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Abstract—We consider the problem of state estimation for a
dynamic system driven by unobserved, correlated inputs. We
model these inputs via an uncertain set of temporally correlated
dynamic models, where this uncertainty includes the number of
modes, their associated statistics, and the rate of mode transitions.
The dynamic system is formulated via two interacting graphs: a
hidden Markov model (HMM) and a linear-Gaussian state space
model. The HMM’s state space indexes system modes, while its
outputs are the unobserved inputs to the linear dynamical system.
This Markovian structure accounts for temporal persistence of
input regimes, but avoids rigid assumptions about their detailed
dynamics. Via a hierarchical Dirichlet process (HDP) prior, the
complexity of our infinite state space robustly adapts to new
observations. We present a learning algorithm and computational
results that demonstrate the utility of the HDP for tracking, and
show that it efficiently learns typical dynamics from noisy data.

Keywords: Tracking, hierarchical Dirichlet processes, hid-

den Markov model, Kalman filtering, estimation.

I. INTRODUCTION

We consider the problem of state estimation for a dynamic

system which is driven by a set of unobserved, correlated

inputs. This problem arises in many situations of surveillance

and tracking. One such example which falls within this frame-

work is monitoring a dynamic system with sensors whose

regimes of operation change due to unobserved phenomena;

this results in time-varying, correlated measurement noise

statistics. Another example, which we will use throughout this

paper, is that of tracking a maneuvering target. We specifically

consider the scenario where the number and types of regimes

or modes of operation are challenging to model accurately due

to a lack of prior knowledge about the system.

The standard in state-of-the-art maneuvering target tracking

algorithms is the interacting multiple model (IMM) method

[1]–[3]. The IMM method relies on approximating the dy-

namics of the target by a finite set of distinct maneuver

modes, which are known and well modeled a priori. The

transitions between modes are assumed to follow a Markov

chain with known transition probabilities. The IMM exhibits

severe model sensitivity to the values of these parameters,

which is problematic when these parameters cannot be fine-

tuned due to model uncertainty. In addition, optimal tracking

for multiple models methods requires examining an exponen-

tially growing number of model sequences, where the rate

depends on the number of dynamic models [3], [4]. The

IMM provides a method for merging hypotheses, which is

a reasonable approximation in certain scenarios. A method

for model set design by minimizing distribution, modal, or

moment mismatch is presented in [5] for the case where the

true mode set is known. We instead develop methods for

learning models from data.

We examine the problem of tracking when the library of

maneuver modes is unknown a priori, including the number

of modes, their associated statistics, and the rate at which tran-

sitions occur. We formulate this dynamic system as a graphical

model comprised of two interacting graphs: an infinite hidden

Markov model (HMM) and a linear Gaussian state space

model. The HMM’s state space indexes maneuver modes over

time, while its outputs are the unobserved inputs to the linear

dynamical system. As with the IMM, this Markovian structure

accounts for the temporal persistence of target maneuvers

and avoids rigid assumptions about their detailed dynamics;

however, our formulation does not rely on prior knowledge of

the number or types of maneuver modes. The phrase infinite

HMM refers to the fact that the states of the HMM (i.e.

maneuver modes) can take values in {1, . . . ,∞}. We assume
that the system matrices and noise statistics of the state space

dynamic model are known either through understood physical

models or system identification techniques.

Estimation for this system is complicated by the fact that

there is uncertainty in the maneuver mode, and that the number

of these discrete hidden states is unknown. The unknown

cardinality of the set of maneuver modes motivates our non-

parametric Bayesian approach of placing a flexible, data-driven

hierarchical Dirichlet process (HDP) prior on these hidden

states. The Dirichlet process encourages simple models of

target dynamics, but allows additional states to be created as

new behaviors are observed, while the hierarchical structure

accounts for temporal correlation of input modes. Dirichlet

processes have recently been applied to the problem of state

estimation in a dynamic system with an unknown noise

process [6], where the noise is assumed to be uncorrelated.

Our model captures the temporal correlation of the inputs by

hierarchically coupling the input distributions at subsequent

times. The HDP has been previously used to develop an

infinite, discrete state HMM [7], [8]. For our model, however,



we do not have direct observations of the HMM output. In

addition, the maneuver mode uncertainty implies that the target

dynamics no longer follow a simple, linear-Gaussian model.

