HUNTING FOR METAMORPHIC ENGINES

Mark Stamp & Wing Wong

August 5, 2006

Outline

- Metamorphic software
 - Both good and evil uses
- II. Metamorphic virus construction kits
- III. How effective are metamorphic engines?
 - How to compare two pieces of code?
 - Similarity within and between virus families
 - Similarity to non-viral code
- IV. Can we detect metamorphic viruses?
 - Commercial virus scanners
 - Hidden Markov models (HMMs)
 - Similarity index
- v. Conclusion

PART I

Metamorphic Software

What is Metamorphic Software?

- Software is metamorphic provided
 - All copies do the same thing
 - Internal structure of copies differs
- Today almost all software is cloned
- "Good" metamorphic software...
 - Mitigate buffer overflow attacks
- "Bad" metamorphic software...
 - Avoid virus/worm signature detection

Metamorphic Software for "Good"?

- Suppose program has a buffer overflow
- If we clone the program
 - One attack breaks every copy
 - Break once, break everywhere (BOBE)
- If instead, we have metamorphic copies
 - Each copy still has a buffer overflow
 - One attack does not work against every copy
 - BOBE-resistant
 - Analogous to genetic diversity in biology
- A little metamorphism does a lot of good!

Metamorphic Software for Evil?

- Cloned virus/worm can be detected
 - Common signature on every copy
 - Detect once, detect everywhere (DODE)
- If instead virus/worm is metamorphic
 - Each copy has different signature
 - Same detection does not work against every copy
 - Provides DODE-resistance
 - Analogous to genetic diversity in biology
- But, effective metamorphism here is tricky!

Virus Evolution

- Viruses first appeared in the 1980s
 - Fred Cohen
- Viruses must avoid signature detection
 - Virus can alter its "appearance"
- Techniques employed
 - encryption
 - polymorphic
 - metamorphic

Virus Evolution - Encryption

- Virus consists of
 - decrypting module (decryptor)
 - encrypted virus body
- Different encryption key
 - different virus body signature
- Weakness
 - decryptor can be detected

Virus Evolution – Polymorphism

- Try to hide signature of decryptor
- Can use code emulator to decrypt putative virus dynamically
- Decrypted virus body is constant
 - Signature detection is possible

Virus Evolution – *Metamorphism*

- Change virus body
- Mutation techniques:
 - permutation of subroutines
 - insertion of garbage/jump instructions
 - substitution of instructions

PART II

Virus Construction Kits

Virus Construction Kits – PS-MPC

According to Peter Szor:

"... PS-MPC [Phalcon/Skism Mass-Produced Code generator] uses a generator that effectively works as a code-morphing engine...... the viruses that PS-MPC generates are not [only] polymorphic, but their decryption routines and structures change in variants..."

Virus Construction Kits – G2

 From the documentation of G2 (Second Generation virus generator):

"... different viruses may be generated from identical configuration files..."

Virus Construction Kits - NGVCK

 From the documentation for NGVCK (Next Generation Virus Creation Kit):

"... all created viruses are completely different in structure and opcode..... impossible to catch all variants with one or more scanstrings...... nearly 100% variability of the entire code"

o Oh, really?

PART III

How Effective Are Metamorphic Engines?

How We Compare Two Pieces of Code

Virus Families – Test Data

- Four generators, 45 viruses
 - 20 viruses by NGVCK
 - 10 viruses by G2
 - 10 viruses by VCL32
 - 5 viruses by MPCGEN
- 20 normal utility programs from the Cygwin DLL

NGVCK Similarity to Virus Families

- NGVCK versus other viruses
 - 0% similar to G2 and MPCGEN viruses
 - 0 5.5% similar to VCL32 viruses (43 out of 100 comparisons have score > 0)
 - 0 1.2% similar to normal files (only 8 out of 400 comparisons have score > 0)

NGVCK Metamorphism/Similarity

NGVCK

- By far the highest degree of metamorphism of any kit tested
- Virtually no similarity to other viruses or normal programs
- Undetectable???

