], implemented native oper-
ating system facilities for migrating processes between
nodes on a tightly coupled cluster. Glunix [14] pro-
vides facilities for managing applications on a tightly
connected networks of workstations. More recently, the
cJVM [4] and JESSICA [32] projects have examined
how to extend a Java virtual machine across a high-
performance cluster. Others, including Condor [30] and
CoCheck [43], provide user-level mechanisms for check-
pointing and process migration without operating system

support. These projects target high-performance, well-
connected clusters. Their main goals are to balance load
and achieve high performance in a local area network
for interactive desktop programs or CPU-intensive batch
jobs. In contrast, MagnetOS targets wireless multihop
networks, where utilizing power effectively and maxi-
mizing system longevity is more important than tradi-
tional application performance.

Distributed object systems have examined how to sup-
port distributed computations in the wide area. Emer-
ald [24] provides transparent code migration for pro-
grams written in the Emerald language, where the migra-
tion is directed by source-level programmer annotations.
Thor [29] provides persistent objects in a language-
independent framework. It enables caching, replication
and migration of objects stored at object repositories.
These seminal systems differ fundamentally from Mag-
netOS in that they require explicit programmer control
to trigger migration, do not support an ad hoc network
model and target traditional applications.

The closest approach to ours are some recent systems
that focused on how to partition applications within a
conventional wired network. The Coign system [22] has
examined how to partition COM applications between
two tightly interconnected hosts within a local-area net-
work. Coign performs static spatial partitioning of desk-
top applications via a two-way minimum cut based on
summary application profiles collected on previous runs.
The ABACUS system [1] has examined how to migrate
functionality in a storage cluster. MagnetOS shares the
same insight as Coign, in that it also focuses on the au-
tomatic relocation of application components, but differs
in that it dynamically moves application components in
response to changes in the network, instead of comput-
ing a static partitioning from a profile. Kremer et al.
[25] propose using static analysis to select tasks that can
be executed remotely to save energy. J-Orchestra [46]
performs application partitioning via rewriting, leaving
dynamic migration decisions under application control.
Spectra [13] monitors resource consumption, collects re-
source usage histories and uses quality of service (fi-
delity) information supplied by the application to make
resource allocation decisions. Spectra is invoked prior to
operation startup, and statically determines a location at
which to execute the operation.

Middleware projects have looked at constructing
toolkits to support mobile applications. The Rover
toolkit [23] provides relocation and messaging services
to facilitate the construction of mobile applications. The
Mobiware [3] and DOMT [26] toolkits are targeted
specifically for ad hoc networks and provide an adap-
tive QoS programming interface. XMIDDLE [52] assists
with data management and synchronization. MagnetOS
takes a systems approach instead of providing a program-



mer driven toolkit and automatically manages the shared
network and energy resources among ad hoc network ap-
plications. This approach unifies the system layer and
ensures that disparate applications, regardless of which
toolkits they use, behave in a cooperative manner.

2.2 Ad hoc Routing Protocols
There has been much prior research on ad hoc routing
algorithms. Proactive, reactive and hybrid routing pro-
tocols seek to pick efficient routes by proactively dis-
seminating or reactively discovering route information,
or both. While some protocols, such as PARO [16]
and MBLR [47], have examined how to make power-
aware routing decisions, all of these routing algorithms
assume that the communication end-points are fixed. Di-
rected diffusion [19] provides a data-centric program-
ming model for sensor networks by labeling sensor data
using attribute-value pairs and routing based on a gradi-
ent. MagnetOS complements the routing layer to move
application code around the network, changing the lo-
cation of the communication endpoints and radically al-
tering the communication pattern of the overall appli-
cation. It provides increased system and application
longevity by bringing application components closer to
the data sources, which complements the route selection
performed by the ad hoc routing protocol.

2.3 Operating Systems
Prior work has examined how to construct space-
constrained operating systems for sensor networks.
TinyOS provides essential OS services for sensor nodes
with limited hardware protection and small amounts of
RAM [20]. Maté [27] provides a capsule-based pro-
gramming model for in-network processing on sensor
nodes. Impala [31], the middleware layer of ZebraNet,
introduces a system activity model that handles a mix of
regular operations and irregular events for long-running
mobile sensor systems. MagnetOS is complementary to
these standalone systems, in that its system-wide abstrac-
tions can be built on top of the services they provide.

2.4 Programming Paradigms for Wireless Networks
There have been many research efforts to improve the
programmability of wireless ad hoc and sensor net-
works. Hood [51] and Abstract Regions [50] simplify
application development by providing high level abstrac-
tions which group together nodes with similar proper-
ties. Hood provides a low-level data sharing mechanism
among neighboring nodes. Abstract Regions is simi-
lar to Hood but also provides data aggregation and re-
source tuning options. TAG [33] treats the sensor net-
work as a database and performs data aggregation. Sen-
sorware [6] proposes an active sensor framework which
employs lightweight and mobile control scripts. By con-
trast, MagnetOS takes a system approach that makes the

whole network appear as a single system image to ap-
plications and does not require programmers to master a
new programming paradigm.

2.5 Power Efficiency
Previous work has also examined how to minimize power
consumption within an independent host through various
mechanisms ([36], [17], [11], [44], [7], [41]), includ-
ing low-power processor modes, disk spin-down poli-
cies, adapting wireless transmission strength and selec-
tively turning off unused devices. More recent work [2]
improves the power management by exposing new inter-
faces to applications and devices. Our system is comple-
mentary to this work and opens up further opportunities
for minimizing power consumption by shipping compu-
tation out of hosts limited in power to less critical nodes.

