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Abstract— The problem of cooperative fusion in the pres-
ence of both Byzantine sensors and misinformed sensors is
considered. An information theoretic formulation is used to
characterize the Shannon capacity of sensor fusion. It is shown
that when there are fewer Byzantine sensors than honest
sensors, the effect of Byzantine attack can be entirely mitigated,
and the fusion capacity is identical to that when all sensors are
honest. However, when at least as many sensors are Byzantine
as are honest, the Byzantine sensors can completely defeat the
sensor fusion so that no information can be transmitted reliably.
A capacity achieving transmit-then-verify strategy is proposed
for the case that fewer sensors are Byzantine than honest, and
its error probability and coding rate is analyzed by using a
Markov decision process modeling of the transmission protocol.

Index Terms— Sensor Fusion, Byzantine Attack, Shannon
Capacity, Network Security.

I. INTRODUCTION

W IRELESS sensor networks are not physically secure;
they are vulnerable to various attacks. For example,

sensors may be captured and analyzed such that the attacker
gains inside information about the communication scheme
and networking protocols. The attacker can then reprogram
the compromised sensors and use them to launch the so-
called Byzantine attack. This paper presents an information
theoretic approach to sensor fusion in the presence of Byzan-
tine sensors.

A. Cooperative Sensor Fusion

We consider the problem of cooperative sensor fusion
as illustrated in Fig. 1 where the fusion center extracts
information from a sensor field. By cooperative fusion we
mean that sensors first reach a consensus among themselves
about the fusion message. They then deliver the agreed
message to the fusion center collaboratively. We will not be
concerned with how sensors reach consensus in this paper;
see e.g., [1]. We focus instead on achieving the maximum
rate of sensor fusion.

The sensor fusion problem is trivial if the consensus is
perfect, i.e., all the sensors agree on the same fusion message.
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Fig. 1. Cooperative sensor fusion in the presence of Byzantine sensors.

If the fusion center can only communicate with one sensor
at a time, and there is no limit on how many times a
sensor can transmit (i.e., no energy constraints), there is
no difference between having a single sensor delivering the
message and having any number of sensors transmitting the
message collaboratively. The capacity of such an ideal fusion
is given by the classical Shannon theory

C = max
p(x)

I(X ; Y ) (1)

where X is the transmitted symbol by a sensor, Y the
received symbol, and p(x) the distribution used to generate
the codebook. Also for this case, even if there is a feedback
channel from the fusion center to sensors, the capacity does
not increase [2].

Cooperative fusion becomes important if consensus cannot
be reached, i.e., there is a probability β > 0 that a particular
sensor is misinformed about what message to transmit.
Thus there is a positive probability that a particular sensor
communicating with the fusion center is delivering the wrong
message. It is no longer obvious what the capacity of sensor
fusion is. In [3], a number of sensor fusion models are con-
sidered, and the fusion capacity is obtained for several cases.
Most relevant to this paper is the fusion model in which there
is a feedback channel from the fusion center to individual
sensors, and the fusion center polls specific sensors for
transmissions. Optimized among all polling strategies, it is
shown that, for any β < 1, the fusion capacity is also given
by C in (1). The strategy given in [3] can be characterized
as “identify-then-transmit” by first using an asymptotically
negligible number of transmissions to identify a sensor that



is correctly informed then letting that sensor transmit the
entire codeword.

B. Byzantine Attack and Related Work

The problem considered in this paper is when a fraction
β of sensors are Byzantine sensors and a fraction γ are
misinformed. The goal of the Byzantine sensors is to disrupt
the sensor fusion collaboratively.

As in [3], we assume misinformed sensors behave hon-
estly, but with a randomly chosen message. Byzantine sen-
sors, however, are much more malicious. We assume they
have full knowledge of the system and impose no restriction
on what they can transmit. In particular, Byzantine sensors
know the transmission strategy including the codebook and
the polling strategy of the fusion center. They also know,
of course, the correct fusion message. Unlike misinformed
sensors which are required to pick a message, albeit an
incorrect one, and then stick with it, Byzantine sensors can
be malicious sometimes and behave in other times as honest
sensors in order to evade detection by the fusion center. Fur-
thermore, they can coordinate among themselves (unknown
to both the honest sensors and the fusion center) to launch
the so-called Byzantine attack. As a result, the capacity
achieving coding and transmission strategies developed in
[3] are no longer applicable.

The notion of Byzantine attack has its root in the Byzan-
tine generals problem [4], [5] in which a clique of traitorous
generals conspire to prevent loyal generals from forming
consensus. It was shown in [4] that consensus in the presence
of Byzantine attack is possible if and only if less than
a third of the generals are traitorous. Relaxing the strict
definition of consensus of [4], Pfitzmann and Waidner uses
an information theoretic approach to show that the Byzantine
generals problem can be solved for an arbitrarily large
fraction of traitorous nodes [6]. These and other Byzantine
consensus results [1] are relevant to the current paper only
in that they deal with the consensus process prior to sensor
fusion.

Countering Byzantine attacks in communication networks
has also been studied in the past by many authors. See the
earlier work of Perlman [7] and also more recent review [8],
[9]. An information theoretic network coding approach to
Byzantine attack is presented in [10]. Karlof and Wagner
[11] consider routing security in wireless sensor networks.
They introduce different kinds of attacks and analyze security
risks of all major existing sensor network routing protocols.
Countermeasures and design considerations for secure rout-
ing in sensor networks are also discussed. It is shown that
cryptography alone is not enough; careful protocol design is
necessary.

