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ABSTRACT

Many signal processing applications of graphical modejsire ef-
ficient methods for computing (approximate) marginal piolitées
over subsets of nodes in the graph. The intractability afrférginal-
ization problem for general graphs with cycles motivatesubke of
approximate message-passing algorithms, including timeoduct
algorithm and variants thereof. This paper studies the egance
and stability properties of the family eéweighted sum-product al-

gorithms a generalization of the standard updates in which messag

are adjusted with graph-dependent weights. For homogemods
els, we provide a complete characterization of the potesgitings
and message weightings that guarantee uniqueness of fixeis,po

and convergence of the updates. For more general inhomoggne

models, we derive a set of sufficient conditions that ensarwer-
gence, and provide estimates of rates. These theoretmatsare
complemented with experimental simulations on variousseta of
graphs.

Index terms. Graphical model; Markov random field; belief prop-

agation, sum-product algorithm; message-passing; ajppada in-
ference.

1. INTRODUCTION

Graphical models provide a powerful framework for captgrthe
complex statistical dependencies exhibited by varioussela of real-

research establishes that for sufficiently weak dependsrannong
the random variables in the graphical model, the sum-pitodpe
dates have a unique fixed point, and will converge at a ge@mnetr
rate. However, the sum-product algorithm is routinely apko
graphical models for which these theoretical guaranteesiar ap-
plicable.

The family ofreweighted sum-produetigorithms [9, 10, 11]is
a broader class of message-passing algorithms, in whickages
are adjusted by edge-based weights determined by the gnajgh s
SGre. It includes the ordinary sum-product algorithm as ec&p
case, in which all the weights are unity. For suitable chomgthese
weights, it can be shown [9] that reweighted sum-productshiarp
contrast to the ordinary updates— always has a unique fixad po
for anygraph and any dependency strength. An additional benefit of
convexity is that the message-passing updates tend to leestadnle,
as confirmed by experimental investigation [11, 9, 12]. Haevethe
convergence properties of reweighted message-passiegoayet
been fully understood. Accordingly, the main contributadthis pa-
per is convergence analysis of the family of reweighted gpuoatuct
algorithms.

The remainder of this paper is organized as follows. In Sec-
tion 2, we provide basic background on graphical modelsh(ayt
cles), and the class of reweighted sum-product algorithraswe
study. In Section 3, we begin by stating our main resultduitiog a
discussion of how they are related to previous results oortli@ary
sum-product algorithm. We then turn to the proofs of theagmd.

world signals [1, 2]. A fundamental problem common to any sig Section 4 provides experimental results to illustrate aqgpert our

nal processing application of a graphical model is that afijgoting
marginal probabilities over subsets of nodes. Thierginalization
problem though solvable in linear-time for tree-structured medel
is computationally intractable for more general graph$witcles.
This difficulty motivates the use of efficient algorithms fmmput-
ing approximate marginal probabilities in graphical madeith cy-
cles. A popular class of algorithms, including the sum-picicilgo-
rithm [3] and extensions thereof [4], is based on passinggages”
between nodes in the graph. While computationally efficigms
standard form of sum-product message-passing is not dgeato
converge, and in fact may have multiple fixed points.

experimental findings, and we conclude in Section 5 with arsary
and directions for future work.

2. BACKGROUND

We begin by providing background on graphical models, aadd€ighted)
sum-product message-passing.

2.1. Graphical models

Recent work has shed some light on the convergence prapertidhere exists a variety of graphical formalisms, includingected,

of the ordinary sum-product algorithm. Tatikonda and Jorf#
connect sum-product convergence to uniqueness of Gibbsuresa
on the computation tree. These results have been extenéabin-
up work by other researchers [6, 7, 8]. At a high level, thie lof

undirected and factor graphs. Here we focusMarkov random
fields defined by an undirected graphwith verticesV = {1,...,n}
and edge seE. Associated with each vertex € V is a random
variable X, taking values in some space. The random vector
X = (Xu,...,Xn) is said to be Markov with respect to the graph if
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of G. (A clique C C V of a graphG is a fully-connected subset of
vertices.)