Remote execution, i.e. moving costly computation to
well-equipped nodes, has been used ([5], [18], [28]) to
conserve the energy of mobile devices. Others ([8], [15])
have proposed improving energy efficiency by control-
ling node mobility. Some of this work shares the same
insight as MagnetOS in that they also try to improve
power efficiency by application partitioning and compu-
tation migration. However, MagnetOS does not require
the aid of well-equipped nodes or the assumption that
node mobility is controllable.

3 System Overview
MagnetOS provides a single system image programming
model based on events. An event is an indication that
a named piece of code should be executed in response
to a system, sensor, or application-initiated occurrence.
Events are typed and may carry arguments and return
values; they are defined in MagnetOS as procedures.
Events may be synchronous, in which case the event in-
voker blocks until termination of the handler, or asyn-
chronous, in which case control returns immediately to
the component that raised the event. Applications con-
sist of a set of event handlers, and execution consists of
a set of event invocations that may be performed con-
currently. Every application receives an initial event to
start its execution; as well, components of an application
receive specific events for initialization. Device drivers,
sensors, and other peripherals may define events suitable
for applications to handle, and typically raise them asyn-
chronously in application components. MagnetOS pro-
vides the necessary abstractions to specify applications
composed of such events and event handlers, the static
service required to partition such an application into its
separate components, and a runtime that modifies the be-
havior of the application dynamically to optimize system
goals such as energy usage.

MagnetOS applications are specified as regular Java
programs which define component boundaries as well as
provide well-typed event specifications. This enables the



bulk of the application logic to be expressed using famil-
iar Java syntax and semantics. The MagnetOS rewriting
engine partitions monolithic applications and distributes
their components across an ad hoc network. The Mag-
netOS runtime then coordinates the communication and
migration of these application segments across the nodes
in the ad hoc network in order for the newly distributed
application to execute in a power-efficient manner. We
discuss the static and dynamic components of the Mag-
netOS runtime in the following sections.
3.1 Static Partitioning
MagnetOS partitions applications based on programmer
annotations, though, in the absence of annotations, object
boundaries delineate event handlers. Consequently, the
unit of mobility in MagnetOS is typically a Java object
instance, which we use synonymously with event han-
dler. This transformation at class boundaries preserves
existing object interfaces, and inter-object invocations
define events in MagnetOS. The entire transformation
is performed at the byte-code level via binary rewriting,
without requiring source-code access.

Our approach to partitioning applications statically is
patterned after previous work on application rewriting at
ingress points [42]. Static partitioning confers several
advantages. First, the complex partitioning services need
only be supported at code-injection points, and can be
performed offline. Second, since the run-time operation
of the system and its integrity do not depend on the parti-
tioning technique, users can partition their applications
into arbitrary components if they so choose. Further,
since applications are verified prior to injection into the
network, individual MagnetOS nodes need not rerun a
costly verifier on application components.
3.1.1 Application Partitioning for the JVM
Static partitioning takes original application classes, and
from each class extracts an event handler, a dispatch han-
dle, an event descriptor, and a set of event globals asso-
ciated with the event handler.

An event handler is a modified implementation of the
original class that stores the instance variables of the cor-
responding object. Each handler is free to move across
nodes in the network. Dispatch handles, on the other
hand, are remote references through which components
can raise events. That is, dispatch handles are used to
invoke procedure calls on remote event handlers residing
on other nodes. Event raises through the dispatch han-
dle are intercepted by the MagnetOS runtime and con-
verted into RPCs. This indirection enables code migra-
tion. As an event handler moves, the event raises occur-
ring through the corresponding event dispatch handles
are tracked by the MagnetOS runtime and directed to the
new location of the event handler. Event descriptors cap-
ture the event signatures that the original code exposes to
the rest of the application.

Several modifications to the application binaries are
required for this remote object mechanism to work seam-
lessly. First, object creations (new instructions and
matching constructor invocations) are replaced by calls
to the local MagnetOS runtime. The runtime selects
an appropriate node and constructs a new event handler
at that location. This operation returns a correspond-
ing, properly initialized dispatch handle, which is then
used in subsequent event raises. In addition, MagnetOS
converts remote data accesses into events correspond-
ing to accessor functions to read and write named lo-
cations. Similarly, it converts lock acquisitions and re-
leases into centralized operations at the event handler.
Finally, typechecking and synchronization instructions
(check-cast, instanceof, monitorenter and monitorexit in-
structions, and synchronized methods) are rewritten to
trap into the MagnetOS runtime.

The final component created for a class is a set of event
globals. The event globals are static fields shared across
all instances of an event handler. Each event handler
retains pointers to the corresponding instance of event
globals, and can therefore share state with other handlers.

3.2 Dynamic Object Management
The MagnetOS runtime provides the dynamic services
that facilitate the distributed execution of componentized
applications across an ad hoc network. Its services in-
clude component creation, inter-component communica-
tion, migration, garbage collection, naming, and event
binding.

3.2.1 Object Creation
In order to create a new instance of an event handler, an
application contacts the local runtime and passes the req-
uisite type descriptor and parameters for creation. The
runtime then has the option of placing the newly cre-
ated handler at a suitable location with little cost. It may
choose to locate the handler on the local node, at a well-
known node or at its best guess of an optimal location
within the network. In our current implementation, all
new handlers are created locally. We chose this approach
for its simplicity, and rely on our dynamic migration al-
gorithms to find the optimal placement over time. Fur-
thermore, short-lived, tightly scoped event handlers do
not travel across the network unnecessarily. The applica-
tion binaries, containing all of the constructors, are dis-
tributed to all nodes at the time that the application is
introduced into the network. Once created, the (remote)
runtime simply initializes the handler by calling its con-
structor and returns a dispatch handle.