There has been limited attempt in dealing with Byzantine
attacks for sensor fusion. The problem of optimal Byzantine
attack of sensor fusion for distributed detection is considered
in [12] where the authors show that exponentially decaying
detection error probabilities can still be maintained if and
only if the fraction of Byzantine sensors is less than half. A
witness-based approach to sensor fusion is proposed by Du

et. al. [13] where the fusion center and a set of witnesses
jointly authenticate the fusion data by the use of the Message
Authentication Code. The authors of [13] are concerned
with the trustworthiness of the fusion center. In contrast, we
address the problem of sensor fusion with malicious sensors
attacking the fusion center from within.

C. Main Result and Organization

The main result of this paper is to show that, if polling of
the fusion center is allowed, and the polling is perfect, the
capacity of sensor fusion in the presence of Byzantine attack
is again C in (1) when the fraction of Byzantine sensors is
less than that of the honest sensors, and 0 otherwise. The
condition that there are fewer Byzantine sensors than honest
sensors can be written β < 1 − β − γ, or 2β < 1 − γ.

The converse of the result holds trivially for 2β < 1 − γ
because the capacity of the sensor fusion in the absence of
Byzantine and misinformed sensors is C. For 2β ≥ 1 −
γ, we show that it is possible for the Byzantine sensors to
completely defeat the fusion center and honest sensors by
acting in such a way that there are two groups of sensors
of exactly the same size, one acting honestly with the true
message, the other acting honestly but with a false message.
It is thus impossible for the fusion center to distinguish the
set transmitting the true message from the set transmitting
the false one, so it cannot decode the true message with
probability more than 1

2 .
To show the achievability for 2β < 1 − γ, we propose a

transmission and coding strategy different from that for just
misinformed sensors [3], for which the capacity achieving
strategy can be called “identify-then-transmit”, where the
fusion center first identifies an honest sensor, then receives
the entire message from that sensor. Here we must deal with
the situation in which a Byzantine sensor may pretend to
be an honest sensor. The key idea is one of “transmit-then-
verify”. Specifically, we first commit a sensor (Byzantine,
misinformed, or honest) to transmit part of a codeword
and then verify if the sensor is trustworthy. After a sensor
has transmitted, the fusion center verifies the transmission
using a random binning procedure. Under this procedure, a
Byzantine sensor either has to act honestly or reveal with
high probability its identity. We then have to show that the
overhead in the verification diminishes as the length of the
codeword increases.

This paper is organized as follows. In Section II, we
present models for sensors, communication channels, and
network setup. The main result is given and sketch of proofs
are presented in Section III. We conclude in Section IV.

II. MODEL AND DEFINITIONS

A. Fusion Network and Communication Channels

A sensor is Byzantine if it can behave arbitrarily. A
sensor is honest if it behaves only according to the specified
protocol. A sensor is misinformed if it behaves exactly like an
honest sensor, but with a random message selected uniformly
from the set of all possible messages, independent of all other
misinformed sensors, and independent of the true message.



Let β be the probability that a randomly selected sensor is
Byzantine and γ be the probability that a randomly selected
sensors is misinformed. With probably 1−β−γ, a randomly
chosen sensor is honest. We assume that the sensor network
is large in the sense that there are an infinite number of
elements. This assumption ensures that the probability that
there are no honest nodes is zero.

Sensors can communicate with the fusion center directly,
and the transmissions are time slotted. We assume that the
uplink channel from each sensor to the fusion center is a
Discrete Memoryless Channel (DMC) {X ,Y , q(y|x)} where
X is the input alphabet, Y the output alphabet, and q(y|x)
the transition probability of the channel. The assumption of
identical channel is restrictive and synchronization difficult
when the network is large and the fusion center stationary.
The assumed model is reasonable, however, if the fusion
center is a mobile access point that can travel around the
network, and a sensor only transmits to the fusion center
when it is activated by and synchronized to the fusion center.

We assume that there is a polling channel from the fusion
center to each sensor. Since the fusion center is not power
limited, we assume the polling channel is error free with
infinite capacity.

B. Transmission Protocol

Before sensor fusion starts, we assume that all honest
sensors have, without error, agreed upon a fusion message
W ∈ {1, · · · , M} that is uniformly distributed. The code
is in general variable length and dynamically generated, so
there is no single fixed codebook. However, we assume that
the sensors may have any number of fixed codebooks to use
as pieces of the code.

The fusion center polls one node to transmit one symbol
in each time slot. At time t, the fusion center polls node Kt

to transmit a symbol Xt. The symbol received by the fusion
center is then Yt. The fusion center may choose Kt based
on previously received symbols Y t−1 and polling history
Kt−1. Since the polling channel has infinite capacity, Kt

may choose Xt based on all symbols previously received
by the fusion center Y t−1, the polling history Kt−1, and
anything else the fusion center chooses to send to it. It
may also base Xt on all previous transmissions that it has
made itself, but not those made by other sensors. Honest
sensors, of course, also have access to the message W .
We assume that Byzantine sensors also know the fusion
message, but misinformed sensors only have access to their
own independently generated message.

If a sensor is Byzantine, it may also base its choice of Xt

on all transmitted symbols, including those sent by honest
sensors, and any additional information the fusion center
sends to any sensor. We also assume that the Byzantine
sensors know the algorithm the fusion center and honest
sensors are using, and that they may communicate securely
among themselves with zero error.