3. CONVERGENCE ANALYSIS

In this section, we describe and sketch proofs on our maintses
on the convergence properties of the reweighted sum-ptaguc
dates (2). For simplicity in exposition in this short repose re-
strict our results to the case of binary random variables, X =
{—1,1}), but note that our analysis can be extended to more gen-
eral spaces. In the binary case, each singleton potéhtial can
be parameterized by a single real number, which we defofer

(b) convenience. Similarly, the pairwise potential(-,-) can be pa-

] ) rameterized by a single real numtggg.
Fig. 1. Examples of graphical models. (a) A quad-tree model used

in multi-resolution signal processing [2]. (b) A latticeded model
used in image processing.

3.1. Statement of main results

Our convergence analysis is based on establishing thaér wsuit-
able conditions, the reweighted updates (2) specify a aotie
In this paper, we restrict attention to the case of painwisgies (an ~ Mapping in thel.. norm. The contraction coefficiert' (G; 6; p)
assumption which entails no loss of generality [4] for diserspaces ~that emerges from our analysis is defined by
X), for which the p.m.f. ofX decomposes as

20, ¢ 20s¢
exp(2at) — 1 exp(2st) — 1
e P ET I e

p(z;0) o« exp{ Os(zs)+ Ost(zs,2¢)}. (1) ’ wEN(t)\s U PUS
seV (s,t)€E 4

With these definitions, we have:

Here the quantitied, and ¢, are potential functionsthat depend  thegrem 1. For an arbitrary pairwise Markov random field, the

only on the random variables., and the pai X, X:) respectively.  congitions (G; 0; p) < 1is sufficient for convergence of the reweighted
Examples of such graphical models commonly used in signakum-product update).

processing include the (hidden) Markov model, and the queel t o ) ) )

model (Fig. 1(a)). In contrast to these graphs without gy¢la  'fWe specialize this result to the case of uniform edge wisigh = 1,

which exact calculations are computationally feasiblé)primary ~ Which corresponds to the standard sum-product updatesytaee-

interest in this paper are graphs with cycles, such as thiedagr ~ COVer previous results [6, 8] as a corollary. _
grid-based model shown in Figure 1(b). It is worth noting that Theorem 1 is a somewhat conservative

condition, in that it requires that the message updates hram

tive ateverynode of the graph, as opposed to requiring that they be
2.2. Reweighted sum-product message-passing attractive in an average sense. For homogeneous model$i@h w

0s = 0 andfs, = n are constant across nodes and edges, and each
The sum-product algorithm is an iterative algorithm, inethnodes  node has degraé), we provide a sharpened analysis of convergence
in the graph exchange statistical information via a seqeiehtmessageproperties:
passing” updates. For tree-structured graphical modedsypdates
can be derived as a form of non-serial dynamic programmind, a
are guaranteed to converge and compute the correct madistid

Theorem 2. For any homogeneous binary model ondaegular
graph with arbitrary choice of6, n), the reweighted updates have

butions at each node. However, the updates are routineliedpp a unique fixed point and converge for all edge weightaich that

more general graphs with cycles. Here we describe the mare ge(pd -D<L

eral class of reweighted sum-product algorithms. For eddie.det  Note that as a corollary, when for the edge wejgkt 1—the choice

pst € [0,1] be an associated edge weight. DenotingMy.(zs)  corresponding to the standard sum-product algorithm—iteme-

the message vector passed from node nodes, the reweighted cover the known result that sum-product converges for anglesi

sum-product update equations (up to normalization) arengdy cycle graph § = 2). For pd > 2, the updates may have multiple
fixed points, but this depends on the choice@fn), as we discuss

[Mu¢(zy)]P+¢  in more detail in the sequel.
est(fzm -T;)

wEN(t)\s
Mis(zs) «— exp ———27Y 4 0, (xy < 7 ,
to(@) , pst () (Mt ()]st 3.2. Proof of Theorem 1