Every object is tagged with a unique id, consisting of
a (node id, object id) tuple, as well as a creation time de-
rived from a Lamport clock kept independently at each
node. The unique id can be generated without expensive
distributed consensus, and the creation time enables ob-



ject versions to be differentiated from each other, aiding
in failure detection and recovery.

3.2.2 Remote Invocation and Migration
The runtime transparently handles invocations among the
event handlers distributed across the network. Each run-
time keeps a list of local event handlers. Dispatch han-
dles maintain the current location of the corresponding
handler, and processes raise events on behalf of applica-
tion invocations by marshalling and unmarshalling event
arguments and results.

MagnetOS can migrate both active and passive event
handlers. A passive event handler consists purely of
static data associated with an event handler; since no ac-
tive computation is modifying the handler’s associated
data, it is migrated at run time by serializing handler state
and moving it to a new node. In order to reduce the en-
ergy cost of migration, MagnetOS informs dispatch han-
dles of relocation lazily, the next time they raise an event
or the next time the garbage collector renews their ob-
ject leases on remote objects. This notification is accom-
plished through forwarding references left behind when
event handlers migrate. Chains of forwarding pointers, if
allowed to persist for a long time, would pose a vulner-
ability - as nodes die, out-of-date event references may
lose the path to the current location of the handler to
which they are bound. MagnetOS collapses these paths
whenever they are traversed. Periodic lease updates in
lease-based garbage collection requires periodic commu-
nication between dispatch handles and event handlers,
which provides an upper-bound on the amount of time
such linear chains are permitted to form in the network.

Migrating active event handlers efficiently requires ef-
fectively capturing the current state of the computation
being performed by that handler, and relocating it to a
new node. Since this state may be large, migration of ac-
tive event handlers is a costly operation. MagnetOS takes
into account the cost of the migration when making a de-
cision to relocate a handler. In some cases, such as a node
whose battery level is below a critical threshold required
to offload all event handlers at that node, active migration
is invoked in order to preserve the computation without
disruption. In order to provide the migration of active
handlers without incurring excessive run time costs, the
MagnetOS static partitioning service injects code to pe-
riodically check a flag in each basic block. If the handler
has been identified for migration, the MagnetOS runtime
sets this flag. When the rewritten code detects that the
flag is set, it checkpoints the current state of computation
and traps into MagnetOS runtime. MagnetOS runtime
transports the state and resumes the computation at the
destination. Compared to other approaches based on pe-
riodic checkpointing like JavaGoX[40] or state tracking
on a parallel stack like Merpati[45], this approach, simi-
lar to Brakes[48], incurs the cost of object checkpointing

only when the event handler needs to be migrated.

3.2.3 Handling Failures
Executing an application in a distributed setting intro-
duces a new set of failure modes. Since attempting to
preserve single-system application semantics in the pres-
ence of such failures is futile due to well-known impos-
sibility results, MagnetOS provides reasonable defaults
for common cases and exposes the unrecoverable errors
to applications. The system provides traditional at-most-
once semantics for event invocation; namely, events are
guaranteed to execute at most once, and failure indica-
tions raised by the run time kernel are conservative.

The main insight guiding failure detection in the ad
hoc domain with a single system image is that failure de-
tection can be deferred until a node requires the results
of a computation executed elsewhere. Consequently, fre-
quent pings to check on the availability of other nodes,
common in the wide area setting though costly from an
energy perspective in an ad hoc network, can be avoided.
MagnetOS performs health checks only when a node is
waiting on the result of a computation from another node.
The system uses keep-alive messages for long-running
synchronous event invocations; the loss of a threshold
number of consecutive keepalives indicate a failure to
communicate between the two nodes, stemming from the
MAC, transport, routing, or MagnetOS migration layers.

In response to such failures, MagnetOS attempts to
mask as much as it can without violating application se-
mantics. MAC layer failures, due to interference, con-
gestion, or lack of connectivity, are retried at the trans-
port layer. The routing layer is closely coupled to the
transport layer and initiates a route discovery when trig-
gered by the transport layer. The migration layer uses
forwarding pointers to track objects that have moved, and
when the pointer chain is broken due to a failure, falls
back to a broadcast query for the target event handler as
a last resort. Despite these measures, nodes that are dis-
connected may well experience unrecoverable errors.

Unrecoverable errors are reflected to applications as
a special run time exception, one that can be implicitly
raised by any procedure in the system, that notifies a
caller that an event invocation has failed. The caller can
catch such exceptions and take remedial action, taking
care that the failure detectors are conservative; that is, an
event may have been invoked, and the failure may well
have occurred in notifying the invoker of the successful
completion of the event. Each event invocation carries a
unique identifier that can be used readily to guard against
multiple invocations of a handler. In some cases, a net-
work failure may have resulted in a portion of the ap-
plication being broken off the rest of the network, along
with corresponding application state. When the broad-
cast query for an event handler fails, the application is
notified that such a failure has occurred. In response,



applications that can tolerate some loss of state can re-
generate new objects, while others can fail with a hard
failure. The unique identifier and creation time attached
to every object by its creating node allows applications
to detect version mismatches. The migration algorithms
described later keep track of the identifiers and version
numbers of objects that contacted a given object within
an epoch, thereby allowing the system to cheaply detect
a mismatch subsequent to a network partition and recov-
ery. Alternatively, applications can perform their own
global disconnect recovery algorithms using the same
object version information. In all cases, an exception is
thrown and application specific recovery code supplied
by the programmer can be invoked. Determining appli-
cation semantics in order to recover automatically from
complicated failures is a difficult problem; MagnetOS
strikes a balance by asking for programmer direction in
case of object loss and healed network partitions.