After the fusion center receives Yt, it decides whether
to continue polling based on Y t and Kt. If it decides to
continue, then it moves on to the next time slot t + 1 and

starts the polling step again. Otherwise, it decodes based on
collected observations.

C. Achievable Rates and Capacity

Let N be the random variable representing the total
number of symbols sent in a coding session. Once the
fusion center decides it is done polling, it decodes the global
message based on Y N and KN . The decoded message is
denoted by Ŵ ∈ {1, · · · , M}. A decoding error occurs if
Ŵ 6= W .

The rate of a code is defined as

R ,
log(M)

E(N)
,

where M is the number of messages and E(N) is the
expected number of symbols transmitted during a coding
session. The probability of error is defined as Pe , Pr(Ŵ 6=
W ), where W is the message, uniformly selected from
{1, · · · , M}, and Ŵ is the decoded message. Pe will in
general depend on the actions of the Byzantine sensors. A
rate R is called achievable if for any given error ε > 0 and
any choice of actions by the Byzantine sensors, there exists
a code with rate larger than R − ε and probability of error
less than ε. The capacity of this system is defined as the
maximum of all achievable rates.

III. FUSION CAPACITY

The main result of this paper is given by the following
theorem that characterizes the capacity for the fusion network
described in Sec II.

Theorem: The capacity of this system is

Cbyz =

{

C, if 2β < 1 − γ
0, if 2β ≥ 1 − γ

where C is defined in (1). In particular, if γ = 0, Cbyz = C
if and only if β < 1/2.

The proof of this theorem follows. In Subsection III-A, we
prove the converse. In Subsection III-B, we describe the cod-
ing strategy used to prove achievability. In Subsection III-C,
we define some error events and discuss the error probability.
Finally, in Subsection III-D, we discuss the rate of this coding
scheme.

A. Converse

Suppose that β = γ = 0 and that all the sensors may
communicate with each other with zero error. Certainly these
assumptions cannot decrease the capacity for any β and γ.
Since the sensors can communicate with each other, we can
think of the entire sensor network as a single encoder for the
DMC with perfect feedback, because the sensors are allowed
to know all previously received symbols by the fusion center.
Thus under these assumptions this system reduces to a point-
to-point DMC with perfect feedback. In that system, the
feedback does not increase capacity [2], so the capacity is
C. Thus, the capacity of the sensor network with Byzantine
sensors cannot have capacity greater than this, so Cbyz ≤ C
for all β and γ.



Next we show that if 2β ≥ 1 − γ, then Cbyz = 0. To
do this, we will show that for any algorithm to be used by
the fusion center and honest sensors, the Byzantine sensors
will be able to make it impossible for the probability of
error to be made arbitrarily small. The scheme performed
by the Byzantine sensors to accomplish this is as follows.
They divide themselves into two groups, one with 1−γ

2 of the
sensors, and one with β− 1−γ

2 of the sensors. The sensors in
the latter group act exactly like honest sensors. Since there
is no way for the honest sensors to know anything that the
Byzantine sensors do not, it will be impossible to distinguish
an honest sensor from a Byzantine sensor acting honestly.
The sensors in the former group also act exactly like honest
sensors, but with a message different from the true one. There
are now three groups of sensors: the misinformed sensors,
sensors that act honestly with the true message, and sensors
that act honestly with an incorrect message. The second
group is made up of the honest sensors and the Byzantine
sensors that act honestly. The fusion center will be able to
distinguish the misinformed group from the other groups,
but since the second and third groups both contain exactly
a 1−γ

2 fraction of the sensors, no matter what the fusion
center does, it will not be able to determine which group is
reporting the true message and which group is reporting the
false one, so it will not be able to decode the true message
with probability greater than 1

2 . Therefore the converse of
the theorem holds.

B. Coding Strategy

To prove the direct part of the theorem, we first describe
the coding strategy that will achieve this rate. The coding
scheme can be described as a “transmit-then-verify” proce-
dure. In other words, first we ask a sensor to send part of
the message to the fusion center. After that, the fusion center
polls other sensors to verify whether the received information
is correct. Thus, if a Byzantine sensor is selected to transmit
the message, it can send erroneous information, but then with
high probability it will be discovered to be erroneous in
the “verify” step. The Byzantine sensor can send the true
information, but then it will be verified, so the fusion center
now has that information, and knows it to be correct. As
long as the fusion center always verifies any information
it receives, the Byzantine sensors can never get any false
information through. The best they can do is to prolong
the coding process, but we will show that this additional
overhead can be made to be negligible.

The coding strategy is as follows. We first break the
message up into v chunks, such that each chunk contains an
equal part of the information in the message, and the message
will be perfectly reconstructible given all the chunks. These
chunks could be, for example, the v digits representing the
message W when it is written as a number in a particular
base. The fusion center will try to obtain the v chunks one at
time, and verify that each chunk obtained is from an honest
transmission.

Next we describe the two codebooks to be used in the
uplink transmission over the DMC q(y|x). Take any ε > 0

and R < C. Let the number of possible messages M = 2nR,
so that the message set is {1, · · · , 2nR} and the set of all
possible chunks is {1, · · · , 2nR/v}. The first codebook G1 is
a (2nR/v , n/v, ε) code to transmit the chunk, where (M, n, ε)
represents a code over the DMC with M messages, n channel
uses, and probability of error less than ε. When a sensor is
requested to transmit, say, the ith chunk of the message, an
honest or misinformed sensor will use G1 to transmit the ith
chunk of its message. A Byzantine sensor can choose to act
honestly and use G1 to transmit the correct chunk, or it can
transmit any other signal.