T

. . (2_) We begin by re-writing the message update equation (2) irrra fo
where N () denotes the neighbors of noden the graph. Setting  ynore amenable to analysis. For each efige), define the log mes-
the edge weightp,: = 1 for all edges recovers the standard sum—Sage ratiozs, = log M= It is equivalent to update these log
product updates. When the updates converge, the messagesedr i ina th d Ithts]S Ut' .
to compute (approximate) marginal probabilitiesat each node via ratios using the update tunction:

Ost . —0st
(@) x ep{(@)})  [Mu@). @) R R
teN(s) Fis(z) :=log

exp =2 40, 4 pur( Zut) — Zst +exp L0,

Of interest is under what conditions the message updatear€?) vEN(t)
guaranteed to converge. (5)



We begin with a lemma required in proving the theorem: 3.3. Proofsfor homogeneous case

Lemma 3. The partial derivative of" can be bounded as follows: Inthe homogeneous Ising model, the edge wei@htgare equal to a
foru € N(t)\s, we have common value;, and similarly the node parametétsare all equal
to a common valué. Under these assumptions and theegularity

OFs () < eXP(?T“f) -1 ©) of the graph, the message-passing updates can be compulessly
OZut = Put exp |(%) +1 acterized by a single log message= log M (1)/M(—1) € R, and
vt the update
whereas for edgés, t), we have ,
N exp(Z2 — ) + exp(Z + (pd — 1)2) + 0,
OF, exp(==t) —1 F(z;m,0p) = log 7 — (9)
s < (1—pe) —Lt 7 exp(} —0) + exp(! + (pd — 1)z) + 0

Ozut eXp|(%)+1 .

. . . We analyze the behavior of the updat&s™ = F(z™) by suitably
_The proof, omitted due to space constraints, is based onlarTay ¢qntroling the derivative of” with respect taz. A straightforward
series expansion, and some analysis to bound the secondtteri - culation yields thaf” (z) = (pd — 1)(a — b) where

term. Turning to the proof of Theorem 1, it is based on anatythe
evolution of the vector € RI”! of log likelihood ratios associated exp(2 + (pd — 1)z + 0)

. a = 10a
with edges of the graph. exp(%n —0)+ exp(% +(pd— 1)z +6) (10a)

Lemma4. Consider a sequence of iterat€s™} generated by ap- —n _

plying the update function§F;,} in parallel to each edge. Let" b = exp(5! + (pd — )z +6) (10b)
be a fixed point of these updates, andAét = ™ — 2* be the dif- exp(¢ —0) +exp(! + (pd — 1)z + 0)
ference at iterationn. Then for each edgés, t) € E, the following
inequality holds at each iteration:

Note that we hav® < a,b < 1 and|a — b| < max{a,b}, from

which we obtain

AL < put Lut| D] + (1 = prs) Lot | A%t (8)
t e T ' |F'(2:m,0)] < |(pd — 1)| max{a, b]| < |(pd — 1)].

exp(2ury From this bound, we conclude that(f < (pd — 1) < 1, then

%‘(5% . |F'(z)] < 1forall z € R. From this fact, it follows that the update
i is a contraction ofR, and hence has a unique fixed point [13]. In the

Proof. Using the facts that™ ! = F(z™) andz* = F(z*) (since  boundary case whefpd — 1) = 1, the fixed point equation (9) has

where for edgéu, v), the constant., : =

z* is a fixed point), we have for each edges) € E: only one valid root. Moreover, the derivati& (z) remains strictly
less than one for all finitg andé, so that we are again guaranteed
ALY = |Fs(z™) — Fis(29)] uniqueness and convergence of the updates. (We omit thésmbo
these claims due to space constraints.)
= OFis (2™ + (1 — a)z") (2 — zi) Finally, when(pd — 1) > 1, the update equation (9) may have
weEN (D) Ozut more than one fixed point, depending on the choicg ahdd. In-
deed, for a fixed setting of the node potenflait is possible to plot
< OFis (az™ + (1 —a)z") |AL, the critical value of; for which the second fixed point appears. For
wEN(2) Dzut ad-regular graph with! = 4, Figure 2(a) provides a number of dif-

