
Distributed Reputation System for Tracking
Applications in Sensor Networks

Tanya Roosta, Marci Meingast, Shankar Sastry
{roosta,marci,sastry}@eecs.berkeley.edu

EECS Department, University of California, Berkeley

Abstract— Ad-hoc sensor networks are becoming more
common, yet security of these networks is still an issue. Node
misbehavior due to malicious attacks can impair the overall
functioning of the system. Existing approaches mainly rely
on cryptography to ensure data authentication and integrity.
These approaches only address part of the problem of security
in sensor networks. However, cryptography is not sufficient to
prevent the attacks in which some of the nodes are overtaken
and compromised by a malicious user. Recently, the use
of reputation systems has shown positive results as a self-
policing mechanism in ad-hoc networks. This scheme can aid in
decreasing vulnerabilities which are not solved by cryptography.
We look at how a distributed reputation scheme can benefit
the object tracking application in sensor networks. Tracking
multiple objects is one of the most important applications of the
sensor network. In our setup, nodes detect misbehavior locally
from observations, and assign a reputation to each of their
neighbors. These reputations are used to weight node readings
appropriately when performing object tracking. Over time, data
from malicious nodes will not be included in the track formation
process. We evaluate the reputation system experimentally and
demonstrate how it improves object tracking in the presence of
malicious nodes.

I. INTRODUCTION

Sensor networks are wireless networks that lack any pre-
defined structure, and consist of many small, wireless de-
vices called motes. These motes (sensors) gather informa-
tion from the environment and communicate the data back
to a central unit called the base station. These networks
have demonstrated their usefulness in many applications
including health monitoring, data acquisition in hazardous
environments, airborne plume detection and surveillance.
However, sensor networks are more vulnerable to security
attacks than other ad-hoc networks due to their unattended
nature. For example, it is conceivable that an adversary can
physically capture a subset of nodes in the network and use
them to inject faulty data into the system. Cryptographic
methods, such as TinySec [1], solve some of the security
issues, but they are not effective once the adversary has
taken over a node and has access to the cryptographic

This work was supported in part by TRUST (The Team for Research
in Ubiquitous Secure Technology), which receives support from the
National Science Foundation (NSF award number CCF-0424422) and
the following organizations: Cisco, ESCHER, HP, IBM, Intel, Microsoft,
ORNL, Qualcomm, Pirelli, Sun and Symantec.

keys. The adversary can then use this compromised node to
engage in communication with the network without being
detected.
The concept of reputation has been used in many fields
such as, economy, sociology, and computer science. Rep-
utation systems have proven useful as a self-policing mech-
anism to address the threat of compromised entities. They
operate by identifying selfish nodes, and isolating them
from the network. Centralized reputations systems were
popularized by the internet [4], [14], [15]. An example
of this system is Ebay’s rating system [14]. Decentralized
methods were then created for use in ad hoc networks [10].
The CORE reputation system [12] and the CONFIDANT
protocol [22] use a watchdog module at each node to
monitor the forwarding rate of the neighbors of the node. If
the node does not forward the message, its reputation is de-
creases, and this information is propagated throughout the
network. Each node also uses the second hand information
from other nodes to find the overall reputation of a node.
Over time the bad behaving nodes are less trusted and will
not be used in forming reliable paths for routing purposes.
These two protocols differ in how they use the second
hand information, how to punish bad behavior and how to
instill trust for the node which misbehave temporarily. A
formal model for trust in dynamic networks is introduced
by Carbone et. al [17]. The most relevant work to ours
is presented in [23]. The authors suggest a high level
reputation system frame work for sensor networks. The
main difference between our work and [23] is that the
authors only suggest a ’watchdog’ mechanism to determine
the reputation of each node. They state that there is no
unifying way in which reputations can be assigned, i.e.
the mechanism to assign reputation has to be context
dependent and varies based on the application at hand.
Our contribution in this paper is to develop the assignment
mechanism for the specific case of multi-object tracking
application in sensor networks.
Multiple-object tracking is a canonical application of sen-
sor networks. It demonstrates multiple aspects of sensor
networks, for example, event detection, sensor data ag-
gregation, multi-hop communication, and decision making
process. The task of tracking multiple objects in a sensor