Our goal, then, is to estimate this HMM output sequence

from correlated observations of the control inputs’ effect on

the dynamic system, while simultaneously learning the set

of HMM maneuver modes. We approach this joint learning-

estimation problem by coupling a Markov chain Monte Carlo

(MCMC) method with an embedded Kalman smoother.

In this paper we explore the utility of the HDP as a prior on

the unknown number of unobserved input modes. When com-

bined with an observation likelihood distribution, we obtain a

HDP mixture model, which we will show provides a simple

framework for efficiently learning maneuver modes from noisy

data. In Sec. II we present background on nonparametric

Bayesian methods relevant to this paper. In Sec. III we describe

how the HDP is useful in this context. After describing the

model, in Sec. IV we present an approach to learning the

model parameters necessary for state estimation and in Sec.V

provide results from an example problem. In Sec.VI, we briefly

describe some methods for converting the batch processing of

the MCMC sampler to an online tracker.

II. BACKGROUND

Nonparametric Bayesian methods avoid the often restrictive

assumptions of parametric models by performing inference on

infinite-dimensional spaces of functions or probability distri-

butions. If suitably designed, these methods allow for efficient,

data-driven posterior inference. In the following sections, we

briefly describe two related nonparametric Bayesian methods:

the Dirichlet and hierarchical Dirichlet processes.

A. Dirichlet Process Mixture Models

A Dirichlet process defines a distribution over probability

measures on potentially infinite parameter spaces Θ. This
stochastic process is uniquely defined by a concentration

parameter, α, and base measure, H , on the parameter space Θ;
we denote it by DP (α,H). A tutorial on Dirichlet processes,
including references to seminal work, can be found in [8], [9].

It can be shown that the Dirichlet process actually defines

a distribution over discrete probability measures. With proba-

bility one, a random draw G ∼ DP (α,H) is equivalent to,

G(θ) =
∞
∑

k=1

πkδθk
(θ) θk ∼ H, k = 1, 2, . . . (1)

where the notation δθk
(θ) indicates a Dirac delta at θ =

θk. The mixture weights πk define a random probability

measure distributed according to the following stick breaking

construction, denoted by GEM(α),

βk ∼ Beta(1, α) k = 1, 2, . . .

πk = βk

k−1
∏

ℓ=1

(1 − βℓ) k = 1, 2, . . . . (2)

In effect, we have divided a unit-length stick by the mixture

weights πk defined over an infinite set of random parameters

θk. The kth mixture weight is a random proportion βk of the

remaining stick after the previous (k − 1) weights have been
defined. From this construction we see that the concentration

parameter α controls the relative proportion of the weights π,

and thus controls model complexity in terms of the expected

number of components.1 When the Dirichlet process prior is

combined with a likelihood distribution for the observations,

as depicted by the graphs of Fig. 1(a)-(b), we have a Dirichlet

process mixture model. We use either θ̄t or θzt
, with indica-

tor variable zt, to denote the parameter associated with the

observation yt.

Because random probability measures drawn from a Dirich-

let process are discrete, there is a strictly positive probability

that multiple observations will share a common parameter.

In addition, there is a reinforcement property that makes it

more likely to associate an observation with a parameter to

which other observations have already been associated. This

is described by the predictive distribution of a new assignment

conditioned on all other previous assignments,

p(zT+1 = z|z1:T , α) =
1

α + T
(αδ(z, K̄) +

K
∑

k=1

Tkδ(z, k)), (3)

where T is the total number of observations and Tk the number

assigned to the kth parameter. Here, we use the notation

δ(z, k) to indicate the Kronecker delta. We see that with prior
probability proportional to α the observation was generated

from a new, previously unseen mode K̄ and with prior

probability proportional to Tk, the number of assignments to

mode k, the observation was generated by an existing mode

k. Therefore, Dirichlet processes favor simpler models. It can

be shown under mild conditions that if the data is generated

by a finite mixture, then the Dirichlet process posterior is

guaranteed to converge (in distribution) to that finite set of

mixture parameters [11].

Dirichlet processes have been applied to the problem of

state estimation in the presence of unknown noise statistics [6].