PART IV

Can Metamorphic Viruses Be Detected?

Commercial Virus Scanners

- Tested three virus scanners
 - eTrust version 7.0.405
 - avast! antivirus version 4.7
 - AVG Anti-Virus version 7.1
- Each scanned 37 files
 - 10 NGVCK viruses
 - 10 G2 viruses
 - 10 VCL32 viruses
 - 7 MPCGEN viruses

Commercial Virus Scanners

Results

- eTrust and avast! detected 17 (G2 and MPCGEN)
- AVG detected 27 viruses (G2, MPCGEN and VCL32)
- none of NGVCK viruses detected

Detection with Hidden Markov Models

- Use hidden Markov models (HMMs) to represent statistical properties of a set of metamorphic virus variants
 - Train the model on family of metamorphic viruses
 - Use trained model to determine whether a given program is similar to the viruses the HMM represents

Detection with HMMs – Theory

A trained HMM

- maximizes the probabilities of observing the training sequence
- assigns high probabilities to sequences similar to the training sequence
- represents the "average" behavior if trained on multiple sequences
- represents an entire virus family, as opposed to individual viruses

Detection with HMMs – Data

- Data set
 - 200 NGVCK viruses
- Comparison set
 - 40 normal exes from the Cygwin DLL
 - 25 other "non-family" viruses (G2, MPCGEN and VCL32)
- Many HMM models generated and tested

Detection with HMMs – Results

Detection with HMMs – Results

Detect some other viruses "for free"

Detection with HMMs

- Summary of experimental results
 - All normal programs distinguished
 - VCL32 viruses had scores close to NGVCK family viruses
 - With proper threshold, 17 HMM models had 100% detection rate and 10 models had 0% false positive rate
 - No significant difference in performance between HMMs with 3 or more hidden states

Detection with HMMs - Trained Models

- Converged probabilities in HMM matrices may give insight into the features of the viruses it represents
- We observe
 - opcodes grouped into "hidden" states
 - most opcodes in one state only
- What does this mean?
 - We are not sure...

Detection via Similarity Index

- Straightforward similarity index can be used as detector
 - To determine whether a program belongs to the NGVCK virus family, compare it to any randomly chosen NGVCK virus
 - NGVCK similarity to non-NGVCK code is small
 - Can use this fact to detect metamorphic NGVCK variants

Detection with Similarity Index

- Experiment
 - compare 105 programs to one selected NGVCK virus
- Results
 - 100% detection, 0% false positive
- Does not depend on specific NGVCK virus selected

PART V

- Metamorphic generators vary a lot
 - NGVCK has highest metamorphism (10% similarity on average)
 - Other generators far less effective (60% similarity on average)
 - Normal files 35% similar, on average
- But, NGVCK viruses can be detected!
 - NGVCK viruses too different from other viruses and normal programs

- NGVCK viruses not detected by commercial scanners we tested
- Hidden Markov model (HMM)
 detects NGVCK (and other) viruses
 with high accuracy
- NGVCK viruses also detectable by similarity index

- All metamorphic viruses tested were detectable because
 - High similarity within family and/or
 - Too different from normal programs
- Effective use of metamorphism by virus/worm requires
 - A high degree of metamorphism and similarity to other programs
 - This is not trivial!

The Bottom Line

- Metamorphism for "good"
 - For example, buffer overflow mitigation
 - A little metamorphism does a lot of good
- Metamorphism for "evil"
 - For example, try to evade virus/worm signature detection
 - Requires high degree of metamorphism and similarity to normal programs
 - Not impossible, but not easy...

References

- X. Gao, "Metamorphic Software for Buffer Overflow Mitigation", masters thesis, Department of Computer Science, San Jose State University, 2005
- P. Szor, *The Art of Computer Virus Research and Defense*, Addison-Wesley, 2005
- M. Stamp, Information Security: Principles and Practice, Wiley Interscience, 2005
- W. Wong, "Analysis and Detection of Metamorphic Computer Viruses", masters thesis, Department of Computer Science, San Jose State University, 2006