network is challenging due to a number of constraints on
sensor nodes, such as short-range sensing and communica-
tion, and limited amount of memory, computational power,
and energy resources. Finally, since a sensor network
surveillance system operates autonomously without human
operators, it requires a tracking algorithm that is capable
of tracking an unknown number of targets. However, the
tracking algorithms that have been developed for sensor
networks, such as [5], [24], do not explicitly consider
the possibility of attacks on sensor networks, and the
effects of faulty sensor observation on the performance
of their tracking algorithm. In this paper, we focus on
the problem of secure tracking in sensor networks, and
develop a reputation system to aid mitigate the effects of
contaminated sensor observations. We take the multi-object
tracking algorithm that was proposed by authors in [5]
as the baseline algorithm and we develop our reputation
system for this tracking algorithm. It is worth mentioning
that different tracking algorithms in sensor networks fol-
low similar procedures to perform object tracking. As a
result, the algorithm in [5] is a representative multi-object
tracking algorithm in sensor networks.
The rest of the paper is organized as follows. In section
2, we describe the problem as well as the threat model. In
section III summarize the basic operations of the tracking
algorithm in sensor networks. In section IV, we describe
the reputation assignment mechanism that we have devel-
oped for the tracking application. In section V, we present
the results of testing our method in simulation.

II. PROBLEM STATEMENT AND THREAT MODEL

In this work, we consider the problem of secure and robust
multi-object tracking in sensor networks. We assume that
the nodes are equipped with cryptographic keys for secure
communication [1].
Our threat model is as follows: the adversary has physically
captured a subset of the nodes, and therefore has access
to the network keys and can participate in communication
with other nodes without being detected. The objective of
the adversary is to use the compromised nodes to inject
faulty data into the network, where the data refers to the
signal strength that each sensor detects(observation of the
sensors). We look at the effect of this type of attack on a
multi-object tracking algorithm that has specifically been
developed for sensor networks [5], [6].
In this paper we consider ’decentralized trust’ as opposed
to ’centralized trust’ [25], meaning there is no global
entity that assigns the reputation values, and all the nodes
contact this central unit to find the reputations of the other
nodes. In contrast, the ’decentralized trust’ refers to the
situation where each node is responsible for determining
the reputations itself. In addition, we deal with ’reactive’
reputation computation [25], meaning the nodes compute

Fig. 1. The red node in the middle of the figure is a supernode which can
communicate with all the regular node within its communication range
(the large circle). When an object passes through the sensor field, the
regular nodes close to the track of the moving object pick up a signal.
The sensing range of the regular nodes is shown with the small circles.

the reputation only when they become leaders, as will be
explained in the later sections.

III. BASIC OPERATION OF MULTI-OBJECT TRACKING

In this paper, we base the design of our reputation system
on the multi-object tracking application. Therefore, we
briefly describe the basic operations of the multi-object
tracking algorithm [5], [6]. We refer the interested reader
to [5], [6] for more details of the tracking algorithm.
The sensor network is comprised of Ns nodes. A few
of these nodes are called supernodes since they have
more communication and computation power. We refer
to the rest of the nodes as regular nodes. These sensors
are distributed throughout the region R ⊂ R2 A single
supernode, denoted by Si, governs a given area Ai ⊂ R
and can communicate with all regular nodes in Ai as well
as the neighboring supernodes. Regular nodes, denoted by
sij can communicate with other regular nodes within a
range of 2Rs ,where Rs is the sensing range of a node,
Figure 1.
When a moving object crosses the sensor field, the sensor
nodes that are close to the object track get triggered, i.e.
each sensor node records a signal strength which is called
the observation of that node. For example, if a node is
equipped with passive infrared sensor and an object gets
close to the node, the object blocks the infrared port, and
as a result the node records a signal strength, or ’senses
the object’.
The observations from different nodes are combined to
form object tracks using a distributed tracking algorithm.
The way the tracking algorithm works is to keep a state
variable for each object it is tracking. The track for the
object is formed by finding the most likely path given the