The noise is modelled as an infinite Gaussian mixture model,

where the parameters θk represent the mean and covariance of

a component of the mixture model. A graphical model of such

a system is depicted in Fig. 2(a)-(b). However, this formulation

does not capture temporal noise correlation. Therefore, this

framework is not well suited for dynamic systems with un-

known inputs that persist over time. In addition, the inference

procedure described in [6] relies on sampling the explicit

parameter value sequence {θ̄t} from the Dirichlet process
prior, which may be impractical due to slow mixing rates [12].

B. Hierarchical Dirichlet Process Mixture Models

There are many scenarios in which groups of data are

thought to be produced by related, yet unique, generative

processes. For example, take a sensor network monitoring an

environment where time-varying conditions may influence the

quality of the data. Data collected under certain conditions

1If the value of α is unknown, the model may be augmented with a gamma
prior distribution on α, so that the parameter is learned from the data [10].



(a) (b) (c) (d)

Fig. 1. Dirichlet process (left) and hierarchical Dirichlet process (right) mixture models represented by two graphs. (a) Indicator variable representation
in which π ∼ GEM(α), θk ∼ H(λ), zt ∼ π, and yt ∼ f(y|θzt ). (b) Alternative representation with G ∼ DP(α, H), θ̄t ∼ G, and yt ∼ f(y|θ̄t).
Here, the parameters θ̄t are not necessarily unique. The mapping from (a) to (b) is θ̄t = θzt . (c) Indicator variable representation in which β ∼ GEM(γ),
πk ∼ DP(α, β), θk ∼ H(λ), zjt ∼ πj , and yjt ∼ f(y|θzjt). (d) Alternative representation with G0 ∼ DP(γ, H),Gj ∼ DP(α, G0), θ̄jt ∼ Gj , and

yjt ∼ f(y|θ̄jt). Plate notation is used to compactly represent replicated variables of the graph [9].

(a) (b) (c)

Fig. 2. Graphs of Dirichlet and hierarchical Dirichlet process priors being applied to dynamic systems. (a)-(b) Standard and indicator variable representation
of a dynamic system with unknown noise distribution with a Dirichlet process prior [6]. (c) Indicator variable representation of a HDP prior on an HMM
with unknown discrete state space cardinality [8]. The equivalent graphs in (a)-(b) model unobserved inputs driving a dynamic system, but do not capture
temporal correlation in these inputs. The graph in (c) captures temporal correlation in modes, but does not capture continuous state space dynamics.

should be grouped and described by a similar, but disparate

model from that of other data. In such scenarios we can take

a hierarchical Bayesian approach and place a global Dirichlet

process prior DP (α,G0) on the parameter space Θ. We then
draw group specific distributions Gj ∼ DP (α,G0), which
will be discrete so that parameters are shared within the group.

However, if the base measure G0 is absolutely continuous with

respect to Lebesgue measure, parameters will not be shared

between groups. Only in the case where the base measure G0

is discrete will there be a strictly positive probability of the

group specific distributions having overlapping support (i.e.

sharing parameters between groups.) To overcome this diffi-

culty, the base measure G0 should itself be a random measure

distributed according to a Dirichlet process DP (γ,H). This
results in what is termed a hierarchical Dirichlet process [8].

Hierarchical Dirichlet processes can be applied as a prior

on the state values of a HMM with unknown state space car-

dinality, as described in [7], [8]. Assume there are potentially

countably infinitely many HMM state values. For each of these

HMM states, there is a countably infinite transition density

over the next HMM state. Let πk be the transition density for

HMM state k. Then, the model defines that zt ∼ πzt−1
. That

is to say, zt−1 indexes the group-specific transition density

over the next HMM state value zt. In terms of Fig. 1(c), the

observations assigned to group j are those with zt−1 = j

such that zt ∼ πj . All groups share a common set of HMM

states, but based on the previous state (i.e. group) there is

a different probability density over current HMM states. The

HMM state zt determines which of the global parameters θk

are used to generate the observation yt. This model is termed

a HDP-HMM, and is depicted by the graph in Fig. 2(c).

The HDP-HMM models correlation in time between the

HMM states generating the observations. We can take the

HMM states zt to be the maneuver mode for our dynamic

system. The outputs of this HMM are the control inputs ut

which drive the maneuvering target. However, we do not have

direct observations of ut, but rather correlated observations yt

of these values through the dynamic system. Therefore, our

model has an extra hidden layer consisting of the state xt of

the dynamic system, as described in the following section.

