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The Vision: Reliable and Evolvable 
Networked Time-Sensitive Systems, 
Integrated with Physical Processes
Orchestrated networked resources built with 
sound design principles on suitable abstractions.  
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A Fact About Programs

Correct execution of a program in C, C#, Java, 
Haskell, etc. has nothing to do with how long it 
takes to do anything. All our computation and 
networking abstractions are built on this premise.

Timing of programs is not repeatable, 
except at very coarse granularity. 

Programmers have to step outside
 

the 
programming abstractions to specify 
timing behavior.
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Techniques that Exploit this Fact

Programming languages
Virtual memory
Caches
Dynamic dispatch
Speculative execution
Power management (voltage scaling)
Memory management (garbage collection)
Just-in-time (JIT) compilation
Multitasking (threads and processes)
Component technologies (OO design)
Networking (TCP)
…
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A Story

In “fly by wire” aircraft, certification of the 
software is extremely expensive. Regrettably, it 
is not the software that is certified but the entire 
system. If a manufacturer expects to produce a 
plane for 50 years, it needs a 50-year stockpile 
of fly-by-wire components that are all made from 
the same mask set on the same production line. 
Even a slight change or “improvement” might 
affect timing and require the software to be re- 
certified.
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Abstraction Layers
The purpose for an 
abstraction is to 
hide details of the 
implementation 
below and provide a 
platform for design 
from above.
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Abstraction Layers
Every abstraction 
layer has failed for 
real-time programs.

The design is
 

the 
implementation.
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Abstraction Layers
How about “raising 
the level of 
abstraction” to solve 
these problems?
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But these higher abstractions rely on an 
increasingly problematic fiction: WCET

A war story:

Ferdinand et al. determine the WCET of astonishingly simple 
avionics code from Airbus running on a Motorola ColdFire 5307, 
a pipelined CPU with a unified code and data cache. Despite 
the software consisting of a fixed set of non-interacting tasks 
containing only simple control structures, their solution required 
detailed modeling of the seven-stage pipeline and its precise 
interaction with the cache, generating a large integer linear 
programming problem. The technique successfully computes 
WCET, but only with many caveats that are increasingly rare in 
software. 

Fundamentally, the ISA of the processor has failed to provide 
an adequate abstraction.

C. Ferdinand et al., “Reliable and precise WCET determination for a
real-life processor.” EMSOFT 2001.
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The Key Problem

Electronics technology delivers highly and 
precise timing…

… and the overlaying software abstractions 
discard it.
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Real-Time and Concurrency are 
Integrally Intertwined

Threads and objects dominate concurrent software.

Threads: Sequential computation with shared memory.
Objects: Collections of state variables with procedures 
for observing and manipulating that state.

Even distributed objects create the illusion of shared 
memory through proxies.

The components (objects) are (typically) not active.
Threads weave through objects in unstructured ways. 
This is the source of many software problems.
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My Claim

Nontrivial software written with threads, 
and locks are incomprehensible to 
humans.
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Is Concurrency Hard?

It is not 
concurrency that 
is hard…
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…It is Threads that are Hard!

Threads are sequential processes that 
share memory. From the perspective of 
any thread, the entire state of the universe 
can change between any two atomic 
actions (itself an ill-defined concept).

Imagine if the physical world did that…
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Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the 
nondeterminism by imposing constraints on 
execution order (e.g., mutexes) and limiting 
shared data accesses (e.g., OO design).
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We Can Incrementally Improve Threads

Object Oriented programming
Coding rules (Acquire locks in the same order…)
Libraries (Stapl, Java 5.0, …)
Patterns (MapReduce, …)
Transactions (Databases, …)
Formal verification (Blast, thread checkers, …)
Enhanced languages (Split-C, Cilk, Guava, …)
Enhanced mechanisms (Promises, futures, …)

But is it enough to refine a mechanism 
with flawed foundations?
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Do Threads Provide a Sound Foundation?

If the foundation is 
bad, then we either 
tolerate brittle 
designs

 
that are 

difficult to make 
work, or we have to 
rebuild from the 
foundations.

Note that this whole enterprise is 
held up by threads
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What are Brittle Designs?

Small changes have big consequences…

Patrick Lardieri, Lockheed Martin ATL, about a vehicle 
management system in the JSF program:

“Changing the instruction memory layout of the Flight 
Control Systems Control Law process to optimize ‘Built in 
Test’ processing led to an unexpected performance change 
- System went from meeting real-time requirements to 
missing most deadlines due to a change that was expected 
to have no impact on system performance.”