Fig. 2. Partitioning the observations of the sensors over time into object
tracks. This figure is taken from [5].

observations1. The tracking algorithm developed in [5], [6]
is a hierarchical algorithm that consists of a data fusion
component at the node level(local) and a data association
component at the supernode level(global). This algorithm
is capable of tracking multiple objects without knowing
the number of objects a priori. The number of objects is
estimated along with estimating the tracks.
Our reputation mechanism is specifically designed to deal
with the local data fusion. We describe these two steps
of the tracking algorithm [5], [6] in more detail in the
following subsections. From this point on, we refer to
regular nodes simply as nodes.

A. Data Fusion

The data fusion component takes care of aggregating each
of the observations by nodes in a local area into a single,
fused observation that can be used by the data association
component at the supernode level. We denote the location
of the i-th node by si and the recorded signal strength by
zi. The sensor model used is:

zi =
{ β

1+γ‖si−x‖α + wi, if ‖ si − x ‖≤ Rs

wi, if ‖ si − x ‖> Rs,
(1)

where α, β, and γ are internal parameters specific to
the sensor hardware, and x is the position of the object
with respect to a given Cartesian coordinate system. The
signal strength zi is normalized so that wi has the standard
Gaussian distribution, wi ∼ N(0, 1). If zi is below a given
threshold, namely η, the sensor can not differentiate the
reading from noise, and therefore, the reading is not used
in the data fusion.
Each sensor looks at the incoming signal strength readings
from its neighbors. If the number of incoming readings is
below some threshold, the sensor does not have enough
neighbors to validate its own reading. Thus its reading
will not be incorporated in the data fusion outcome. For
example, in [5], the authors suggest that each node has
at least 4 neighbors. If the sensor has enough incoming
readings, it will compare its reading to that of its neigh-
bors’ to determine if it has the highest signal strength [5].

1This is accomplished using a Bayesian inference framework and
maximizing the posterior probability estimation of the track given the
observations. The general approach to finding the posterior probability
estimation is using Markov Chain Monte Carlo (MCMC).

The sensor that has the highest signal strength, declares
itself the leader and fuses its observation with those of
its neighbors. Given that sensor si0 is the leader, i.e. zi0

is larger than all incoming readings zi1, zi2, ..., zik, the
position of the object is determined as follows:

ŝobj =

∑k
j=1 zijsij∑k

j=1 zij

, (2)

The logic behind this equation is as follows: the higher the
signal strength recorded by a node, the closer the object is
to that node. Therefore, if we take the weighted average
of the position of all the nodes that have sensed a moving
object, we will get an estimate of the position of the object.
The wights used are the signal strength observed by each
node. This value is sent to the governing supernode. Each
supernode collects the estimated object positions from the
leaders in its governing region in order to perform the data
association phase.

B. Data Association

Once the supernode has received the fused observations
from each of the local areas in its region, data association
is performed. The goal is to associate the fused data points
to form a track, as shown in Figure 2. The details of the
data association step are beyond the scope of this paper,
and we refer the reader to [5] for the details.
Each supernode maintains its own set of tracks through
performing the data association process. Thus, a single
object can have multiple tracks maintained by different su-
pernodes. These multiple tracks from different supernodes
are combined at the main supernode, i.e. the base station,
using another iteration of the data association algorithm.
The motivation for our work is the following: if the
compromised nodes inject faulty observations into the
network, the local fused data will become contaminated.
Therefore, when the supernodes use these contaminated
fused data, the tracks they form will be faulty. As a result,
there is a need have a mechanism in place that is able to
filter out the bad data, which will help the track formation
process.