The second codebook G2 is a (j, l, ε) code used by the
sensor in the verification process. Specifically, to verify if a
transmission represents correct information, the fusion center
uses a random binning technique. It distributes all possible
chunks into j bins and broadcasts the bin index of each
possible chunk to the sensors. The fusion center then asks
k sensors to transmit the bin index of the particular chunk
that the fusion center is verifying. An honest or misinformed
sensor will transmit the bin index of its chunk to the fusion
center using this second codebook G2. A Byzantine sensor,
if requested for the index, again can transmit arbitrarily,
including acting honestly by using G2 to transmit the correct
index. For fixed j, the code length l is chosen sufficiently
long for transmitting the bin index accurately over the DMC.
The numbers j and k are functions of decoding error ε
and are chosen sufficiently large to ensure the fidelity of
verification but not large enough to penalize the rate. We
comment on the selection of them in Section III-C.

The detailed transmission protocol is as follows.

0) The fusion center randomly selects a sensor to transmit
the next chunk (starting at the first chunk).

1) If the selected sensor is honest, it transmits the entire
chunk using the codebook G1. (If the selected sensor
is Byzantine, it can act arbitrarily).

2) The fusion center randomly places each element in the
set of all possible chunks into one of j bins. It then
randomly selects k sensors, and sends the binning to
each of them. That is, it informs the k sensors which
of the j2nR/v possible mappings from {1, . . . , 2nR/v}
to {1, . . . , j} it has selected. Each of those k sensors
then sends the bin index of its chunk back to the fusion
center using code G2.

3) If the plurality of the k received bin indices match the
bin index of the chunk that was received in step (1), the
fusion center accepts that chunk. Otherwise it declines
it.

4) If the chunk was accepted, the fusion center keeps the
same sensor selected and moves on to the next chunk
(go to step 1). If it was declined. the fusion center
randomly selects a new sensor and tries again with the
same chunk (step 0).

5) Polling stops when all chunks have been received
and accepted. To complete the coding process, the
fusion center extracts the original message from the
v accepted chunks.



Note that each time we run through steps (1) through (4),
we use the channel n/v + kl times.

In step (2), we have used a random binning procedure.
This is different from the way such a procedure is often used,
such as in a common proof of the Slepian-Wolf theorem
[2]. There, random binning is used as a technique to show
that at least one code satisfying certain properties must exist.
Here, we actually construct and use an entirely new random
binning every time we do step (2). This is necessary because
if we used some fixed or deterministic binning, the Byzantine
sensors would know the binning to be used beforehand. Thus,
if a Byzantine sensor is selected to transmit a chunk in step
(1), it could transmit an incorrect chunk falling into the same
bin as the real chunk, which would make the verification
process useless. The probability that the Byzantine sensor
can find such a misleading chunk must be small, so we need
dynamic random binning.

If β +γ < 1/2 (in particular, if γ = 0), then the following
simplification can be made to step (2). Instead of constructing
a random binning, each of the k sensors sends to the fusion
center whether or not the chunk that the fusion center has
just received matches the true chunk. Thus G2 can be reduced
to a (2, l, ε) code, since only one of two messages—that the
chunk is correct or not—must be communicated. This only
works when more than half of the sensors are honest, since
all the misinformed and Byzantine sensors will likely report
that the true chunk is incorrect, and we expect more than
half of the k sensors to be honest only if more than half of
all the sensors are honest. The rest of the proof will assume
use of the above scheme and not the simplification, but the
argument is almost entirely identical.

C. Error Events and Error Probability Analysis

We show next that, with appropriately chosen n, v, j, l, k in
the two codebooks, the probability that a message is decoded
incorrectly goes to zero, and the decoding process will end
with an average number of transmissions approximately n+
O(εn). Thus with a message set of size 2nR, and R ≥ C−ε,
we have the proof of the main theorem.

To analyze the probability of error, we need to define some
events. Events A1, A2, A3 are the most basic ways in which
errors can occur. B1, B2, C have to do with the conclusion
the fusion center reaches, and thus determine how the coding
will progress.

• A1: A coding error occurs in step (1), i.e., the transmit-
ted chunk is different from the decoded one.

• A2: Of the k bin indices that are decoded in step (2), the
plurality do not equal the bin index for the true chunk.

• A3: For a given pair of distinct chunks, they are both
put into the same bin in step (2).

• B1: The chunk is declined in step (3).
• B2: A chunk is accepted in step (3) and that chunk is

not the true one.
• C: The true chunk is transmitted in step (1).
The following lemma bounds the probabilities of events

relevant to the error analysis.

Lemma 1: Define

p1
∆
= Pr(B1|C), p2

∆
= Pr(B2|C

c),

p3
∆
= Pr(B2|C).

For sufficiently large j and k, and no matter what the
Byzantine sensors do, Pr(Ai) ≤ ε for i = 1, 2, 3, and

p1 ≤ Pr(A1) + Pr(A2), p2 ≤ Pr(A2) + Pr(A3),
p3 ≤ Pr(A1)(Pr(A2) + Pr(A3)).