ferent curves, each corresponding to a diffeerghowing how this
wherear € (0,1). (In this second equality, we have applied the critical value ofy changes as the edge weight paramets is decreased
mean value theorem t6;;.) Now applying our bounds on partial from p = 1 (corresponding to the ordinary sum-product algorithm)
derivatives from Lemma 3, we obtain that to the critical valuep = 1/2 (wherepd — 1 = 1). Note that as one
corner case, we recover the classical result thaf fer 0, multiple
AL < putLut| Aui] + (1= pst) Lat| Al ] fixed points appear in the ordinary sum-product algorithrsmx?as
uEN()\s N> Nerit ~ 0.3466.
as claimed. |

. . . . . 4., EXPERIMENTAL RESULTS
With this lemma in hand, we have the necessary ingredients to

prove Theorem 1. From the error recursion (8), we have In this section, we present the results of experimental lsitins to
illustrate and support our theoretical findings. The siroie were
putDut| AT 4+ (1 — p)Lot| AT applied to the Ising model, obtaining by the potential fiorctset-

m—+1
1A e < (tre)eE e 'l tings 0 (zs) = Oszs and Oy (zs, x) = Ospxsa in equation (1).
SENENE The numbers parameterizing the node potentiaswere chosen
uniformly from [0.05, 0.5], and the edge potential8;:, were cho-
< max putLut + (1= p)Lst  |A™||o sen uniformly from[0.01, 1]. The simulations were carried out for
’ uEN(t)\s different values of the edge weighisn the reweighted sum-product
= K(G;0;p) |A™|co. algorithm; however, so as to appropriately narrow the spaeee-

stricted attention to the case where the valup &f the same for all
Consequently, ifX < 1, then the mapping” : Rl — RIElis edges. Due to space constraints, here we show only resuitisefo
strictly contractive in the/s.-norm, which establishes the claim by lattice withn = 144 nodes, angh = 0.5. Figure 2(b) compares the
standard fixed point results [13]. convergence rate as predicted by Theorem 1 vs. the truergamae
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Fig. 2. (a) Plots of the appearance of multiple fixed points vefsaadp. Each curve shows, for a fixed node potenfiathe critical value
of nerit @t which multiple fixed points occur, for edge weights ragdirom p = 1 (ordinary sum-product) down te = 1/2. (b) The rate of
convergence of the reweighted sum-product algorithm ageoed to the rate predicted by Theorem 1.

rate. We have plottelbg |z, — 2|1 vs. the number of iterations.

In this setting,z* is the fixed point of the reweighted sum-product

algorithm, andz,, the message vector at theth iteration. As il-

lustrated by Figure 2(b), the true convergence rate isiféiséa the

predicted value by Theorem 1; this finding both validatesreauilt,
and reveals that our analysis appears to be overly conaenfas

discussed earlier).

5. CONCLUSION

Many signal processing applications make use of graphicalats.

This require efficient methods for computing approximategimel

probabilities over subsets of nodes in the graph. For gegeaphs,
the problem of marginalization becomes intractable dué¢oeix-

istence of cycles in the graph. This motivates the use ofaagpr

mate message-passing algorithms, including the sum-pt@dgo-

rithm and its variants. In this paper we studied the convergeind

stability properties of the family of reweighted sum-protialgo-

rithms. For homogenous models, we provided a complete ctesra
ization of the potential settings and message weightirgtsgharan-

tee uniqueness of fixed points, and convergence of the update
more general inhomogeneous models, we derived a set ofisnffic
conditions that ensure convergence, and provide estinoatedes.
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We provided simulation results to complement the thecsetisults 10
presented.
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