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ABSTRACT

Many signal processing applications of graphical models require ef-
ficient methods for computing (approximate) marginal probabilities
over subsets of nodes in the graph. The intractability of this marginal-
ization problem for general graphs with cycles motivates the use of
approximate message-passing algorithms, including the sum-product
algorithm and variants thereof. This paper studies the convergence
and stability properties of the family ofreweighted sum-product al-
gorithms, a generalization of the standard updates in which messages
are adjusted with graph-dependent weights. For homogenousmod-
els, we provide a complete characterization of the potential settings
and message weightings that guarantee uniqueness of fixed points,
and convergence of the updates. For more general inhomogeneous
models, we derive a set of sufficient conditions that ensure conver-
gence, and provide estimates of rates. These theoretical results are
complemented with experimental simulations on various classes of
graphs.
Index terms: Graphical model; Markov random field; belief prop-
agation, sum-product algorithm; message-passing; approximate in-
ference.

1. INTRODUCTION

Graphical models provide a powerful framework for capturing the
complex statistical dependencies exhibited by various classes of real-
world signals [1, 2]. A fundamental problem common to any sig-
nal processing application of a graphical model is that of computing
marginal probabilities over subsets of nodes. Thismarginalization
problem, though solvable in linear-time for tree-structured models,
is computationally intractable for more general graphs with cycles.
This difficulty motivates the use of efficient algorithms forcomput-
ing approximate marginal probabilities in graphical models with cy-
cles. A popular class of algorithms, including the sum-product algo-
rithm [3] and extensions thereof [4], is based on passing “messages”
between nodes in the graph. While computationally efficient, the
standard form of sum-product message-passing is not guaranteed to
converge, and in fact may have multiple fixed points.

Recent work has shed some light on the convergence properties
of the ordinary sum-product algorithm. Tatikonda and Jordan [5]
connect sum-product convergence to uniqueness of Gibbs measures
on the computation tree. These results have been extended infollow-
up work by other researchers [6, 7, 8]. At a high level, this line of
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research establishes that for sufficiently weak dependencies among
the random variables in the graphical model, the sum-product up-
dates have a unique fixed point, and will converge at a geometric
rate. However, the sum-product algorithm is routinely applied to
graphical models for which these theoretical guarantees are not ap-
plicable.

The family of reweighted sum-productalgorithms [9, 10, 11] is
a broader class of message-passing algorithms, in which messages
are adjusted by edge-based weights determined by the graph struc-
ture. It includes the ordinary sum-product algorithm as a special
case, in which all the weights are unity. For suitable choices of these
weights, it can be shown [9] that reweighted sum-product—insharp
contrast to the ordinary updates— always has a unique fixed point
for anygraph and any dependency strength. An additional benefit of
convexity is that the message-passing updates tend to be more stable,
as confirmed by experimental investigation [11, 9, 12]. However, the
convergence properties of reweighted message-passing have not yet
been fully understood. Accordingly, the main contributionof this pa-
per is convergence analysis of the family of reweighted sum-product
algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide basic background on graphical models (with cy-
cles), and the class of reweighted sum-product algorithms that we
study. In Section 3, we begin by stating our main results, including a
discussion of how they are related to previous results on theordinary
sum-product algorithm. We then turn to the proofs of these claims.
Section 4 provides experimental results to illustrate and support our
experimental findings, and we conclude in Section 5 with a summary
and directions for future work.

2. BACKGROUND

We begin by providing background on graphical models, and (reweighted)
sum-product message-passing.

2.1. Graphical models

There exists a variety of graphical formalisms, including directed,
undirected and factor graphs. Here we focus onMarkov random
fields, defined by an undirected graphG with verticesV = {1, . . . , n}
and edge setE. Associated with each vertexs ∈ V is a random
variableXs, taking values in some spaceX . The random vector
X = (X1, . . . , Xn) is said to be Markov with respect to the graph if
its distribution decomposes into a product of terms over thecliques
of G. (A cliqueC ⊂ V of a graphG is a fully-connected subset of
vertices.)
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Fig. 1. Examples of graphical models. (a) A quad-tree model used
in multi-resolution signal processing [2]. (b) A lattice-based model
used in image processing.