3.2.4 Explicit Overrides
The MagnetOS runtime provides an explicit interface by
which application writers can manually direct compo-
nent placement. This interface allows programmers to
establish affinities between event handlers and ad hoc
nodes. We provide two levels of affinity. Specifying a
strong affinity between an event handler and a node ef-
fectively anchors the code to that node. This is intended
for attaching event handlers like device drivers to the
nodes with the installed device in them. Specifying a
weak affinity immediately migrates the component to the
named node, and allows the automated code placement
techniques described in the next section to adapt to the
application’s communication pattern from the new start-
ing point. Note that today’s manually constructed ap-
plications correspond to the use of strong affinity in our
system - unless explicitly moved, components are bound
to nodes. The result of overusing strong affinity is a frag-
ile system, where unforeseen communication and mobil-
ity patterns can leave an application stranded. While we
provide these primitives in order to ensure that Magne-
tOS applications provide at least as much control to the
programmer as manually crafted applications, we do not
advocate their use.

3.3 Event Handler Placement
In this section, we describe the algorithms we developed
to automatically find an energy-efficient placement for
application components.

All of our algorithms share the same basic insight:
they shorten the mean path length of data packets by
moving communicating objects closer together. They do
this by profiling the communication pattern of each ap-
plication in discrete time units, called epochs. In each
epoch, every runtime keeps track of the number of in-
coming and outgoing packets for every object. At the end

of each epoch, the migration algorithm decides whether
to move that object, based on its recent behavior. The
placement decision is made locally, based on informa-
tion collected during recent epochs at that node.

LinkPull collects information about the communica-
tion pattern of the application at the physical link level,
and migrates components over physical links one hop at a
time. This requires very little support from the network;
namely, the runtime needs to be able to examine the link
level packet headers to determine the last or next hop for
incoming and outgoing packets, respectively. For every
object, we keep a count of the messages sent to and from
each neighboring node. At the end of an epoch, the run-
time examines all of these links and the object is moved
one hop along the link with greatest communication.

PeerPull operates at the network level, and migrates
components multiple hops at a time. In each epoch, Peer-
Pull examines the network source addresses of all incom-
ing messages, and the destination addresses of outgoing
messages for each object. This information is part of the
transmitted packet, and requires no additional burden on
the network. At the end of an epoch, PeerPull finds the
host with which a given object communicates the most
and migrates the object directly to that host.

NetCluster migrates components to a node in the most
active cluster. Nodes that share the same next or last hop
on the route are considered to be in the same cluster. At
the end of each epoch, NetCluster finds the cluster that a
object communicates with the most and then migrate the
object to a randomly chosen node within that cluster.

TopoCenter(1) migrates components according to a
partial view of the network built at each node, based
on connectivity information attached opportunistically to
each packet. Each node attaches its single-hop neighbor-
hood to outgoing packets, subject to space constraints.
The topology information is accumulated along the path
to the destination. Nodes on the path extract the topology
information from packets they forward. At the end of an
epoch, each node computes the shortest paths between
itself and other nodes in its partial network view and
moves an object to the node such that the sum of migra-
tion cost (proportional to the shortest path) and estimated
future communication cost (based on the packet statis-
tics of the last epoch) is minimized. TopoCenter(Multi)
is similar to TopoCenter(1), except that nodes attach all
the topology information they know to outgoing packets.

All of these algorithms improve system longevity by
using the available power within the network more ef-
fectively. By migrating communicating components
closer to each other, they reduce the total distance pack-
ets travel, and thereby reduce the overall power con-
sumption. Further, moving application components from
node to node helps avoid hot spots and balances out
the communication load in the network. As a result,



these algorithms can significantly reduce power con-
sumption and improve the total system longevity for
energy-constrained ad hoc networks.

3.4 MagnetOS API
MagnetOS provides several key abstractions for pro-
grammers to be able to implement distributed ad hoc
networking applications effectively. These abstractions
enable applications to name nodes and application com-
ponents, to collect statistics and information on network
and node behavior, and to set and direct migration poli-
cies. In addition, some existing Java abstractions are
amended to reflect their new functionality and failure
modes in the distributed MagnetOS setting. We describe
the significant parts of the API below.

A Node encapsulates the notion of a physical host that
is running a MagnetOS instance. It enables applications
to name and query nodes. A node handle can be used to
migrate application components, to anchor an object to a
specific location in the network, and to query node prop-
erties such as link state, network topology information
and energy status.

The Link abstraction refers to a physical link between
two Nodes and the NeighborSet abstraction is the set of
single hop neighbors of a given Node. These two abstrac-
tions enable applications to discover the network topol-
ogy and link characteristics based on low-level informa-
tion that is being updated by the operating system..

Energy enables applications to query the energy level
of the underlying platform. Applications typically take
actions in face of changing of battery energy. The Energy
API allows applications to query the current energy level,
the drain rate, and recharge frequency of the underlying
heterogeneous platforms through a common interface.

A Timer abstraction enables applications to sched-
ule events to be invoked at a predetermined time in
the future. Timers can be migrated between nodes un-
less specifically pinned by the application on a specified
node. A closure, saved along with the timer at the time
of registration, provides the necessary context for event
arguments when the timer fires.

