
Is Truly Real-Time
Computing Becoming
Unachievable?
Edward A. Lee
Robert S. Pepper Distinguished Professor and

Chair of EECS, UC Berkeley

Keynote Talk

Real-Time and Embedded Technology and Applications Symposium (RTAS)

Bellevue, WA
April 3 -

April 6, 2007

Lee, Berkeley 2

The Vision: Reliable and Evolvable
Networked Time-Sensitive Systems,
Integrated with Physical Processes
Orchestrated networked resources built with
sound design principles on suitable abstractions.

Lee, Berkeley 3

The Vision: Reliable and Evolvable
Networked Time-Sensitive Systems,
Integrated with Physical Processes
Orchestrated networked resources built with
sound design principles

on suitable abstractions.

Lee, Berkeley 4

A Fact About Programs

Correct execution of a program in C, C#, Java,
Haskell, etc. has nothing to do with how long it
takes to do anything. All our computation and
networking abstractions are built on this premise.

Timing of programs is not repeatable,
except at very coarse granularity.

Programmers have to step outside

the
programming abstractions to specify
timing behavior.

Lee, Berkeley 5

Techniques that Exploit this Fact

Programming languages
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)
…

Lee, Berkeley 6

A Story

In “fly by wire” aircraft, certification of the
software is extremely expensive. Regrettably, it
is not the software that is certified but the entire
system. If a manufacturer expects to produce a
plane for 50 years, it needs a 50-year stockpile
of fly-by-wire components that are all made from
the same mask set on the same production line.
Even a slight change or “improvement” might
affect timing and require the software to be re-
certified.

Lee, Berkeley 7

Abstraction Layers
The purpose for an
abstraction is to
hide details of the
implementation
below and provide a
platform for design
from above.

Lee, Berkeley 8

Abstraction Layers
Every abstraction
layer has failed for
real-time programs.

The design is

the
implementation.

Lee, Berkeley 9

Abstraction Layers
How about “raising
the level of
abstraction” to solve
these problems?

Lee, Berkeley 10

But these higher abstractions rely on an
increasingly problematic fiction: WCET

A war story:

Ferdinand et al. determine the WCET of astonishingly simple
avionics code from Airbus running on a Motorola ColdFire 5307,
a pipelined CPU with a unified code and data cache. Despite
the software consisting of a fixed set of non-interacting tasks
containing only simple control structures, their solution required
detailed modeling of the seven-stage pipeline and its precise
interaction with the cache, generating a large integer linear
programming problem. The technique successfully computes
WCET, but only with many caveats that are increasingly rare in
software.

Fundamentally, the ISA of the processor has failed to provide
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination for a
real-life processor.” EMSOFT 2001.

Lee, Berkeley 11

The Key Problem

Electronics technology delivers highly and
precise timing…

… and the overlaying software abstractions
discard it.

Lee, Berkeley 12

Real-Time and Concurrency are
Integrally Intertwined

Threads and objects dominate concurrent software.

Threads: Sequential computation with shared memory.
Objects: Collections of state variables with procedures
for observing and manipulating that state.

Even distributed objects create the illusion of shared
memory through proxies.

The components (objects) are (typically) not active.
Threads weave through objects in unstructured ways.
This is the source of many software problems.

Lee, Berkeley 13

My Claim

Nontrivial software written with threads,
and locks are incomprehensible to
humans.

Lee, Berkeley 14

Is Concurrency Hard?

It is not
concurrency that
is hard…

Lee, Berkeley 15

…It is Threads that are Hard!

Threads are sequential processes that
share memory. From the perspective of
any thread, the entire state of the universe
can change between any two atomic
actions (itself an ill-defined concept).

Imagine if the physical world did that…

Lee, Berkeley 16

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on
execution order (e.g., mutexes) and limiting
shared data accesses (e.g., OO design).

Lee, Berkeley 17

We Can Incrementally Improve Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, …)
Transactions (Databases, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

But is it enough to refine a mechanism
with flawed foundations?

Lee, Berkeley 18

Do Threads Provide a Sound Foundation?

If the foundation is
bad, then we either
tolerate brittle
designs

that are

difficult to make
work, or we have to
rebuild from the
foundations.

Note that this whole enterprise is
held up by threads

Lee, Berkeley 19

What are Brittle Designs?

Small changes have big consequences…

Patrick Lardieri, Lockheed Martin ATL, about a vehicle
management system in the JSF program:

“Changing the instruction memory layout of the Flight
Control Systems Control Law process to optimize ‘Built in
Test’ processing led to an unexpected performance change
- System went from meeting real-time requirements to
missing most deadlines due to a change that was expected
to have no impact on system performance.”

National Workshop on High-Confidence Software
Platforms for Cyber-Physical Systems

(HCSP-CPS)

Arlington, VA November 30 –December 1, 2006

Lee, Berkeley 20

The Current State of Affairs

We build real-time
software on abstractions
where time is irrelevant
using concurrency
models that are
incomprehensible.

Just think what we could do with the
right abstractions!