III. FORMULATION

The graph of Fig. 3 represents a dynamic system with

an unknown set of correlated maneuvers, or more generally,

unobserved correlated inputs. Let zt ∈ {1, 2, . . . } be the
unknown mode of the maneuver at time t ∈ Z+ and ut ∈
R

d be an unobserved maneuver or control input at time t

distributed according to N (µzt
,Σzt

), where θzt
= {µzt

,Σzt
}.



Fig. 3. Graphical model of the HDP-HMM-KF. The variables πk define
the transition densities for each of the HMM state values of the potentially
countably infinite state space of zt. We place a HDP prior on these states
with base measure β and concentration parameters α and γ. The unobserved
control inputs ut that drive the linear-Gaussian dynamic system are drawn
from Gaussian mixture component zt, defined by parameters θzt .

Therefore, θk defines the parameters for the distribution over

the kth maneuver mode, which we take to be Gaussian. We

place a conjugate normal-inverse-Wishart (NIW(κ, ϑ, ν,∆)
[9]) prior on θk. The system then evolves according to the

following state space model with process noise wt ∼ N (0, Q)
and measurement noise vt ∼ N (0, R).

xt = Axt−1 + But(zt) + wt

yt = Cxt + Dut(zt) + vt. (4)

The latent maneuver states evolve according to,

β ∼ GEM(γ)

πk ∼ DP (α, β)

zt ∼ πzt−1
. (5)

In the case of modeling unobserved sensor regimes, we would

take D 6= 0, though we might have B = 0. For the maneu-
vering target scenario we consider in this paper, we assume

without loss of generality that D = 0, i.e. the unobserved
input to the system solely drives the state through the system

matrix B, but does not affect the sensors directly.

We place a HDP prior on the correlated maneuver modes zt

to account for the unknown dimension of the HMM. As in the

HDP-HMM application, the transition densities πk are each

distributed as a Dirichlet process with concentration parameter

α and base measure β, where β is distributed according

to the stick breaking process with concentration parameter

γ. By defining β to be a discrete probability measure, we

ensure with high probability that a common set of future

states are reachable from each preceding state. Because this

model incorporates a linear dynamical model, which we later

show leads to a Kalman filtering component in the learning

algorithm, we refer to it as an HDP-HMM-KF.

IV. LEARNING

In order to learn the set of maneuver modes, we use

a Markov chain Monte Carlo (MCMC) method, specifi-

cally Rao-Blackwellized Gibbs sampling. We briefly describe

MCMC theory and then present the Gibbs sampler for our

model.

A. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods [13] are a

class of algorithms used to sample from probability distribu-

tions that are challenging to sample from directly. A Markov

chain is constructed whose stationary distribution is the desired

density. At each iteration n, the state of the Markov chain is

sampled conditioned on the previous sample at iteration n−1,

x(n) ∼ q(x|x(n−1)) n = 1, 2, . . . (6)

After a certain “burn-in” period N̄ , the state evolution of this

chain provides samples approximately drawn from the target

distribution.

Gibbs sampling is a type of MCMC method that is well

suited to state spaces with internal structure. Consider a state

space with M states where we wish to draw samples from

the joint distribution. With a Gibbs sampler, a sample x
(n)
i is

drawn from the conditional distribution given the previous set

of samples for the other states. We iterate through every state

using a specific or random node ordering τ ,

x = (x1, x2, . . . , xM )

for n = 1 : Niter

x
(n)
i ∼ p(xi|x

(n−1)
\i

) i = τ(n)

x
(n)
j = x

(n−1)
j j 6= τ(n)

end (7)

Here, we use the notation x\i = {xj |j 6= i}.
In a directed graphical model, a node is conditionally

independent of all other nodes given its Markov blanket,

p(xi|xV\i) = p(xi|xMB(i)), where the Markov blanket con-
sists of the node’s parents, co-parents, and children. Therefore,

in the case of sparse graphs, the conditional density from

which we are sampling is of much lower dimension than the

joint.

B. Learning the HDP-HMM-KF

To perform state estimation, we marginalize over the infinite

set of parameters θ and π and continuous hidden states x1:T ∈
X , and estimate the joint distribution p(u, z, β|y, γ, α, λ) us-
ing the auxiliary variable blocked Rao-Blackwellized Gibbs

sampler of Algorithm 1.