Proof: Since G1 was constructed to have error proba-
bility less that ε, Pr(A1) ≤ ε.

Now we show Pr(A2) ≤ ε for sufficiently large k.
Consider one of the k sensors polled in step (2). Let α
be the probability that the sensor is honest and a G2 error
does not occur when it sends its bin index in step (2). Thus
α = (1 − β − γ)(1 − ε). Let β′ be the probability that the
sensor is Byzantine or a G2 error occurs, so β′ = β+ε(1−β).
Let γ′ be the probability that the sensor is misinformed and
a G2 error does not occur, so γ ′ = γ(1− ε). Let the random
variable A be the number of the k sensors that are honest
without a G2 error, B be the number that are Byzantine or
have a G2 error, and C be the number that are misinformed
without a G2 error. By the law of large numbers, there is
some k large enough such that

Pr

(

∣

∣

∣

A

k
− α

∣

∣

∣
< ε,

∣

∣

∣

B

k
− β′

∣

∣

∣
< ε,

∣

∣

∣

C

k
− γ′

∣

∣

∣
< ε

)

> 1 −
ε

2
.

(2)
If β +γ < 1/2, then for sufficiently small ε, α−ε > 1/2, so
by (2) Pr(A > k/2) > 1− ε/2, which means the probability
of the majority—and hence the plurality—of the decoded bin
indices being incorrect is less than ε.

Now we consider the β+γ ≥ 1/2 case. In order for an in-
correct bin index to achieve the plurality, some combination
of the Byzantine and misinformed sensors all transmitting
the same bin index must form a group larger than the group
of honest sensors that are polled. If we assume the Byzantine
sensors know the misinformed sensors’ messages, the worst
they can do is all choose to send the same bin index as that
of the largest group of misinformed sensors with messages in
the same bin. Thus, A2 will occur if there is a set of A−B of
the C misinformed sensors that all have the same message.
Let q(i, c) be the probability that, of a set of c misinformed
sensors, at least one subset of i sensors have messages in
the same bin. There are

(

c
i

)

subsets of size i from a set of
size c, and the chunks of any such subset of misinformed
sensors have probability 1/ji−1 of all falling into the same
bin. Thus

q(i, c) ≤

(

c

i

)

1

ji−1
. (3)

From (2), A ≤ (α−ε)k, B ≥ (β′+ε)k, or C ≥ (γ′+ε)k with
probability at most ε/2. If not, recall Pr(A2) = q(A−B, C),
and A −B > (α − ε)k − (β′ + ε)k = (α − β′ + 2ε)k while
C < (γ′ + ε)k. Note that q(i, c) is monotonically decreasing



in i and monotonically increasing in c. Thus

Pr(A2) ≤
ε

2
+ q(b(α − β′ − 2ε)kc, d(γ′ + ε)ke)

≤
ε

2
+

(

d(γ′ + ε)ke

b(α − β′ − 2ε)kc

)

j−b(α−β′−2ε)kc+1 (4)

≤
ε

2
+ j

(

1

j

(

d(γ′ + ε)ke

−b(α − β′ − 2ε)kc + 1
)

)b(α−β′−2ε)kc

(5)

≤
ε

2
+ j

(

(γ′ − α + β′ + 3ε)k + 3

j

)(α−β′−2ε)k

= ε + j

(

(1 − 2α + 3ε)k + 3

j

)(α−β′−2ε)k

(6)

where (4) is from (3), (5) because
(

a
b

)

≤ (a − b + 1)b, and
(6) since α + β′ + γ′ = 1. Note that 1 − 2α > 0 because
β + γ > 1/2. For sufficiently small ε, 1 − 2α + 3ε < 1, so
for sufficiently large k, (1 − 2α + 3ε)k + 3 ≤ k. Thus

Pr(A2) ≤
ε

2
+ j

(

k

j

)(α−β′−2ε)k

.

Since 2β < 1− γ, for sufficiently small ε, α− β′ − 2ε > 0.
Thus if we let 2k ≤ j ≤ 3k, then for large enough k, the
second term above is less than ε/2, so Pr(A2) ≤ ε.

Next we show Pr(A3) ≤ ε for sufficiently large j. Since
there are j bins, the probability that two different chunks are
put into the same bin in step (2) is 1/j. Thus if j ≥ 1/ε,
Pr(A3) ≤ ε. Note that achieving this condition on j as well
as that above requires k ≥ 1

3ε .
Note that p1 is the probability that the received chunk is

declined in step (3) given the true chunk was transmitted
in step (1). One way for this to happen is for there to be
a coding error in step (1), i.e., A1 occurs, so the received
chunk will not be the true chunk, so the polled sensors may
not confirm it. Note that a coding error does not necessitate
the chunk being declined, but it does cover a large set of the
ways it could happen. If A1 does not occur, then the received
chunk is the true one, so the chunk could only be declined
if the majority of the bin indices received in step (2) do not
match the true chunk, i.e., A2 occurs. Thus

p1 ≤ Pr(A1 ∪ A2) ≤ Pr(A1) + Pr(A2).

Next, p2 is the probability that an incorrect chunk is
accepted given that an incorrect chunk is transmitted in step
(1). If more than half of the decoded bin indices are incorrect
(A2), then those incorrect bin indices might confirm the
incorrect chunk. If not, then the only way for the incorrect
chunk to be accepted is for it to fall into the same bin as the
true chunk (A3). Thus

p2 ≤ Pr(A2 ∪ A3) ≤ Pr(A2) + Pr(A3).