Lock is a remote synchronization object, analogous to
the monitor in Java. Standard monitor and condition vari-
ables can only be used locally. In MagnetOS, Lock ac-
quisitions and releases are converted into remote opera-
tions on the event handler. Identifiers used for threads are
replaced by globally unique identifiers for active event
handlers, and keep-alives are added between the remote
lock holder and the lock instance in order to detect net-
work failures. In case of such a failure, a RemoteLock-
able object is restored to its state saved at the point of
lock acquisition and the lock is released with an excep-
tion. In order to guard this scheme from leading to incon-
sistent application state in the presence of nested locks
(i.e. where a failure rolls back the state of one, but not

all objects), MagnetOS enables applications to override
the acquisition and releasing methods. For instance, if a
RemoteLockable object is stateless, the Lock acquisition
method can be overridden such that no checkpointing is
made, and if the recovery requires rollback of multiple
objects, the restore method can perform the necessary
cleanup.

A Thread in MagnetOS is an execution context that
can perform a sequence of synchronous event raises. It
differs from threads in standard Java in that it is dis-
tributed over multiple nodes and can migrate from one
node to another while Java threads are confined to a sin-
gle node. Each Thread in MagnetOS has a unique iden-
tifier, which is crucial for the remote synchronization
mechanism in MagnetOS.

All of these abstractions simplify the application de-
velopment, gives programmers more flexibility, and en-
ables applications to take advantage of information al-
ready kept by lower software layers in the MagnetOS
runtime.

3.5 Implementation Support for Ad hoc Networks
The ad hoc networking domain places additional con-
straints on the runtime implementation. First, multihop
ad hoc networks require an ad hoc routing protocol to
connect non-neighboring nodes. MagnetOS relies on a
standard ad hoc routing protocol below the runtime to
provide message routing. Currently, our system runs on
any platform that supports Java JDK1.4. On Linux, we
use an efficient in-kernel AODV implementation we de-
veloped. On other platforms, we use a user-level version
of AODV written in Java to provide unicast routing. The
choice of a routing algorithm is independent from the rest
of the runtime, as the runtime makes no assumptions of
the routing layer besides unicast routing.

Second, standard communication packages such as
Sun’s RMI are designed for infrastructure networks, and
are inadequate when operating on multihop ad hoc net-
works. Frequent changes in network topology and vari-
ance in available bandwidth require MagnetOS to mi-
grate objects, requiring the endpoints of an active con-
nection to be modified dynamically as objects move. We
have built a custom RPC package based on a reliable
datagram protocol [21] that allows us to easily modify
the communication endpoints when components move
and is responsible for all communication between dis-
patch handles and corresponding event handlers.

Finally, the higher-level policies in MagnetOS require
information on component behavior to make intelligent
migration decisions. The runtime assists in this task
by collecting, for each component, information on the
amount of data it exchanges with other components. The
runtime intercepts all communication and records the
source and destination for all incoming and outgoing
events. MagnetOS keeps a cumulative sum per compo-



nent per epoch, and periodically informs the migration
policy in the system of the current tally. While this ap-
proach has worst case space requirement that is

���������
,

where N is the number of components in the network, in
practice most components communicate with few others
and the space requirements are typically small. For in-
stance, in the sensor benchmark examined in Section 4,
the storage requirements are linear. The next section de-
scribes how MagnetOS uses these statistics to automati-
cally migrate components.

4 Evaluation
In this section, we examine the power efficiency of auto-
matic migration strategies in MagnetOS. We first evalu-
ate the core automatic migration algorithms, LinkPull,
PeerPull, NetCluster, TopoCenter(1), and TopoCen-
ter(Multi), in three different benchmarks. We compare
our algorithms with manual (Static algorithm), natural
load balancing (Random algorithm), and optimal (See
definition below), and show that they achieve good en-
ergy utilization, improve system longevity, and are thus
suitable for use in general-purpose, automatic migration
systems. Next, we report results from microbenchmarks
to show that automatically partitioning applications does
not extract a large performance cost. We also present evi-
dence showing that the memory costs of a specially tuned
Java virtual machine is within the resource-budget of
next generation ad hoc nodes. Finally, we show through
a physical deployment that the simulated results match
those observed in the real world.

4.1 Benchmarks and Workload
We evaluated the performance and efficiency of Magne-
tOS event handler migration strategies in three represen-
tative applications, each with a unique communication
pattern and application workload. The applications were
chosen to span a wide range of possible deployment en-
vironments. We first describe the setup and workload for
each application, then examine their performance under
MagnetOS.

4.1.1 SenseNet
We first examine a generic, reconfigurable sensing
benchmark we developed named SenseNet. This appli-
cation consists of sensors, condensers and displays. Sen-
sors are fixed at particular ad hoc nodes, where they mon-
itor events within their sensing radius and send a packet
to a condenser in response to an event. Condensers can
reside on any node, where they process and aggregate
sensor events and filter noise. The display runs on a
well-equipped central node, extracts high-level data on
events from the condensers, and sends results to an ex-
ternal wired network.

The application is run on a 14 by 14 grid of sen-
sors, each placed 140 meters apart with a uniformly dis-
tributed jitter of 50 meters. The communication and
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Figure 3: Automatic migration significantly extends system
lifetime in the SenseNet application. Bars represent 25th and
75th quartiles.

sensing radius is 250 meters. The grid is partitioned into
four quadrants, and a single condenser is assigned to ag-
gregate and process data for each quadrant. The work-
load consists of two bodies that move through the sensor
grid in randomly chosen directions. We measure the to-
tal remaining energy across all nodes, sensor coverage,
number of drained sensor nodes, number of nodes not
reachable by the display, and overall system longevity.
We define system failure as the point when half of the
field is no longer being sensed by sensors connected to
the display node.