Algorithm 1 u-z Blocked Gibbs Sampler

for n=1:N

for t=1:T

(u
(n)
t , z

(n)
t ) ∼ p(ut, zt|u

(n)
1:t−1, u

(n−1)
t+1:T , z

(n)
1:t−1, z

(n−1)
t+1:T , β(n−1))

end

β(n) ∼ p(β|z(n))

end



In Algorithm 1, we specifically examine a sequential node

ordering for the Gibbs sampler to allow for simple updates, as

will become clear in the following derivations. Although not

explicitly written, the hyperparameters {α, γ, λ} are implied
in all equations throughout this section.

We jointly sample (ut, zt) because a change in assign-
ment of the mode zt may induce a significant change in

the distribution over the input ut; sampling these variables

independently could result in different local modes which are

very challenging to move between. In addition, ut is often

much lower-dimensional than xt so by sampling the control

input rather than the state, our estimates from the sampler have

lower variance according to the Rao-Blackwell theorem [14].

Sampling β allows us to write the distributions in closed form.

Using the chain rule we can equivalently write,

p(ut, zt|z\t, u\t, y, β) = p(zt|z\t, u\t, y, β)p(ut|z, u\t, y, β). (8)

The distribution in Eq.8 is a hybrid distribution: each discrete

value of the indicator variable zt corresponds to a different

continuous distribution on the input ut. We determine the

weights of the multinomial distribution on zt by integrating

over the random variables of the joint distribution which are

not present in the conditional distribution,

p(zt = k|z\t, u\t, y, β) ∝

∫

π

∏

j

p(πj |β)
∏

τ

p(zτ |πzτ−1
)dπ

∫

Ut

∫

Θk

p(θk)
∏

τ |zτ =k

p(uτ |θk)dθk

∫

X

∏

τ

p(xτ |xτ−1, uτ )p(yτ |xτ )dxdut. (9)

Similarly, we can write the conditional density of ut for each

candidate zt as,

p(ut|zt = k, z\t, u\t, y, β) ∝

∫

Θk

p(θk)
∏

τ |zτ =k

p(uτ |θk)dθk

∫

X

∏

τ

p(xτ |xτ−1, uτ )p(yτ |xτ )dx. (10)

The HDP prior provides a closed form for the marginalization

of the unknown set of transition densities π. The density β

determines the global probability of parameter θk and the

expected weights in the group-dependent distributions π. If

we take zt−1 = j, zt = k, and zt+1 = ℓ and assume that

j 6= k, i.e. a mode transition occurs at time t, then,

p(zt = k|z\t, β) ∝

∫

π

∏

j

p(πj |β, α)
∏

τ

p(zτ |πzτ−1
)dπ

∝ (αβk + n−t
jk )

(

αβℓ + n−t
kℓ

α + n−t
k.

)

, (11)

where we use the notation njk = |{τ |zτ = k, zτ−1 = j}|
to represent the number of observations assigned to maneuver

mode k whose previous maneuver mode was j. The notation

nj. represents the number of maneuvers from j to any other

state (i.e. nj. =
∑

k njk) and n−t
jk is the number of transitions

from maneuver j to maneuver k not counting the transition

from zt−1 to zt or from zt to zt+1. We consider each of the

currently instantiated modes k in turn. We also consider the

probability that zt is assigned to a new, previously unseen

mode K̄, where the transition counts n.k and nk. are zero

in this case. When zt−1 = zt, a slightly more complicated

expression is used (see Appendix). By placing a conjugate

prior on the parameters θk, there is also a closed form for the

marginal likelihood obtained by integrating over θk.

To relate the random control input taking values ut ∈ Ut

at time t to the observation sequence y1:T given the other

inputs u\t, we integrate over the random state sequence taking

values x1:T ∈ X . This is equivalent to a modified forward-
backward filter combining the updated forward state estimate

at time t − 1 with the updated backward state estimate
at time t using the dynamics in terms of ut. We use the

notation (P−b
t|t , P−b

t|t xb
t|t) and (P−f

t|t , P
−f

t|t x
f

t|t) as the inverse
error covariance and information state for the backward and

forward information filters, respectively. Because the sampler

conditions on control inputs, the filter for this time-invariant

system can be efficiently implemented by pre-computing the

error covariances and then solely computing local Kalman

updates at every time step.