Lee, Berkeley 21

My Proposed Solution

Reintroduce time into the core abstractions:

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Lee, Berkeley 22

Bottom Up: Make Timing Repeatable

We need a major historical event like this one:

In 1980, Patterson and Ditzel

did not

invent
reduced instruction set computers (RISC
machines).

See D. A. Patterson and D. R. Ditzel. “The case for the reduced
instruction set computer.” ACM SIGARCH Computer
Architecture News, 8(6):25–33, Oct. 1980.

Lee, Berkeley 23

It is Time for Another
Major Historical Event

In 2007, Edwards and Lee did not

invent
precision-timed computers (PRET machines).

See S. Edwards and E. A. Lee, "The Case for the Precision
Timed (PRET) Machine," to appear in the Wild and Crazy
Ideas

Track of the Design Automation Conference

(DAC), June
2007.

see: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-149.html

Lee, Berkeley 24

Can Hardware Deliver on
Timed Semantics?

PRET (Precision Timing) Machines
Make temporal behavior as important as logical function.

Timing precision is easy to achieve if you are willing to
forgo performance. Let’s not do that. Challenges:

Memory hierarchy (scratchpads?)
Deep pipelines (interleaving?)
ISAs with timing (deadline instructions?)
Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?)
Predictable concurrency (synchronous languages?)
Composable timed components (actor-oriented?)
Precision networks (TTA? Time synchronization?)
Dynamic adaptibility (admission control?)

Lee, Berkeley 25

Making PRET Machines
Practical

Start with hardware designs on FPGAs
Use soft cores
Add precision-timing instructions
Scale up from there

e.g. Stephen Edwards (Columbia) has achieved software designs with
~40ns timing precision on simple soft cores. Source code is smaller and
simpler than VHDL specification of comparable hardware.

Ramp blue experimental platform,
from the RAMP project.

BEE 2, FPGA
system, from BWRC

Lee, Berkeley 26

Our Solution

Reintroduce time into the core abstractions:

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.

Lee, Berkeley 27

New Component Technology is more
Palatable than New Languages

It leverages:
Language familiarity
Component libraries
Legacy subsystems
Design tools
The simplicity of sequential reasoning

It allows for innovation in
Distributed time-sensitive system design
Hybrid systems design
Service-oriented architectures

Software is intrinsically concurrent
Better use of multicore machines
Better use of networked systems
Better potential for robust design

Lee, Berkeley 28

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through
an object is

evolving data

class name

data

methods

call return

What flows through
an object is

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen

Lee, Berkeley 29

The First (?) Actor-Oriented Programming Language
The On-Line Graphical Specification of Computer Procedures

W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object-
oriented framework (Sketchpad, created by his brother,
Ivan Sutherland) to create the first actor-oriented
programming language (which had a visual syntax).

Lee, Berkeley 30

Examples of Actor-Oriented Systems

CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Most of these are
domain specific.

Many of these
have visual
syntaxes.

The semantics of these differ considerably,
with significantly different approaches to concurrency.

Lee, Berkeley 31

Challenges

The technology is immature:

Commercial actor-oriented systems are domain-specific
Development tools are limited
Little language support in C++, C#, Java
Modularity mechanisms are underdeveloped
Type systems are primitive
Compilers (called “code generators”) are underdeveloped
Formal methods are underdeveloped
Libraries are underdeveloped

We are addressing these problems.

Lee, Berkeley 32

Enter Ptolemy II: Our Laboratory for Experiments
with Models of Computation

Director from a library
defines component
interaction semantics

Large, behaviorally-

 polymorphic component
library.

Visual editor supporting an abstract syntax

Type system for
transported data

Concurrency management supporting
dynamic model structure.

Lee, Berkeley 33

Ptolemy II: Functionality of Components is Given in C or
Java (which can wrap C, C++, Perl, Python, MATLAB,
Web services, Grid services, …)

Lee, Berkeley 34

Example: Discrete Event Models
DE Director implements
timed semantics using an
event queue

Event source

Time line

Reactive actors

Signal
Components send time-
stamped events to other
components, and components
react in chronological order.

Lee, Berkeley 35

Using DE Semantics in Distributed Real-
Time Systems

DE is usually a simulation technology.
Distributing DE is done for acceleration.
Hardware design languages (e.g. VHDL) use DE where
time stamps are literally interpreted as real time.

We are using DE for distributed real-time software,
binding time stamps to real time only where necessary.
PTIDES: Programming Temporally Integrated
Distributed Embedded Systems
(work done with Yang Zhao and Jie Liu).

Lee, Berkeley 36

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Consider a scenario:

Lee, Berkeley 37

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Assumption: Clocks on the distributed platforms are
synchronized to some known precision (e.g. NTP, IEEE 1588)

Lee, Berkeley 38

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Bind model time to real time at the sensors:
Output time stamps

are ≥

real time

Output time stamps
are ≥

real time

Lee, Berkeley 39

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Bind model time to real time at the actuators:
Input time stamps are

≤

real time

Input time stamps are
≤

real time

Lee, Berkeley 40

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Schedulability

is not violating these timing inequalities.
Input time stamps are

≤

real time

Input time stamps are
≤

real time

Output time stamps
are ≥

real time

Output time stamps
are ≥

real time

Lee, Berkeley 41

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Conservative distributed DE (Chandy & Misra) would
block actuation unnecessarily.