In this paper, we restrict attention to the case of pairwise cliques (an
assumption which entails no loss of generality [4] for discrete spaces
X ), for which the p.m.f. ofX decomposes as

p(x; θ) ∝ exp{
s∈V

θs(xs) +
(s,t)∈E

θst(xs, xt)}. (1)

Here the quantitiesθs and θst are potential functionsthat depend
only on the random variablesXs, and the pair(Xs, Xt) respectively.

Examples of such graphical models commonly used in signal
processing include the (hidden) Markov model, and the quad tree
model (Fig. 1(a)). In contrast to these graphs without cycles (in
which exact calculations are computationally feasible), of primary
interest in this paper are graphs with cycles, such as the lattice or
grid-based model shown in Figure 1(b).

2.2. Reweighted sum-product message-passing

The sum-product algorithm is an iterative algorithm, in which nodes
in the graph exchange statistical information via a sequence of “message-
passing” updates. For tree-structured graphical models, the updates
can be derived as a form of non-serial dynamic programming, and
are guaranteed to converge and compute the correct marginaldistri-
butions at each node. However, the updates are routinely applied to
more general graphs with cycles. Here we describe the more gen-
eral class of reweighted sum-product algorithms. For each edge, let
ρst ∈ [0, 1] be an associated edge weight. Denoting byMts(xs)
the message vector passed from nodet to nodes, the reweighted
sum-product update equations (up to normalization) are given by

Mts(xs)←

x′

t

exp
θst(xs, x

′
t)

ρst

+ θt(x
′
t)

u∈N(t)\s

[Mut(x
′
t)]

ρut

[Mst(x′
t)]

ρst
,

(2)
whereN(t) denotes the neighbors of nodet in the graph. Setting
the edge weightsρst = 1 for all edges recovers the standard sum-
product updates. When the updates converge, the messages are used
to compute (approximate) marginal probabilitiesτs at each node via

τs(xs) ∝ exp {θs(xs)}
t∈N(s)

[Mts(xs)]
ρst . (3)

Of interest is under what conditions the message updates (2)are
guaranteed to converge.

3. CONVERGENCE ANALYSIS

In this section, we describe and sketch proofs on our main results
on the convergence properties of the reweighted sum-product up-
dates (2). For simplicity in exposition in this short report, we re-
strict our results to the case of binary random variables (i.e.,X =
{−1, 1}), but note that our analysis can be extended to more gen-
eral spaces. In the binary case, each singleton potentialθs(·) can
be parameterized by a single real number, which we denoteθs for
convenience. Similarly, the pairwise potentialθst(·, ·) can be pa-
rameterized by a single real numberθst.

3.1. Statement of main results

Our convergence analysis is based on establishing that, under suit-
able conditions, the reweighted updates (2) specify a contractive
mapping in theℓ∞ norm. The contraction coefficientK(G; θ; ρ)
that emerges from our analysis is defined by

max
(s,t)∈E

u∈N(t)\s

ρut

exp( 2θut

ρut
)− 1

exp( 2θut

ρut
) + 1

+ (1− ρts)
exp( 2θst

ρst
)− 1

exp( 2θst

ρst
) + 1

.

(4)
With these definitions, we have:

Theorem 1. For an arbitrary pairwise Markov random field, the
conditionK(G; θ; ρ) < 1 is sufficient for convergence of the reweighted
sum-product updates(2).

If we specialize this result to the case of uniform edge weightsρst = 1,
which corresponds to the standard sum-product updates, then we re-
cover previous results [6, 8] as a corollary.

It is worth noting that Theorem 1 is a somewhat conservative
condition, in that it requires that the message updates be contrac-
tive ateverynode of the graph, as opposed to requiring that they be
attractive in an average sense. For homogeneous models (in which
θs = θ andθst = η are constant across nodes and edges, and each
node has degreed), we provide a sharpened analysis of convergence
properties:

Theorem 2. For any homogeneous binary model on ad-regular
graph with arbitrary choice of(θ, η), the reweighted updates have
a unique fixed point and converge for all edge weightsρ such that
(ρd− 1) ≤ 1.

Note that as a corollary, when for the edge weightρ = 1—the choice
corresponding to the standard sum-product algorithm—thenwe re-
cover the known result that sum-product converges for any single
cycle graph (d = 2). For ρd > 2, the updates may have multiple
fixed points, but this depends on the choice of(θ, η), as we discuss
in more detail in the sequel.