4.1.2 Publish-Subscribe
Our second application consists of a basic publish-
subscribe system. The application provides a channel
abstraction to which clients can subscribe and publish.
Channels act as mobile rendezvous points by accepting
incoming messages and relaying them to each of the
clients subscribed to the channel.

For this application, we generate a workload resem-
bling a disaster recovery application. The workload con-
sists of ten channels each with four subscribers. The
four subscribers publish messages approximately every
10, 20, 30, and 40 seconds, respectively. We run the ap-
plication on the same network layout as SenseNet. We
measure total system throughput smoothed over 20 sec-
ond intervals, number of nodes drained, and total remain-
ing energy in the network. We stop the simulations when
total throughput drops to zero during a 20 second inter-
val.

4.1.3 FileSystem
Our final benchmark is a network file system that may be
used in mobile ad hoc scenarios. This application con-
sists of clients and files. Client objects are assigned to
mobile devices, and access files over the network accord-
ing to an external trace. File objects can reside on any
node, and independently receive and process requests
from clients.

This application is run on a randomly generated net-
work with 196 mobile nodes, with approximately the
same density as in SenseNet. The nodes move accord-
ing to the random waypoint mobility model with a maxi-
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Figure 4: SenseNet application: Adaptive algorithms extract more energy out of the field and so increase field coverage and node
availability.

mum node speed of 5 meters per second. The benchmark
workload is based on the Auspex file system trace [10].
To compensate for the relatively limited capabilities of
wireless nodes, we slow the trace by a factor of four. We
measure the same statistics, and use the same stopping
condition, as for the Publish-Subscribe application.

4.2 Simulation Methodology
We implemented a significant part of the MagnetOS sys-
tem in sns [49], a scalable version of the Ns-2 network
simulator. In order to accurately account for packet-level
costs, we implemented a detailed energy model using pa-
rameters obtained from measurements of 802.11b wire-
less cards [12]. Computation costs are assumed to be
negligible. We use the AODV protocol for wireless ad
hoc routing, which includes support for both mobile and
static node placements, and include the cost for route dis-
covery, maintenance, and repair in our energy model. In
all, we run each application with 16 scenarios each by
varying the workload and network layout, averaging the
results to obtain estimates of expected application behav-
ior. For each application and scenario, we compare our
algorithms described in section 3.3 with the following
object placement and migration strategies:

Static Centralized corresponds to a static, fixed as-
signment of all movable objects to a single, central node
in the network. All movable components remain at the
home node for the entire duration of the simulation.
Random selects a random neighbor as destination for
each movable object at each epoch. It corresponds to a
simple load-balancing algorithm, designed to avoid net-
work hotspots. PastOptimal assumes that every node in
the network has full knowledge of the network topology
and moves objects to an optimal position based on the
communication pattern in the last epoch. PastOptimal
does not necessarily form the upper bound for other al-
gorithms because it is still based on past behavior, and
it may make bad decisions if the communication pattern
changes significantly in the next epoch. Nevertheless, it
is a good benchmark for migration algorithms based on
past behavior of an object.

In addition to simulation-based evaluation, we imple-
mented these benchmarks on top of our prototype sys-

tem that supports x86/Windows, x86/Linux, and Stron-
gArm/PocketPC platforms. The base system includes
adaptive object placement policies, AODV ad hoc wire-
less routing, and automatic partitioning using Java byte-
code rewriting. We will validate the simulation results
against our physical test result later in this section.

4.3 Results and Discussion
The benchmarks represent a wide spectrum of differ-
ent applications and communication models, and thus
the relative performance of static and intelligent object
migration policies varies with the application. Overall,
these benchmarks show that the adaptive algorithms de-
scribed above avoid hotspots in the network by mov-
ing objects intelligently. In addition, we find that the
details of application communication and workload pat-
terns impact the relative performance of different migra-
tion strategies, confirming the need for automatic and
system-wide placement policies.

4.3.1 SenseNet
The SenseNet benchmark shows the clearest gains for
the adaptive algorithms described above. Figure 3 shows
that automatic migration increases system longevity by a
factor of 2.5. This gain is achieved generally by moving
objects away from hotspots and reducing mean packet
distances. TopoCenter(Multi) performs a little worse
than TopoCenter(1), which suggests that for this specific
application, one-hop topology is good enough to make
intelligent migration decisions and carrying multi-hop
topologies will only increase the packet size and over-
head, and decrease the system longevity.

Figure 4 shows SenseNet behavior in greater detail.
The energy curves in (a) for the adaptive algorithms are
more shallow than those for the Random and Static cases,
which are steep and linear in the time of the simulation.
Static suffers because of the energy bottleneck it creates
around the fixed locations it has of system components.
Random, a standard approach to distribute load, actually
hurts energy performance by paying too much in migra-
tion costs.

The unreachable nodes (b) and coverage (c) graphs
show two separate performance metrics with similar in-
sights. Adaptive placement and migration save energy
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Figure 5: Publish-Subscribe benchmark. Adaptive algorithms improve throughput, availability and energy utilization.
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Figure 6: FileSystem benchmark. Comparison of adaptive algorithms and static and random load balancing.

and distribute load, which extends node lifetimes and in-
creases longevity for the network.
4.3.2 Publish-Subscribe
The Publish-Subscribe application differs substantially
from the SenseNet application. It consists of a relatively
small number of rendezvous points, each communicating
with a stable set of clients. This enables route discovery
costs, incurred when objects are migrated, to be amor-
tized over a large number of accesses.