National Workshop on High-Confidence Software 
Platforms for Cyber-Physical Systems

 
(HCSP-CPS) 

Arlington, VA November 30 –December 1, 2006
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The Current State of Affairs

We build real-time 
software on abstractions 
where time is irrelevant 
using concurrency 
models that are 
incomprehensible.

Just think what we could do with the 
right abstractions!
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My Proposed Solution

Reintroduce time into the core abstractions:

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.
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Bottom Up: Make Timing Repeatable

We need a major historical event like this one:

In 1980, Patterson and Ditzel
 

did not
 

invent 
reduced instruction set computers (RISC 
machines).

See D. A. Patterson and D. R. Ditzel. “The case for the reduced 
instruction set computer.” ACM SIGARCH Computer 
Architecture News, 8(6):25–33, Oct. 1980.
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It is Time for Another 
Major Historical Event

In 2007, Edwards and Lee did not
 

invent 
precision-timed computers (PRET machines).

See S. Edwards and E. A. Lee, "The Case for the Precision 
Timed (PRET) Machine," to appear in the Wild and Crazy 
Ideas

 

Track of the Design Automation Conference

 

(DAC), June 
2007.

see: http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-149.html
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Can Hardware Deliver on 
Timed Semantics?

PRET (Precision Timing) Machines
Make temporal behavior as important as logical function. 

Timing precision is easy to achieve if you are willing to 
forgo performance. Let’s not do that. Challenges:

Memory hierarchy (scratchpads?)
Deep pipelines (interleaving?)
ISAs with timing (deadline instructions?)
Predictable memory management (Metronome?)
Languages with timing (discrete events? Giotto?)
Predictable concurrency (synchronous languages?)
Composable timed components (actor-oriented?)
Precision networks (TTA? Time synchronization?)
Dynamic adaptibility (admission control?)
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Making PRET Machines 
Practical

Start with hardware designs on FPGAs
Use soft cores
Add precision-timing instructions
Scale up from there

e.g. Stephen Edwards (Columbia) has achieved software designs with 
~40ns timing precision on simple soft cores. Source code is smaller and 
simpler than VHDL specification of comparable hardware. 

Ramp blue experimental platform, 
from the RAMP project.

BEE 2, FPGA 
system, from BWRC
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Our Solution

Reintroduce time into the core abstractions:

Bottom up: Make timing repeatable.

Top down: Timed, concurrent components.
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New Component Technology is more 
Palatable than New Languages

It leverages:
Language familiarity
Component libraries
Legacy subsystems
Design tools
The simplicity of sequential reasoning

It allows for innovation in
Distributed time-sensitive system design
Hybrid systems design
Service-oriented architectures

Software is intrinsically concurrent
Better use of multicore machines
Better use of networked systems
Better potential for robust design



Lee, Berkeley 28

Object Oriented vs. Actor Oriented

The alternative: Actor oriented:

actor name

data (state)

ports

Input data

parameters

Output data

What flows through 
an object is 

evolving data

class name

data

methods

call return

What flows through 
an object is 

sequential control

The established: Object-oriented:

Things happen to objects

Actors make things happen
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The First (?) Actor-Oriented Programming Language 
The On-Line Graphical Specification of Computer Procedures

 
W. R. Sutherland, Ph.D. Thesis, MIT, 1966

MIT Lincoln Labs TX-2 Computer Bert Sutherland with a light pen

Partially constructed actor-oriented model with 
a class definition (top) and instance (below).

Bert Sutherland used the first acknowledged object- 
oriented framework (Sketchpad, created by his brother, 
Ivan Sutherland) to create the first actor-oriented 
programming language (which had a visual syntax).
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Examples of Actor-Oriented Systems

CORBA event service (distributed push-pull)
ROOM and UML-2 (dataflow, Rational, IBM)
VHDL, Verilog (discrete events, Cadence, Synopsys, ...)
LabVIEW (structured dataflow, National Instruments)
Modelica (continuous-time, constraint-based, Linkoping)
OPNET (discrete events, Opnet Technologies)
SDL (process networks)
Occam (rendezvous)
Simulink (Continuous-time, The MathWorks)
SPW (synchronous dataflow, Cadence, CoWare)
…

Most of these are 
domain specific.

Many of these 
have visual 
syntaxes.