In our formulation, it suffices to map the infinite dimen-

sional distribution β of global parameter weights to the finite

vector of weights associated with the currently instantiated

maneuver modes and a new mode K̄. Therefore, to sample

β ∼ p(β|z) we use the auxiliary variable method of [8].
The details of the above integrations can be found in

the Appendix and the resulting algorithm is summarized in

Algorithm 2. Of note is that computational complexity is

linear in the training sequence length, as well as the number

of currently instantiated maneuver modes. There are many

methods for using the samples provided by this algorithm for

state estimation, as described in Sec.V.

Algorithm 2 HDP-HMM-KF learning

Initialization: for t=1:T compute covariances P−b
t|t , P

−f

t|t

for n=1:N

Backwards recursion: for t=T:-1:1

compute information state P−b
t|t xb

t|t given {u
(n−1)
1:T , y1:T }

end

Forwards recursion: for t=1:T

z
(n)
t ∼ p(zt|u

(n)
1:t−1, u

(n−1)
t+1:T , z

(n)
1:t−1, z

(n−1)
t+1:T , β(n−1),

P−b
t|t xb

t|t, P
−f

t−1|t−1x
f

t−1|t−1, P
−b
t|t , P

−f

t|t )

u
(n)
t ∼ p(ut|u

(n)
1:t−1, u

(n−1)
t+1:T , z

(n)
1:t , z

(n−1)
t+1:T , β(n−1),

P−b
t|t xb

t|t, P
−f

t−1|t−1x
f

t−1|t−1, P
−b
t|t , P

−f

t|t )

compute P
−f

t|t x
f

t|t given {u
(n)
t , yt, P

−f

t−1|t−1x
f

t−1|t−1}

end

β(n) ∼ p(β|z(n))

end



V. RESULTS

The performance of the proposed HDP-HMM-KF tracking

algorithm was compared to that of the IMM on a set of

simulation data of a maneuvering target. We use the standard

constant velocity (CV) and constant acceleration (CA) coordi-

nate uncoupled maneuver models for the IMM with the state

being x-direction position and velocity in the case of the CV

model and x-direction position, velocity, and acceleration in

the case of the CA model. The IMM state space equations are,

xt+1 = A(zt)xt + wt(zt)

yt = C(zt)xt + vt, (12)

where zt indicates the mode at time t and the noise processes

wt and vt are mutually independent zero-mean Gaussian noise

processes with covariance Q(zt) and R, respectively. The

system matrices for these two models are given by,

ACV =

[

1 ∆T

0 1

]

CCV =
[

1 0
]

QCV = qCV

[

1
3∆T 3 1

2∆T 2

1
2∆T 2 ∆T

]

(13)

ACA =





1 ∆T 1
2∆T 2

0 1 ∆T

0 0 1



 CCA =
[

1 0 0
]

QCA = qCA





1
20∆T 5 1

8∆T 4 1
6∆T 3

1
8∆T 4 1

3∆T 3 1
2∆T 2

1
6∆T 3 1

2∆T 2 ∆T



 (14)

We assume that initially both IMM models are equally likely.

The IMM also requires the definition of a transition matrix P

defining the probability Pij of transitioning to model j given

current model i. Details of the CV-CA IMM implementation

can be found in [3].

For the results presented in this section, we take,

P =

[

pii 1 − pii

1 − pii pii

]

, (15)

since we have no prior bias towards the CA model versus the

CV model. In Fig. 4(d) we plot the performance of the IMM as

a function of pii. We see that the IMM exhibits strong model

sensitivity to pii, while the HDP-HMM-KF does not depend

on presetting this parameter. In the experiments of Fig. 4(a)-

(b), we use pii = 0.95 in order to consider a “good” IMM.
The state space equations and associated system matrices

for the HDP-HMM-KF model are as follows,2

xt = Axt−1 + But(zt) + wt

yt = Cxt + vt (16)

A =





1 ∆T 1
2∆T 2

0 1 ∆T

0 0 1



 B =





1
2∆T 2

∆T

0



 CT =





1
0
0



 , (17)

2For this scenario, we take ut to be the control input integrated into the
system over the time window t − 1 to t. This parallels the IMM dynamics.

where ut, vt, and wt are distributed as described in Sec.III.