Figure 5a shows that the Centralized approach fails
very early because of the large hotspot in client accesses
around the center of the network. We can see in each of
the graphs that this approach initially achieves as high
throughput as the dynamic migration strategies, but it
dies early when it uses up the energy in the center of the
network. The Random approach shows that randomizing
the location of objects fails to achieve any savings, as it
incurs the migration cost without the benefits of intelli-
gently placing objects in the network.

MagnetOS policies do significantly better, since they
place the rendezvous points near clients that access
them frequently, reducing the ongoing cost of publish-
subscribe operations. LinkPull does not do as well as
the other adaptive algorithms because it requires several
epochs to move the rendezvous points to the clients when
subscriptions change. All other algorithms are very close
to PastOptimal in their power performance.
4.3.3 FileSystem
In our file system benchmark, the centralized static al-
gorithm performs very well initially, but fails afterwards
with a steep cliff. The main reason for this is that Static
avoids the energy cost for migration and route discov-
ery but fails to avoid the hotspot around the central file

server. Node mobility helps mitigate the hotspots some-
what and helps Static perform better in this benchmark
than in the other two, but Static nevertheless suffers even-
tually. The lower throughput of adaptive algorithms ini-
tially is mainly due to changes of file locations. File oper-
ations following file migration require new route discov-
ery, which increases latency and reduces the throughput.

The benefit of using an adaptive algorithm is clearly
seen in the number of nodes drained (Figure 6b), where
adaptive algorithms manages to spread the drain more
evenly over the nodes of the network. The simple Peer-
Pull algorithm performs surprisingly close to the PastOp-
timal algorithm. The Static and Random algorithms can-
not do so intelligently and incur large losses of nodes due
to hotspots.

Figure 6c shows similar results. The Static algorithm
does well initially because it does not incur any costs for
migration and route discovery. The centralized algorithm
only has a single destination for all data flows. This lay-
out is an optimal case for the AODV routing layer. All
the adaptive cases, by event handler migration, have in-
dividual files which are located at many different points
in the network. This leads to hundreds of different desti-
nations, a load which is significantly more expensive for
AODV to compute and maintain. Although adaptive al-
gorithms consume more energy overall, that energy con-
sumption is spread out over the whole network.

This benchmark shows that in applications where
workload is comparatively low and routing cost dom-
inates the overall energy consumption, adaptive algo-
rithms can still help by distributing the energy cost
throughout the network and avoiding the hotspots around
central nodes.



 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0  1  2  3  4  5

S
ys

te
m

 L
on

ge
vi

ty
 (

s)

Maximum Speed (m/s)

Static
Random
LinkPull
PeerPull
NetCluster
Topo-1
Topo-M
PastOptimal

Figure 7: The average system longevity as a function of the
maximum node speed.

4.3.4 Node Mobility
We evaluate the effect of node mobility on the perfor-
mance of MagnetOS using the SenseNet benchmark.
The simulation setup is modified to incorporate node
movement according to the random waypoint mobility
model with a pause time equal to

��������� �
seconds, where�

is the maximum node speed. We vary the value of
�

and measure the average system longevity for each al-
gorithm. Figure 7 shows that system longevity increases
initially with mobility as physical movement acts as a
simple load balancing scheme that avoids hotspots. Mo-
bility also increases the route rediscovery cost and de-
creases the effectiveness of the prediction of our adaptive
algorithms. However, adaptive algorithms perform well
overall in mobile scenarios.

4.4 Validation
We validate the simulation results against our system im-
plementation. We use the SenseNet benchmark for val-
idation. Our implementation code executes on Linux
2.4.18 on Dell inspiron 2650 laptops, each equipped
with Celeron M 1.5GHz processor, 256MB memory and
Dell TrueMobile 1150 series 11Mbps Wireless LAN
Adapters. To exclude the energy consumption of other
devices like CPU, memory and LCD display, we change
the wireless card driver to calculate energy cost of each
packet transmission and reception.

The experiment setup is similar to the simulation setup
we discussed above except we decrease the scale down to
16 nodes. 16 laptops are set up in a 4 by 4 grid, each run-
ning the MagnetOS runtime. The grid is partitioned into
four quadrants, and a single condenser is assigned to ag-
gregate and process data for each quadrant. Two objects
move through the sensor grid in randomly chosen direc-
tions and speeds, triggering audio sensors on Magnetos
nodes. In order to match the time scales of the physical
experiment to the simulation, we measure the total en-
ergy cost of the field per event sensed by the sensor. We
compare the results of the Static and PeerPull migration
policies. Figure 8 shows that the energy consumption of
the physical experiment closely match those of the sim-
ulations. The differences are attributable to variations

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2000  4000  6000  8000  10000  12000  14000  16000  18000

E
n

e
rg

y
 C

o
n

s
u

m
e

d

Event Number

Experiment (Static)
Simulation (Static)

Experiment (PeerPull)
Simulation (PeerPull)

Figure 8: The total energy costs match closely for simulation
and physical test results

Remote Call Java RMI MagnetOS
Null 403 � 16 172 � 6
Int 446 � 9 180 � 8

Obj. with 32ints 991 � 35 174 � 4
Obj. with 4int,2obj 884 � 21 177 � 7

Table 1: Remote method invocation comparison. All times in
	 s, average of 1000 calls.

in physical packet sizes from the average object size as-
sumed in simulations.