Finally, p3 is the probability that an incorrect chunk is
accepted given that the correct chunk is transmitted in step
(1). In order for this to happen, the decoded chunk must

not be the true one, so a coding error must occur (A1). In
addition, for that decoded incorrect chunk to be accepted,
more than half of the decoded bin indices must be incorrect
(A2) or the incorrect chunk must fall into the same category
as the real one (A3). Thus

p3 ≤ Pr(A1) Pr(A2 ∪ A3) ≤ Pr(A1)(Pr(A2) + Pr(A3)).

For the following part of the analysis, we will assume
that all misinformed sensors behave as Byzantine sensors.
Certainly this cannot reduce the error probability, and as long
as we continue using the bounds on the pis from Lemma 1,
the analysis becomes simpler. Thus we will assume that a
sensor is Byzantine with probability β̃ , β + γ and honest
with probability 1 − β̃.

As the coding scheme commences, it moves through a
number of different states, depending on the number chunks
the fusion center has received thus far, and whether the
selected sensor is Byzantine. Depending on the exact se-
quence of events, the fusion center might remain at a certain
state for some time, requesting the same chunk several times
until it finds an honest sensor. The progress is probabilistic
because every time the fusion center selects a sensor it
might be Byzantine or honest, and every time it receives a
transmission, a transmission error might or might not occur.
In fact, the progress of the coding scheme can be modeled
as a Markov process. In particular, it will be a Markov
decision process, because a Byzantine sensor, if it is selected
to transmit a chunk, has some choice about what to transmit.
That choice will influence the probabilities of future events.
The Markov decision process that we will use to analyze the
error probability of this scheme is diagrammed in Fig. 2.

The process will have 2v + 3 states. State i, for i =
0, · · · , v represents the fusion center having successfully
received i true chunks and the currently selected sensor is
honest. State i′ is the same except the currently selected
sensor is Byzantine. Finally, state e represents the fusion
center having accepted at least one false chunk. The decision
for the Markov decision process will be whether a Byzantine
sensor, if it is asked to send a chunk in step (1), chooses to
send the true chunk or not. Thus a decision will only be
made when a Byzantine sensor has been selected, i.e., we
are in one of the i′ states.

States v, v′, and e will be terminal states, so an error will
occur if we reach state e before state v or v′. Define

ei
∆
= Pr(error occurs starting from state i),

e′i
∆
= Pr(error occurs starting from state i′).

In executing the Markov decision process, the Byzantine
sensors make decisions to maximize the probability of error.
At the very beginning of the coding scheme, we select a
sensor which will be with probability 1 − β̃ honest and
probability β̃ Byzantine. Thus, the total probability of error
is

Pe = (1 − β̃)e0 + β̃e′0.
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Fig. 2. The Markov decision process used to find the error probability.
Dashed lines from a state represent the Byzantine sensor choosing to send
erroneous information, and dotted lines represent the Byzantine sensor
choosing to send true information.

From state i, with probability p1 the chunk will be
declined. The fusion center then selects a new sensor,
which will be Byzantine with probability β̃ and honest
with probability 1 − β̃. Thus we transition to state i′ with
probability p1β̃ and back to state i with probability p1(1−β̃).
With probability p3, an incorrect chunk is accepted, so we
transition to state e. Finally, with probability 1− p1− p3 the
true chunk is accepted, so we transition to state i + 1.

From state i′, the transition probabilities depend on the
decision. If the Byzantine sensor chooses not to send the
true chunk, then with probability p2 the false chunk will be
accepted, so we transition to state e. Otherwise, the fusion
center selects a new sensor. Thus with probability (1− p2)β̃
we return to state i′, and with probability (1−p2)(1− β̃) we
transition to state i. If the Byzantine sensor decides to send
the true chunk, then the transition probabilities are essentially
the same as they were from state i; with probability p1β̃ we
return to state i′, with probability p1(1− β̃) we transition to
state i, with probability p3 we transition to state e, and with
probability 1 − p1 − p3 we transition to state i + 1′.

From these transition probabilities, we see that

ei = p3 + (1 − p1 − p3)ei+1 + p1β̃e′i + p1(1 − β̃)ei,

e′i = max{p2 + (1 − p2)β̃e′i + (1 − p2)(1 − β̃)ei,

p3 + (1 − p1 − p3)e
′
i+1 + p1β̃e′i + p1(1 − β̃)ei}.

The maximum represents the Byzantine sensors always
making the decision that maximizes the error probabilities.
In addition, if we arrive at either state v or v′, the fusion
center has received the entire message without error, so ev =
e′v = 0.

D. Code Rate

We also need to consider the rate of this code. To show that
the rate can be made arbitrarily close to C, we need to show
that the expected number of channel uses E(N) converges
to n as ε goes to zero. Each time a chunk is transmitted (i.e.,
each time we run through steps (1) to (4)), the channel is
used n/v + kl times. All we need to know is the expected
number of chunks that are transmitted in the entire coding
scheme. To find this, we will use a similar Markov decision
process as the one described above. The only differences lie
in the fact that we are not interested in whether an error
occurs, only in how long it takes to finish. Thus we remove
state e and redefine states i and i′ to represent the fusion
center having accepted i states, but with all of them not
necessarily correct. Thus every time we would transition to
state e, we actually transition somewhere else. For instance,
if we are in state i′ and the Byzantine sensors choose to send
erroneous information, then with probability p2, the chunk
is accepted, so we transition to state i + 1′ instead of e.
Let qi and q′i be the expected number of steps made in the
Markov decision process before reaching one of the terminal
states (v or v′) given that we start at state i or i′ respectively
and the Byzantine sensors make decisions that maximize the
expected number of steps. Then

qi = 1 + (1 − p1)qi+1 + p1β̃q′i + p1(1 − β̃)qi,

q′i = max{1 + p2q
′
i+1 + (1 − p2)β̃q′i + (1 − p2)(1 − β̃)qi,

1 + (1 − p1)q
′
i+1 + p1β̃q′i + p1(1 − β̃)qi}.