Lee, Berkeley 42

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Optimistic distributed DE (Jefferson) would require
being able to roll back the physical world.

Lee, Berkeley 43

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

PTIDES uses static causality analysis to determine
when events can be safely processed.

Assume bounded
network delay d

Assume bounded
computation time c1

Assume bounded
computation time c3

Assume bounded
computation time c2

Assume bounded
clock error

Assume bounded
clock error e

An event here with
time stamp t can be
safely merged when
real time exceeds
t + d + e
+ max(c1, c2) +c3

Assume bounded
clock error e

Lee, Berkeley 44

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

The execution model prevents remote processes from
blocking local ones, and does not require backtracking.

An event here with
time stamp t can be
safely merged when
real time exceeds
t + d + e
+ max(c1, c2) +c3

Lee, Berkeley 45

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

However, this program is not schedulable!
The resulting event
here with time stamp t
cannot be presented to
the actuator until real
time exceeds t + d + e
+ max(c1, c2) +c3

Lee, Berkeley 46

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

Remote events also trigger real-time violations.
Schedulability analysis tells us the program is flawed.

Event with time stamp t
available at real time ≥

t

Event with time stamp
t cannot possibly be
available here before
real time t !

Event with time stamp t
available at real time ≥

t

Event with time stamp t
available at real time ≥

t

Lee, Berkeley 47

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

The program can be fixed with actors that increment
the time stamps (model-time delays).

Lee, Berkeley 48

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

This relaxes scheduling constraints...

An event here with
time stamp t can be
safely merged when
real time exceeds
t + d + e − d2

+ max(c1, c2) +c3

Lee, Berkeley 49

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

… and we can derive conditions for schedulability…

The model is schedulable if:
1)

d + e − d2

+ c1 + c3 < 0
2)

d + e − d2

+ c2 + c3 < 0
3)

…

Lee, Berkeley 50

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

… and being explicit about time delays means that we
can analyze control system dynamics…

The system is stable if …

Feedback through the physical world

Lee, Berkeley 51

PTIDES: Programming Temporally
Integrated Distributed Embedded Systems
with Yang Zhao and Jie

Liu

See “A Programming Model for Time-Synchronized Distributed
Real-Time Systems”, Yang Zhao, Jie

Liu, and Edward A. Lee,

RTAS ’07, to be presented Friday.

Lee, Berkeley 52

Is Truly Real-Time Computing
Becoming Unachievable?

Yes!
But the problem is solvable:

Actor-oriented component architectures implemented in
coordination languages

that complement rather than

replace existing languages (e.g. PTIDES).
and

PRET machines that deliver repeatable timing with
efficient pipelining, memory hierarchy, and networking

See the Ptolemy Project for ongoing research addressing these
problems: http://ptolemy.org

	Is Truly Real-Time Computing Becoming Unachievable?
	The Vision: Reliable and Evolvable Networked Time-Sensitive Systems, Integrated with Physical Processes
	The Vision: Reliable and Evolvable Networked Time-Sensitive Systems, Integrated with Physical Processes
	A Fact About Programs
	Techniques that Exploit this Fact
	A Story
	Abstraction Layers
	Abstraction Layers
	Abstraction Layers
	But these higher abstractions rely on an increasingly problematic fiction: WCET
	The Key Problem
	Real-Time and Concurrency are �Integrally Intertwined
	My Claim
	Is Concurrency Hard?
	…It is Threads that are Hard!
	Succinct Problem Statement
	We Can Incrementally Improve Threads
	Do Threads Provide a Sound Foundation?
	What are Brittle Designs?
	The Current State of Affairs
	My Proposed Solution
	Bottom Up: Make Timing Repeatable
	It is Time for Another �Major Historical Event
	Can Hardware Deliver on �Timed Semantics?
	Making PRET Machines�Practical
	Our Solution
	New Component Technology is more Palatable than New Languages
	Object Oriented vs. Actor Oriented
	The First (?) Actor-Oriented Programming Language�The On-Line Graphical Specification of Computer Procedures�W. R. Sutherland, Ph.D. Thesis, MIT, 1966
	Examples of Actor-Oriented Systems
	Challenges
	Enter Ptolemy II: Our Laboratory for Experiments with Models of Computation
	Ptolemy II: Functionality of Components is Given in C or Java (which can wrap C, C++, Perl, Python, MATLAB, Web services, Grid services, …)
	Example: Discrete Event Models
	Using DE Semantics in Distributed Real-Time Systems
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	PTIDES: Programming Temporally Integrated Distributed Embedded Systems�with Yang Zhao and Jie Liu
	Is Truly Real-Time Computing �Becoming Unachievable?