3.2. Proof of Theorem 1

We begin by re-writing the message update equation (2) in a form
more amenable to analysis. For each edge(s, t), define the log mes-
sage ratiozts = log Mts(1)

Mts(−1)
. It is equivalent to update these log

ratios using the update function:

Fts(z) := log

exp θst

ρst
+ θt + ρst(

v∈N(t)

zvt)− zst + exp −θst

ρst
− θt

exp −θst

ρst
+ θt + ρst(

v∈N(t)

zvt)− zst + exp θst

ρst
− θt

.

(5)



We begin with a lemma required in proving the theorem:

Lemma 3. The partial derivative ofF can be bounded as follows:
for u ∈ N(t)\s, we have

∂Fts

∂zut

(z) ≤ ρut

exp( 2θut

ρut
)− 1

exp |( 2θut

ρut
) + 1

(6)

whereas for edge(s, t), we have

∂Fts

∂zut

(z) ≤ (1− ρst)
exp( 2θst

ρst
)− 1

exp |( 2θst

ρst
) + 1

. (7)

The proof, omitted due to space constraints, is based on a Taylor
series expansion, and some analysis to bound the second derivative
term. Turning to the proof of Theorem 1, it is based on analyzing the
evolution of the vectorz ∈ R

|E| of log likelihood ratios associated
with edges of the graph.

Lemma 4. Consider a sequence of iterates{zm} generated by ap-
plying the update functions{Fts} in parallel to each edge. Letz∗

be a fixed point of these updates, and let∆m = zm − z∗ be the dif-
ference at iterationm. Then for each edge(s, t) ∈ E, the following
inequality holds at each iteration:

|∆m+1
ts | ≤

u∈N(t)\s

ρutLut|∆
m
ut|+ (1− ρts)Lst|∆

m
st|. (8)

where for edge(u, v), the constantLuv : =
exp(

2θuv
ρuv

)−1

exp |( 2θuv
ρuv

)+1
.

Proof. Using the facts thatzm+1 = F (zm) andz∗ = F (z∗) (since
z∗ is a fixed point), we have for each edge(t, s) ∈ E:

|∆m+1
ts | = |Fts(z

m)− Fts(z
∗)|

=
u∈N(t)

∂Fts

∂zut

(αzm + (1− α)z∗) (zm
ut − z∗

ut)

≤
u∈N(t)

∂Fts

∂zut

(αzm + (1− α)z∗) |∆m
ut| ,

whereα ∈ (0, 1). (In this second equality, we have applied the
mean value theorem toFts.) Now applying our bounds on partial
derivatives from Lemma 3, we obtain that

|∆m+1
ts | ≤

u∈N(t)\s

ρutLut|∆
m
ut|+ (1− ρst)Lst|∆

m
st|

as claimed.

With this lemma in hand, we have the necessary ingredients to
prove Theorem 1. From the error recursion (8), we have

‖∆m+1‖∞ ≤ max
(t,s)∈E

u∈N(t)\s

ρutLut|∆
m
ut|+ (1− ρ)Lst|∆

m
st|

≤ max
(t,s)∈E

u∈N(t)\s

ρutLut + (1− ρ)Lst ‖∆m‖∞

= K(G; θ; ρ) ‖∆m‖∞.

Consequently, ifK < 1, then the mappingF : R
|E| → R

|E| is
strictly contractive in theℓ∞-norm, which establishes the claim by
standard fixed point results [13].

3.3. Proofs for homogeneous case

In the homogeneous Ising model, the edge weightsθst are equal to a
common valueη, and similarly the node parametersθs are all equal
to a common valueθ. Under these assumptions and thed-regularity
of the graph, the message-passing updates can be completelychar-
acterized by a single log messagez = log M(1)/M(−1) ∈ R, and
the update

F (z; η, θρ) = log
exp(−η

ρ
− θ) + exp( η

ρ
+ (ρd− 1)z) + θ

exp( η

ρ
− θ) + exp(−η

ρ
+ (ρd− 1)z) + θ

.(9)

We analyze the behavior of the updateszm+1 = F (zm) by suitably
controlling the derivative ofF with respect toz. A straightforward
calculation yields thatF ′(z) = (ρd− 1)(a− b) where

a =
exp( η

ρ
+ (ρd− 1)z + θ)

exp(−η

ρ
− θ) + exp( η

ρ
+ (ρd− 1)z + θ)

(10a)

b =
exp(−η

ρ
+ (ρd− 1)z + θ)

exp( η

ρ
− θ) + exp(−η

ρ
+ (ρd− 1)z + θ)

(10b)

Note that we have0 < a, b < 1 and |a − b| < max{a, b}, from
which we obtain

|F ′(z; η, θ)| ≤ |(ρd− 1)|max{a, b‖ ≤ |(ρd− 1)|.