(7)
Again, qv = q′v = 0.

Lemma 2 (Average Code Length): There exist n, v, j,
and k as functions of ε such that the error probability Pe → 0
and the expected number of channel uses E(N) → n as
ε → 0.

Proof: Take j and k large enough for Lemma 1 to hold,
and n and v such that

2

ε
≥ v ≥

1

ε
, n ≥

klv

ε
. (8)

We define fi, f
′
i for i = 0, · · · , v as follows. Let fv ,

f ′
v , 0 and for i < v,

fi , p3 + (1 − p1 − p3)fi+1 + p1β̃f ′
i + p1(1 − β̃)fi, (9)

f ′
i,a , p2 + β̃f ′

i + (1 − β̃)fi, (10)
f ′

i,b , p3 + (1 − p1 − p3)f
′
i+1 + p1β̃f ′

i , (11)
f ′

i , max{f ′
i,a, f

′
i,b}. (12)



The only difference between fi, f
′
i and ei, e

′
i is that the

(1 − p2) factors have been dropped from the second two
terms in (10). Thus ei ≤ fi, e

′
i ≤ f ′

i , for all i. Fix some
i ∈ {0, · · · , v − 1}. If f ′

i = f ′
i,a, then by (10)

f ′
i =

p2

1 − β̃
+ fi. (13)

Combining this with (9) gives

fi = fi+1 +
p3

1 − p1
+

p1p2β̃

(1 − p1)(1 − β̃)
, (14)

which with (13) produces

f ′
i = fi+1 +

p3

1 − p1
+

p1p2β̃

(1 − p1)(1 − β̃)
+

p2

1 − β̃

= fi+1 +
p3

1 − p1
+

p2(1 − p1(1 − β̃))

(1 − p1)(1 − β̃)
. (15)

If f ′
i = fi,b, then combining (9) with (11) gives

f ′
i =

p3

1 − p1
+ p1(1− β̃)fi+1 + (1− p1(1− β̃))f ′

i+1. (16)

Note that (15) and (16) are what f ′
i would be if f ′

i equaled
f ′

i,a or f ′
i,b respectively. However, these expressions are not

necessarily equal to f ′
i,a and f ′

i,b, because we have used (9)
to derive both of them, which contains the real value of f ′

i .
Still, because of the definition of f ′

i in (12), the larger of
(15) and (16) will be the true value of f ′

i .
We will now show by induction that f ′

i = f ′
i,a for i =

0, · · · , v − 1. For i = v − 1, since fv = f ′
v = 0, it is

clear that the expression in (15) is larger than that in (16),
so f ′

v−1 = f ′
v−1,a. Now we assume that f ′

i+1 = f ′
i+1,a and

show that f ′
i = f ′

i,a. By (13),

f ′
i+1 =

p2

1 − β̃
+ fi+1.

Thus, if f ′
i = f ′

i,b, (16) becomes

f ′
i =

p3

1 − p1
+ p1(1 − β̃)fi+1

+ (1 − p1(1 − β̃))

(

p2

1 − β̃
+ fi+1

)

=
p3

1 − p1
+ fi+1 +

p2(1 − p1(1 − β̃))

1 − β̃
.

Since the expression in (15) is larger than this, f ′
i = f ′

i,a.
Therefore (14) holds for i = 0, · · · , v − 1, so

fi =

(

p3

1− p1
+

p1p2β̃

(1 − p1)(1 − β̃)

)

(v − i). (17)

Thus

Pe = (1 − β̃)e0 + β̃e′0

≤ (1 − β̃)f0 + β̃f ′
0

= f0 +
p2β̃

1 − β̃
(18)

=
p1p2β̃ + p3(1 − β̃)

(1 − p1)(1 − β̃)
v +

p2β̃

1 − β̃
(19)

≤
4ε2β̃ + 2ε2(1 − β̃)

(1 − 2ε)(1− β̃)

(

2

ε

)

+
2εβ̃

1 − β̃
(20)

=

(

8β̃ + 4(1 − β̃)

(1 − 2ε)(1 − β̃)
+

2β̃

1 − β̃

)

ε

where (18) is from (13), (19) is from (17), and (20) is from
Lemma 1 and (8). Thus Pe → 0 as ε → 0.

Now we analyze qi, q
′
i to find E(N). Combining the

expression for qi in (7) with either expression for q′i in the
maximum in (7) yields expressions of the form

qi = 1 + γ + δqi+1 + (1 − δ)q′i+1, (21)
q′i = 1 + γ′ + δ′qi+1 + (1 − δ′)q′i+1, (22)

where γ, γ′ ≥ 0 and δ, δ′ ∈ [0, 1]. The quantity γ represents
the expected number of state transitions between states i and
i′ before moving on to state i + 1 or i + 1′, given that we
start at state i′, and δ represents the probability that when
we do transition away from states i and i′, we go to state
i + 1 and not i + 1′. The quantities γ ′ and δ′ are the same
except starting at state i′. Obviously, the values of these will
depend on which element of the maximum is larger, but for
our current purposes it only matters that the expressions will
have this form.