IV. REPUTATION SYSTEM

As authors in [23] have pointed out, the main challenge in
designing a reputation system is to develop the mechanism
by which the reputation is assigned for the particular ap-
plication at hand. Our main contribution in this paper is to
develop a reputation assignment mechanism to specifically
address the data fusion phase of the tracking algorithm.
When a malicious node injects faulty observations into
the network, it can throw off the value of the fused data
calculated through Equation 2. This will affect the accuracy
of the tracks that are formed as well as the number of
the estimated tracks. By assigning reputations to nodes

over time, we are able to weight their observations by
the corresponding reputation. This approach will result in
minimizing the effect of faulty observations on the data
fusion by suppressing the readings from the malicious
nodes.
Our reputation assignment scheme attempts to give reputa-
tions to nodes at a local level and does not attempt to solve
the problem of secure leader selection. As mentioned in III-
A, the node that claims to have the highest signal strength
becomes the leader. In order to assure that a compromised
node does not become the leader, we have to develop
a secure leader election protocol, and have methods in
place at the supernodes to determine the compromised
nodes and filter out their data. Secure leader election is
outside the scope of our work, but it is worth noting that
there are standard distributed coin-flipping algorithms in
the literature, using cryptographic commitments.
In our scheme, every time a node becomes the leader, it
updates the reputation of its own neighbors, and keeps a
table of the reputations values. There is no sharing of the
reputation tables among nodes, i.e. no use of the second
hand information.
At each time step, the nodes which have readings will
receive an instantaneous reputation rating. For each node,
the instantaneous rating is combined with its ratings from
the previous time steps to form an overall reputation for
the node. Observations from a node are then weighted by
this overall reputation when data fusion is done.

A. Reputation Assignment Mechanism

During a single time step,t, the leader of a local
neighborhood assigns reputations to those nodes it
receives readings from. We call this the instantaneous
reputation. To determine what the reputation of each node
is, the leader uses a method similar to RANSAC(Random
Sample Consensus) [18].
RANSAC relies on random sampling selection to search
for the best model to fit a set of points that is known to
contain outliers. In effect, RANSAC can be considered
to seek the best model that maximizes the number of
inlier data. The following is the set of steps taken by
the RANSAC algorithm to find the best model parameters:

1) Randomly select a subset of the data points of size
m and build the initial model from these points

2) Determine the set of data points that are within ε of
the model and call this set M . This set defines the
inliers of the original data set.

3) If |M | is greater than a threshold T, we need to re-
estimate the model using all the points in M , and
the algorithm terminates.

4) If |M | is less than T, select a new subset and repeat
2.

5) After N trials the largest M is selected, and the
model is re-estimated using all the data points in M .

In order to use RANSAC, we need to determine the
number of points in the small subsets, the number of
iterations, and the threshold used to identify a point that
fits well.
Following the RANSAC approach, our scheme chooses
subsets of neighboring nodes at random. These subsets
are then used to find the estimate of the object location
using Equation 4. The size of each subset and the number
of subsets required to get a good estimate can be found
using the following formula [18]:

N =
log 1− p

log 1− (1− ε)s
, (3)

where N is the number of subsets, s is the number
of samples in each subset, and ε is the percentage of
contamination. p is the probability of having at least one
subset free of outlier data. This probability is usually set to
0.99, meaning with probability 0.99 there are no outliers
in the data sample. The justification for the above equation
can be found in [18]. In our problem, we need to ensure
that at least half of the chosen subsets are free of outliers,
so as to get a good overall estimate. This is due to the fact
that the median is used as the best estimate. Therefore, we
need to have (1− ε)s < 0.5, or ε ≤ 0.69

s .
The reason for using the above scheme is to find the best
possible estimate of the position of the object given the
observed data. Since there is no model to fit the data to,
as RANSAC suggests, we need to find a ’best guess’ for
the object location as a reference point in order to later
assign the reputation to each node.
Equation 2 is used on each selected subset to find one value
for the fused observation. We call this value Si

fused to refer
to the fused value for the ith subset. The only difference
in calculating Si

fused is that we use the overall reputation
for each node as the weighting factor in the summation,
i.e.:

ŝobj =

∑k
j=1 zijsij l

t−1
ij∑k

j=1 zij l
t−1
ij

, (4)

where lij is the overall reputation of node j from neighbor
i.
Once the estimated object locations are determined from
all the subsets, the median of those estimates is cal-
culated. Namely we find the median of Si

fused, where
i ∈ {1, ..., N}, and N is calculated from Equation 3. We
use the median as opposed to mean since it has been shown
analytically [20], [21] that the median is a robust estimator
with a breakdown point of 50% in contrast to the mean

which has a breakdown point of zero. 2

The median, m, and the corresponding subset of nodes that
give the value m are assumed truthful. We call this subset
Strust. Strust is used as a starting point for determining
the reputations of the remaining nodes. If multiple subsets
of nodes result in the same value of the median, we choose
the subset of nodes with the lowest variance as the starting
point. There are two counters, (αij , βij), which are up-
dated for the instantaneous reputation. Positive reputation
is kept by αij and negative reputation is kept by βij .
The nodes in Strust receive an instantaneous reputation of
(1, 0) since we assume they are truthful. The leader node,
which will be passing the fused signal to the supernode,
also receives a (1, 0) reputation since the data it has will
be used in tracking calculations.
To determine the reputation of the remaining nodes in the
neighborhood, we pick one node,sij , at a time and add it
to the subset Strust. Then the weighted sum of this node
along with the nodes in Strust is found using 4. We call
the result of this calculation m̂ij . This new estimate, m̂ij ,
is compared with the median m and the reputation for the
node sij is assigned as follows:

(αij , βij) =





(1, 0), if |m̂ij −m| = 0
(T−|m̂ij−m|

T , 0), if |m̂ij −m| < T
(0, 1), if |m̂ij −m| > T,

(5)

where T is a threshold to determine how far m̂ij can be
pulled away from the median m, while node sij still gets
a positive rating. Note that when |m̂ij−m| < T , the node
does not get a positive rating of 1. Instead it gets a fraction
proportional to how close it is to the median. The reason
for this assignment is that a node that has a closer value to
the median should be rated higher than a node that gives
an estimate further away from the median. The threshold
value T has to be adjusted so that it does not assign low
rating to nodes that have a noisy observation within the
reasonable bounds. At the same time, it can not be too large
to allow the compromised nodes to inject faulty readings.
The nodes whose estimate m̂ij falls outside the threshold
get a negative instantaneous reputation.

B. Reputation Fusion

The instantaneous reputations for the nodes, calculated in
the previous section, are aggregated over time to calculate
cumulative positive and negative reputation ratings which
we represent by (rt

ij , s
t
ij). Old reputation values may

not be as relevant for the cumulative ratings, as a node
may change behavior over time. Thus, to determine the
cumulative ratings, we use a discounting factor, λ, that

2The breakdown point of an estimator refers to how resistent the
estimator is to the percentage of outliers and contaminated samples. The
higher this point is, the more robust the estimator will be.

guarantees the old reputations will be gradually forgotten.
The ratings are determined by the following equation:

rt
ij = λrt−1

ij + αij

st
ij = λst−1

ij + βij ,
(6)