From this bound, we conclude that if0 ≤ (ρd − 1) < 1, then
|F ′(z)| < 1 for all z ∈ R. From this fact, it follows that the update
is a contraction onR, and hence has a unique fixed point [13]. In the
boundary case when(ρd − 1) = 1, the fixed point equation (9) has
only one valid root. Moreover, the derivativeF ′(z) remains strictly
less than one for all finiteη andθ, so that we are again guaranteed
uniqueness and convergence of the updates. (We omit the proofs of
these claims due to space constraints.)

Finally, when(ρd − 1) > 1, the update equation (9) may have
more than one fixed point, depending on the choice ofη andθ. In-
deed, for a fixed setting of the node potentialθ, it is possible to plot
the critical value ofη for which the second fixed point appears. For
ad-regular graph withd = 4, Figure 2(a) provides a number of dif-
ferent curves, each corresponding to a differentθ, showing how this
critical value ofη changes as the edge weight paramets is decreased
from ρ = 1 (corresponding to the ordinary sum-product algorithm)
to the critical valueρ = 1/2 (whereρd− 1 = 1). Note that as one
corner case, we recover the classical result that forθ = 0, multiple
fixed points appear in the ordinary sum-product algorithm assoon as
η ≥ ηcrit ≈ 0.3466.

4. EXPERIMENTAL RESULTS

In this section, we present the results of experimental simulations to
illustrate and support our theoretical findings. The simulations were
applied to the Ising model, obtaining by the potential function set-
tings θs(xs) = θsxs and θst(xs, xt) = θstxsxt in equation (1).
The numbers parameterizing the node potentials,θs, were chosen
uniformly from [0.05, 0.5], and the edge potentials,θst, were cho-
sen uniformly from[0.01, 1]. The simulations were carried out for
different values of the edge weightsρ in the reweighted sum-product
algorithm; however, so as to appropriately narrow the space, we re-
stricted attention to the case where the value ofρ is the same for all
edges. Due to space constraints, here we show only results for the
lattice withn = 144 nodes, andρ = 0.5. Figure 2(b) compares the
convergence rate as predicted by Theorem 1 vs. the true convergence
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Fig. 2. (a) Plots of the appearance of multiple fixed points versusη andρ. Each curve shows, for a fixed node potentialθ, the critical value
of ηcrit at which multiple fixed points occur, for edge weights ranging from ρ = 1 (ordinary sum-product) down toρ = 1/2. (b) The rate of
convergence of the reweighted sum-product algorithm as compared to the rate predicted by Theorem 1.

rate. We have plottedlog |zm− z∗|1 vs. the number of iterationsm.
In this setting,z∗ is the fixed point of the reweighted sum-product
algorithm, andzm the message vector at thenth iteration. As il-
lustrated by Figure 2(b), the true convergence rate is faster than the
predicted value by Theorem 1; this finding both validates ourresult,
and reveals that our analysis appears to be overly conservative (as
discussed earlier).

5. CONCLUSION

Many signal processing applications make use of graphical models.
This require efficient methods for computing approximate marginal
probabilities over subsets of nodes in the graph. For general graphs,
the problem of marginalization becomes intractable due to the ex-
istence of cycles in the graph. This motivates the use of approxi-
mate message-passing algorithms, including the sum-product algo-
rithm and its variants. In this paper we studied the convergence and
stability properties of the family of reweighted sum-product algo-
rithms. For homogenous models, we provided a complete character-
ization of the potential settings and message weightings that guaran-
tee uniqueness of fixed points, and convergence of the updates. For
more general inhomogeneous models, we derived a set of sufficient
conditions that ensure convergence, and provide estimatesof rates.
We provided simulation results to complement the theoretical results
presented.
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