4.5 Space and Time Overhead
An automatic approach to application partitioning and
transparent object migration would be untenable if the
performance of automatically partitioned applications
suffered significantly. In the micro-benchmark shown in
Table 1, we compare the overhead of our RPC implemen-
tation to that of remote invocations performed via Java
RMI, on a 1.7 GHz P4 with 256 MB of RAM JDK 1.4
on Linux 2.4.17 with AODV. On all micro-benchmarks,
automatically decomposed applications are competitive
with manually coded, equivalent RMI implementations,
due partly to tight integration of system code with appli-
cation code through binary rewriting.

Traditional Java VMs, such as Sun’s JDK, support
many features and are not optimized for space. Conse-
quently, they require large amounts of memory and are
not suitable for resource constrained nodes. For Mag-
netOS, we have developed our own JVM. and Pock-
etPC/StrongArm devices. This JVM works on x86 lap-
tops and PocketPC/StrongARM devices and performs
space optimizations that include lazy class loading, con-
stant pool sharing, stack and memory compression, and
aggressive class unloading. Our JVM reduces the mem-
ory required to run MagnetOS from over 9 MB to ap-
proximately 1350 KB. This is well within the memory
budget of existing mobile devices, and within a few years
of Moore’s Law growth of sensor nodes.

4.6 Summary
In this section, we examined three benchmarks built un-
der the MagnetOS single system image model, and eval-
uated the performance of automatic migration strate-



gies for energy-efficient execution. MagnetOS reduces
energy consumption by actively moving communica-
tion endpoints and shortening the path packets traverse
through the network. In turn, this reduces hotspots, in-
creases energy utilization and extends system longevity.
MagnetOS uses simple local metrics to make informed
object placement decisions. In settings which exhibit
locality, where active migration would shorten mean
packet distances and yield energy savings, PeerPull, a
local automatic migration policy, can adapt quickly, and
find a good placement for objects. TopoCenter(1), which
works by constructing a local view of the network topol-
ogy and determining an optimal object destination within
this view, is robust across applications and achieves per-
formance close to PastOptimal.

5 Applications
We have developed various applications for the Magne-
tOS system. We report on these applications below; due
to the high-level of abstraction provided by the Mag-
netOS system, developing these applications was sim-
ple, and the applications themselves are short and com-
pact. We have deployed and run these applications on
our physical testbed.

Audio Event Detection consists of sensors, con-
densers and displays, similar to the SenseNet applica-
tion used in the simulations. Sensors are fixed on ad hoc
nodes that are equipped with microphones. They moni-
tor audio signals and send messages to condensers when
the audio signal strength is above some threshold. Con-
densers can reside on any node. They aggregate audio
data and filter noise. If enough events are detected within
a time threshold, condensers notify the display of an ob-
ject of interest in their monitoring area. The display is
fixed on a well-equipped node and outputs the positions
where audio events are detected. This application con-
sists of 868 lines of Java code.

Rendezvous provides a rendezvous point for mobile
nodes in an ad hoc network, similar to the type of ser-
vice that may be set up by emergency response person-
nel. The rendezvous points are publish-subscribe spaces
where clients can post and retrieve messages. They mi-
grate from peer to peer in the network according to dy-
namic usage of the network and energy constraints. This
application consists of 290 lines of Java code.

Video Multicast consists of Videosource, Framecar-
rier, and Videoclients. The VideoSource is fixed on an
edge node that is equipped with a camcorder and cap-
tures video data. The VideoSource sends video frames
to the FrameCarrier, which then multicasts the the video
frame to all the clients. This application consists of 222
lines of Java code.

NetMixer builds a global sound processing engine in
an ad hoc network that enables a large area to be mon-

itored. It consists of three types of components: mi-
crophones, netmixers and speakers. Microphones are
fixed on particular nodes, where they capture audio data
and send them to the NetMixers. NetMixers combine
the inputs from microphones into a single channel au-
dio data using the channel-averaging technique used by
soxmix[34]. Speakers combine data from all the Net-
Mixers, produce new n-channel audio data (where n is
the number of NetMixers), and play them back. This ap-
plication consists of 838 lines of Java code, with most of
the complexity in audio capture and playback.

Overall, it was trivial to develop distributed applica-
tions for a system that provided high-level features such
as object migration, thread migration and energy effi-
cient object placement. While these applications are not
production-quality, they are nevertheless functional and
illustrate how system support for mobility can simplify
application development.

6 Conclusions

In this paper, we present the design and implementation
of a novel operating system for ad hoc networks. Our
system implements a network-wide, energy-efficient vir-
tual machine on top of a collection of ad hoc nodes. An
application partitioning tool takes monolithic Java appli-
cations and converts them into distributed, componen-
tized applications. A small runtime on each node is
responsible for event handler creation, invocation and
migration. We rely on a transparent RPC for node-
independent communication between components. This
distributed system defines a convenient programming
model for ad hoc networks. This model provides the sys-
tem with sufficient freedom to transparently move com-
ponents in order to find an energy-efficient configuration.

We evaluate several algorithms for automatically de-
termining where to locate application components in the
network in order to minimize energy consumption. Com-
bined, these algorithms enable MagnetOS to find an as-
signment of components to nodes that yields good uti-
lization of available energy in the network. These algo-
rithms are practical, entail low overhead and are easy to
implement. In benchmarks with moderate to high local-
ity of communication, automated migration can conserve
power and achieve significant improvements in system
longevity.

Ad hoc networking is a rapidly emerging area with
few established mechanisms, policies and services. We
hope that an operating system that makes the network ap-
pear as a single virtual machine, combined with system
support for automatic migration, will create a familiar
and power-efficient programming environment, thereby
enabling rapid development of platform-independent,
power-adaptive applications for ad hoc networks.
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