Using the cumulative ratings the overall reputation, lij , of
a node at time t is calculated. The overall reputation varies
in the range [0, 1] where 0 represents the most untruthful
and 1 represents the most truthful.
In order to determine where a node’s overall reputation
falls on this scale, we use the Beta distribution. We
consider the sequence of observations as a sample from a
binomial distribution, i.e. a sequence of independent coin
tosses, with a bias parameter P. To make the statement
clear, the head corresponds to an honest node and the
tail corresponds to a compromised node, and the bias is
the overall rating of the node. We can then estimate the
rating of a node using Bayesian parameter estimation of
the binomial distribution. If we use a Beta distribution
as the prior distribution, the formula for calculating the
posterior parameter estimate actually coincides with the
maximum likelihood estimate. The fact that the posterior
probability of binary events is most accurately represented
by the Beta distribution, has been shown mathematically
in [2]. The Beta distribution is a two parameter distribution
whose parameters are denoted by a and b. The parameter
a measures the number of successes (rt

ij) and b measures
the number of failures (st

ij). The bias estimate of the
underlying binomial distribution, P, is given by the mode
(average) of the Beta distribution, i.e. P = a−1

a+b−2 .
The Beta distribution is well suited for our purposes since
at each time step a node is either truthful or is lying, which
is a binary event. The overall reputation is modeled as the
expected value of the Beta distribution [2]:

ltij = rt
ij−st

ij

rt
ij+st

ij+2
, (7)

This give us a reputation ranging from [-1,1]; therefore,
we need to rescale this interval to the interval [0, 1].
This overall reputation is used in the next time step as
a weighting factor in (4) for calculating the median.
Two comments are in order regarding our reputation sys-
tem. We are not considering second hand information,
i.e. the information coming from the neighbors, since that
will give the compromised nodes a window of opportunity
to attack and degrade the reputation of their neighbors.
The use of second hand information is useful if each
node has a scheme for filtering out badmouthing. This in
turn will add to the overhead incurred by the reputation
system. Therefore, we chose not to add the second hand
information in the reputation updating formula. Secondly,
the reputations are stored locally at each leader node.

Every time a node becomes the leader, it will update its
reputation table. This scheme avoids having to broadcast
the reputation tables of each node to its neighbors. We
speculate that the local reputations will converge to the
true reputation values over time. This is due to the fact
that over time almost all the nodes will become leaders.
The validation of this speculation is the focus of our future
work.

V. SIMULATION RESULTS

To provide empirical evidence on the performance of our
reputation system, we performed a number of simulations.
Again, in this work we do not consider secure leader
election. Therefore, in the simulations we do not allow
for the compromised nodes to claim to be leaders.
In our settings, the surveillance region is a square grid of
size 50mx50m. There is one node placed at each corner
of each square. Therefore, there is a total of 2500 nodes
in the simulation grid. The number of objects we want to
track is ni. The sensing range of the sensors,Rs is set to
1.5m. This sensing range has been shown to be optimal
in terms of low estimation errors for different speeds of
the moving targets [5]. We are simulating real sensors
in our experiments, therefore, the sensor readings are
noisy, and the noise is represented by a Gaussian standard
distribution with mean of zero and variance of one.

The metric used to quantify the performance of the multi-
object tracking algorithm is the average error in the number
of tracks estimated by the algorithm compared to the actual
number of tracks, εK where [5]:

εK =
1
W

W∑
w=1

| Kw − K̃w |

where K̃w is the actual number of tracks at time w, Kw

is the number of tracks the algorithm estimated, and W is
the total time of simulation.
In our simulations we look at multiple scenarios. In the
first scenario we keep the number of tracks,ni, constant
and change the number of compromised nodes from 250
to 1000. The results are shown in Figure 4 for differing
values of ni. In our second scenario, we fix the number of
compromised nodes and vary the sensing radius,Rs, from
1.5m to 3m as shown in Figure 5. In these scenarios we
use a threshold value, T = 0.4, and s = 3, where s is the
number of nodes in each subset.
We can see from Figure 3 that the reputation framework
gets rid of many of the spurious estimated tracks and
decreases the size of the ones that remain. In addition, the
estimated tracks associate with the ground truth are more
accurate and more closely follow the actual movement of
the object.
In our simulations, we did not allow for the compromised

nodes to become leaders. As we discussed in the previous
section, filtering out the compromised leaders requires
either a secure leader election process, or a centralized
scheme at the supernodes to keep reputations for the leader
nodes.