The semantics of these differ considerably, 
with significantly different approaches to concurrency.
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Challenges

The technology is immature:

Commercial actor-oriented systems are domain-specific
Development tools are limited
Little language support in C++, C#, Java
Modularity mechanisms are underdeveloped
Type systems are primitive
Compilers (called “code generators”) are underdeveloped
Formal methods are underdeveloped
Libraries are underdeveloped

We are addressing these problems.
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Enter Ptolemy II: Our Laboratory for Experiments 
with Models of Computation

Director from a library 
defines component 
interaction semantics

Large, behaviorally-

 polymorphic component 
library.

Visual editor supporting an abstract syntax

Type system for 
transported data

Concurrency management supporting 
dynamic model structure.
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Ptolemy II: Functionality of Components is Given in C or 
Java (which can wrap C, C++, Perl, Python, MATLAB, 
Web services, Grid services, …)
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Example: Discrete Event Models
DE Director implements 
timed semantics using an 
event queue

Event source

Time line

Reactive actors

Signal
Components send time- 
stamped events to other 
components, and components 
react in chronological order.
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Using DE Semantics in Distributed Real- 
Time Systems

DE is usually a simulation technology.
Distributing DE is done for acceleration.
Hardware design languages (e.g. VHDL) use DE where 
time stamps are literally interpreted as real time.

We are using DE for distributed real-time software, 
binding time stamps to real time only where necessary.
PTIDES: Programming Temporally Integrated 
Distributed Embedded Systems
(work done with Yang Zhao and Jie Liu).
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Consider a scenario:
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Assumption: Clocks on the distributed platforms are 
synchronized to some known precision (e.g. NTP, IEEE 1588)
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Bind model time to real time at the sensors:
Output time stamps 

are ≥

 

real time

Output time stamps 
are ≥

 

real time
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Bind model time to real time at the actuators:
Input time stamps are 

≤

 

real time

Input time stamps are 
≤

 

real time
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Schedulability
 

is not violating these timing inequalities.
Input time stamps are 

≤

 

real time

Input time stamps are 
≤

 

real time

Output time stamps 
are ≥

 

real time

Output time stamps 
are ≥

 

real time
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Conservative distributed DE (Chandy & Misra) would 
block actuation unnecessarily.
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Optimistic distributed DE (Jefferson) would require 
being able to roll back the physical world.
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

PTIDES uses static causality analysis to determine 
when events can be safely processed.

Assume bounded 
network delay d

Assume bounded 
computation time c1

Assume bounded 
computation time c3

Assume bounded 
computation time c2

Assume bounded 
clock error

Assume bounded 
clock error e

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + d + e 
+ max(c1, c2) +c3

Assume bounded 
clock error e
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

The execution model prevents remote processes from 
blocking local ones, and does not require backtracking.

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + d + e 
+ max(c1, c2) +c3
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

However, this program is not schedulable!
The resulting event 
here with time stamp t 
cannot be presented to 
the actuator until real 
time exceeds t + d + e 
+ max(c1, c2) +c3
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

Remote events also trigger real-time violations.
Schedulability analysis tells us the program is flawed.

Event with time stamp t 
available at real time ≥

 

t

Event with time stamp 
t cannot possibly be 
available here before 
real time t !

Event with time stamp t 
available at real time ≥

 

t

Event with time stamp t 
available at real time ≥

 

t
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

The program can be fixed with actors that increment 
the time stamps (model-time delays).
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

This relaxes scheduling constraints...

An event here with 
time stamp t can be 
safely merged when 
real time exceeds 
t + d + e − d2

 
+ max(c1, c2) +c3
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

… and we can derive conditions for schedulability…

The model is schedulable if:
1)

 

d + e − d2

 

+ c1 + c3 < 0
2)

 

d + e − d2

 

+ c2 + c3 < 0
3)

 

…
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

… and being explicit about time delays means that we 
can analyze control system dynamics…

The system is stable if …

Feedback through the physical world
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PTIDES: Programming Temporally 
Integrated Distributed Embedded Systems 
with Yang Zhao and Jie

 

Liu

See “A Programming Model for Time-Synchronized Distributed 
Real-Time Systems”, Yang Zhao, Jie

 
Liu, and Edward A. Lee, 

RTAS ’07, to be presented Friday.
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Is Truly Real-Time Computing 
Becoming Unachievable?

Yes!  
But the problem is solvable:

Actor-oriented component architectures implemented in 
coordination languages

 
that complement rather than 

replace existing languages (e.g. PTIDES).
and

PRET machines that deliver repeatable timing with 
efficient pipelining, memory hierarchy, and networking

See the Ptolemy Project for ongoing research addressing these 
problems: http://ptolemy.org
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