We will now show by induction that qi − qi+1 ≥ 1 and
q′i − q′i+1 ≥ 1 for i = 0, · · · , v− 1. First consider i = v − 1.
qv = q′v = 0, so by (21) and (22), qv−1 = 1 + γ and
q′v−1 = 1+γ′. Thus qv−1 −qv ≥ 1 and q′v−1 −q′v ≥ 1. Now
we assume that qi+1 − qi+2 ≥ 1 and q′i+1 − q′i+2 ≥ 1 and
show that qi − qi+1 ≥ 1 and q′i − q′i+1 ≥ 1. By assumption
and (21),

qi − qi+1 = δ(qi+1 − qi+2) + (1 − δ)(q′i+1 − q′i+2)

≥ δ + (1 − δ)

= 1.

Similarly by (22),

q′i − q′i+1 = δ′(qi+1 − qi+2) + (1 − δ′)(q′i+1 − q′i+2)

≥ δ′ + (1 − δ′)

= 1.

Thus qi − qi+1 ≥ 1 and q′i − q′i+1 ≥ 1 for i = 0, · · · , v − 1.
In particular, q′i+1 ≤ q′i − 1.

Suppose the first element of the maximum is larger in (7).
Then

q′i = 1 + p2q
′
i+1 + (1 − p2)β̃q′i + (1 − p2)(1 − β̃)qi

≤ 1 + p2(q
′
i − 1) + (1 − p2)β̃q′i + (1 − p2)(1 − β̃)qi.



This can be rewritten

q′i ≤
1

1 − β̃
+ qi. (23)

Now suppose the second element of the maximum is larger
in (7). Then

q′i = 1 + (1 − p1)q
′
i+1 + p1β̃q′i + p1(1 − β̃)qi

≤ 1 + (1 − p1)(q
′
i − 1) + p1β̃q′i + p1(1 − β̃)qi.

This can also be rewritten to (23), so (23) must hold no
matter which value is larger in the maximum in (7). Thus

qi ≤ 1 + (1 − p1)qi+1 + p1β̃

(

1

1 − β̃
+ qi

)

+ p1(1 − β̃)qi.

This can be rewritten

qi ≤ 1 +
p1

(1 − p1)(1 − β̃)
+ qi+1,

so
qi ≤

(

1 +
p1

(1 − p1)(1 − β̃)

)

(v − i). (24)

Let V be the random variable denoting the total number of
chunks that are requested in the entire coding session. Since
we start at state 0 with probability 1− β̃ and at state 0′ with
probability β̃,

E(V ) = (1 − β̃)q0 + β̃q′0

≤ q0 +
β̃

1 − β̃
(25)

≤

(

1 +
p1

(1 − p1)(1 − β̃)

)

v +
β̃

1 − β̃
(26)

where (25) is from (23) and (26) is from (24). Thus

E(N) = E(V )
(n

v
+ kl

)

≤

[

(

1 +
p1

(1 − p1)(1 − β̃)

)

v +
β̃

1 − β̃

]

(n

v
+ kl

)

= n

[

1 +
p1

(1 − p1)(1 − β̃)
+

β̃

1 − β̃

1

v

+

(

1 +
p1

(1 − p1)(1 − β̃)

)

klv

n
+

β̃

1 − β̃

kl

n

]

≤ n

[

1 +
2ε

(1 − 2ε)(1 − β̃)
+

β̃

1 − β̃
ε

+

(

1 +
2ε

(1 − 2ε)(1 − β̃)

)

ε +
β̃

1 − β̃
ε2

]

(27)

= n

[

1 +

(

2(1 + ε)

(1 − 2ε)(1 − β̃)
+

β̃(1 + ε)

1 − β̃
+ 1

)

ε

]

where (27) is from Lemma 1 and (8). Thus E(N) → n as
ε → 0.

Therefore the rate of this code,
nR

E(N)
,

converges to R as ε goes to 0. Thus C is achievable.

IV. CONCLUSION

We showed in this paper that, by cooperative sensor fusion,
the presence of Byzantine and misinformed sensors can be
completely mitigated when the Byzantine sensor population
is less than that of the honest sensors, but no information can
be transmitted when at least as many sensors are Byzantine
as are honest. We proposed a “transmit-then-verify” scheme
that forces a Byzantine sensor to either act honestly or reveal
its Byzantine identity. The key of this idea is the use of
random binning in sensor polling. Note that the random
binning in our strategy is not a random coding argument;
it is an actual randomized transmission protocol. However,
this random binning is not needed when more than half of
the sensors are honest.

The network does not have to contain infinite number of
sensors. For a finite size network, we will assume that a
deterministic β fraction of the sensors are Byzantine and γ
fraction are misinformed. In that case, all the sensors can be
polled when verifying a transmission (i.e., k can be set to
the total number of sensors). Thus information will always
be correctly verified, because the polled honest sensors
will outnumber the polled Byzantine sensors. This requires
a constant and hence asymptotically negligible number of
channel uses, so polling every sensor instead of a random
subset does not effect the rate.
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