VI. CONCLUSION

In this paper we described a local scheme that uses a
best-effort approach to filter out the malicious nodes when
computing the local estimates of an object’s location.
This approach depends on collecting readings from a
given area and using the redundancy in the data to verify
the trustworthiness of a node’s observation. We use a
RANSAC-like scheme along with the Beta distribution to
design a mechanism for assigning reputations to the nodes
at a local level. The reputation gets updated every time a
node sends in a new observation. The simulation results
indicate that this reputation mechanism is successful in
partially filtering out the bad readings. As part of the
future work, we plan to extend the reputation system to
include a global scheme, i.e. at the supernode level, in
order to filter out the compromised leaders.

REFERENCES

[1] C. Karlof, N. Sastry, and D. Wagner, TinySec: A Link Layer Security
Architecture for Wireless Sensor Networks,Proceedings of the Second
ACM Conference on Embedded Networked Sensor Systems (SenSys
2004), pages 162-175, November 2004.

[2] A. Josang and R. Ismail, The Beta Reputation System,Bled Electronic
Commerce Conference,June 2002.

[3] D. Liu, P. Ning, and W. Du,Attack-Resistant Location Estimation in
Sensor Networks,International Symposium on Information Process-
ing in Sensor Networks,April 2005,Los Angeles, CA.

[4] M. Fan, Y. Tan, and A.B. Whinston,Evaluation and Design of
Online Cooperative Feedback Mechanisms for Reputation Man-
agement,IEEE Transactions on Knowledge and Data Engineer-
ing,February 2005, vol. 17,no. 2,pages 244-254

[5] S. Oh, L. Schenato, and S.Sastry,A Hierarchical Multiple-Target
Tracking Algorithm for Sensor Networks,IEEE International Confer-
ence on Robotics and Automation, April 2005,Barcelona, Spain.

[6] S. Oh, S. Russell, and S. Sastry,Markov Chain Monte Carlo Data
Association for General Multiple-Target Tracking Problems,IEEE In-
ternational Conference on Decision and Control,December 2004,Par-
adise Island, Bahamas.

[7] P. Yau and C.J. Mitchell, Reputation Methods for Routing Security,
Symposium on Trends in Communication, October 2003

[8] J. Mundinger and Jean-Yves Le Boudec,Analysis of a Reputation
System for Mobile Ad-Hoc Networks with Liars,International Sympo-
sium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless
Networks,April 2005.

[9] S. Buchegger and J. Le Boudec,Self-Policing Mobile Ad Hoc
Neworks by Reputation Systems,IEEE Communications Maga-
zine,July 2005,pages 101-107

[10] J. Mundinger and J. Le Boudec, Analysis of a Robust Repu-
tation System for Self-Organized Networks, University of Cam-
bridge,Statistical Laboratory Research Report,January 2004.

[11] Z. Li, W. Trappe, Y. Zhang, and B. Nath, Robust Statistical Methods
for Securing Wireless Localization in Sensor Networks, International
Symposium on Information Processing in Sensor Networks, April
2005.

[12] P. Michiardi and R. Molva, Core: A collaborative Reputation Mech-
anism to Enforce Node Cooperation in Mobile Ad Hoc Networks,
Conference on Communications and Multimedia Security,September
2002,

[13] L. Mui, M. Mohtashemi, and A. Halberstadt,Notions of Reputation
in Multi-Agent Systems: A Review, International Joint Conference on
Autonomous Agents and Multiagent Systems,2002.

[14] P. Resnick and R. Zeckhauser, Trust Among Strangers in In-
ternet Transactions: Empirical Anlysis of Ebay’s Reputation Sys-
tem,Advances in Applied Microeconomics: The Economics of the
Internet and E-Commerce,vol. 11,pages 127-157,November 2002.

[15] P. Resnick, R. Zeckhauser, E. Friedman, and K. Kuwabara, Reputa-
tion Systems,Communications of the ACM,vol. 43(12),pages 45-48,
2000.

[16] P. Yau and C.J. Mitchell,Security Vulnerabilities in Ad Hoc Net-
works, International Symposium on Communication Theory and
Applications,July 2003.

[17] M. Carbone, M. Nielsen, and V. Sassone, A Formal Model for Trust
in Dynamic Networks, IEEE International Conference on Software
Engineering and Fromal Methods,2003.

[18] H.J. Kuxhner and G.G. Yin, Stochastic Approximation and Re-
cursive Algorithms and Applications, Springer-Verlag,Second Edi-
tion,2003.

[19] M.A. Fischler and R.C. Bolles, Random Sample Consensus: A
Paradigm for Model Fitting with Applications to Image Analysis and
Automated Cartography, Comm. of the ACM,vol. 24, pages 381-
395,1981.

[20] D. Wagner, Resilient Aggregation in Sensor Networks, ACM Work-
shop on Security of Ad Hoc and Sensor Networks,October,2004.

[21] P. Rousseeuw and A. Leroy,Robust Regression and Outlier Detec-
tion,John Wiley and Sons, Inc.,1987.

[22] S. Buchegger and J. Le Boudec, Performance Analysis of the
CONFIDANT Protocol: Cooperation of Nodes - Fairness in Dynamic
Ad-Hoc Networks, IEEE/ACM Symposium on Mobile Ad Hoc
Networking and Computing,June 2002.

[23] S. Ganeriwal, M. B. Srivastava, Reputation-based framework for
high integrity sensor networks, ACM Security for Ad-hoc and Sensor
Networks,2004.

[24] Chu, M.; Mitter, S. K.; Zhao, F. Distributed multiple target tracking
and data association in ad hoc sensor networks. 6th International
Conference on Information Fusion; 2003 July 08-11; Cairns; Aus-
tralia.

[25] George Theodorakopoulos and John S. Baras. On trust models
and trust evaluation metrics for ad hoc networks, IEEE Journal on
Selected Areas in Communications, Volume 24, Issue 2, 318-328,
February 2006.

0 5 10 15 20 25 30 35 40
0

5

10

15

20

25

30

35

Estimated Track

Ground Truth

(a) Tracking without Reputation
0 5 10 15 20 25 30 35 40

0

5

10

15

20

25

30

35

Estimated Track

Ground Truth

(b) Tracking with Reputation

Fig. 3. The estimated object track compared to ground truth. This shows a subset of the 50 x 50 node grid of sensors where the ground truth is shown
in red and the estimated track is shown in blue.

0 200 400 600 800 1000
0

5

10

15

Compromised Nodes

E
s
ti
m

a
ti
o
n
 E

rr
o
r

with reputation
without reputation

(a) 3 Objects

0 200 400 600 800 1000
0

2

4

6

8

10

12

14

Compromised Nodes

E
s
ti
m

a
ti
o
n
 E

rr
o
r

with Reputation
without Reputation

(b) 6 Objects

0 200 400 600 800 1000
2

4

6

8

10

12

14

16

Compromised Nodes

E
s
ti
m

a
ti
o
n
 E

rr
o
r

Reputation
No Reputation

(c) 15 Objects

Fig. 4. Estimation error εK

1.5 2 2.5 3
0

2

4

6

8

10

12

14

Sensing Radius (m)

E
s
ti
m

a
ti
o
n
 E

rr
o
r

Reputation
No Reputation

(a) 250 Compromised Nodes

1.5 2 2.5 3
2

4

6

8

10

12

14

16

Sensing Radius (m)

E
s
ti
m

a
ti
o
n
 E

rr
o
r

Reputation
No Reputation

(b) 500 Compromised Nodes

1.5 2 2.5 3
0

2

4

6

8

10

12

14

Sensing Radius (m)

E
s
ti
m

a
ti
o
n
 E

rr
o
r

750 compromised nodes

Reputation
No Reputation

(c) 750 Compromised Nodes

Fig. 5. Estimation error εK