With this formulation for the HDP-HMM-KF, we model

the control inputs as realizations of a Markov jump-mean

acceleration process with colored noise on a learned partition

of the acceleration space. The mode parameter µzt
represents

the mean of the process at time t and Σzt
allows for mode-

specific variation of the control input realization ut. If we learn

a mode with a mean of zero, our model reduces to that of the

constant acceleration model (i.e. zero-mean random walk on

acceleration.) When, in addition, the learned covariance Σzt

and fixed process noise covariance Q are small, this model

adequately describes a non-maneuvering target. By having the

flexibility of learning modes with non-zero means, our model

can account for fast changes in acceleration characteristic of

highly maneuverable targets. While our formulation directly

models the impact of the unobserved control inputs on the

target dynamics, the IMM accounts for this phenomenon

through a collection of different linear dynamic models. Note

that although we consider 1D control inputs in this section,

the formulation is general enough to learn coordinate coupled

control inputs in multiple dimensions.

We use initial error covariance P0 = 100 ∗ Ix and step size

∆T = 1. For the CV-CA IMM, we take qCA = qCV = 10,
while for the HDP-HMM-KF, we use Q = 0.01 ∗ Ix in order

to encourage u1:T to capture the statistical properties of the

input process. We place a NIW(0.001, 0, 50, Iu) prior on the
parameters θk and a Gamma(1, 0.1) prior on the concentration
parameters α and γ.

To compare the performance of the HDP-HMM-KF to that

of the CV-CA IMM, we generated two types of simulated

observations of position versus time. The first sequence is a

noisy version of a modulated sinusoid starting at a random

phase point with measurement noise covariance R = 5 ∗
105 ∗ Iy . The underlying position sequence has continuous

derivatives so that velocity and acceleration vary smoothly.

The second sequence was a noisy step function generated from

the Markov jump-mean model with R = 5∗109∗Iy . The modes

of the model were with means {−50, 0, 50} and covariances
{5, 1, 5}. The probability of self-transition was set to 0.99
while transitions to any other mode were equally likely. By

considering both smooth and abrupt changes in acceleration,

we show the flexibility of the proposed HDP-HMM-KF model.

In the following set of results we present two methods of

using the HDP-HMM-KF for tracking. One method involves

learning the control input sequence u1:T from the observation

sequence y1:T using the MCMC samples from Algorithm 2

and then calculating Kalman smoothed estimates given the

learned input sequence. For the results of this section, we

simply learned u1:T by averaging 100 samples. The batch

processing of data used by this method is impractical in many

applications. Therefore, we also present an offline-training

online-tracking HDP-HMM-KF approach to learning a set of

dynamic models that can be used within the IMM framework.

Specifically, we run the HDP-HMM-KF MCMC sampler on

training data until it is well-mixed and then examine a set of 10

samples of (u1:T , z1:T ). From each of these samples, we infer



a set of parameters θk and transition densities πk. The resulting

HDP-HMM-KF learned IMMs consist of CA dynamic models

with different noise processes, both in terms of mean and

covariance as determined by θk, and transition probabilities

given by πk. The results show the state estimates averaged

over the 10 parallel HDP-HMM-KF learned IMMs, where

the models were trained on random observation sequences

generated from the two scenarios we aim to learn.

In Fig. 4(a), we show the track estimates of position

versus time for the CV-CA IMM, HDP-HMM-KF learned

IMMs, and HDP-HMM-KF smoother as well as the noisy

observations. The associated average L2 position errors versus

time, averaged over 10 measurement realizations of the true

target trajectory, are plotted in Fig. 4(b). These plots show the

performance gain of HDP-HMM-KF methods over the CV-CA

IMM. The HDP-HMM-KF learned IMMs have a 42% average

decrease in total L2 error in the modulated sinusoid case and

52% decrease in the step function case while the HDP-HMM-

KF smoother has decreases of 78% and 75%.

One can analyze the complexity of the inferred HDP-HMM-

KF model by looking at the number of maneuver modes to

which a significant number of observations are assigned. We

histogram those modes with more than 5% of the assignments

over 1,000 Gibbs iterations in Fig. 4(c). When the true control

inputs are drawn from a small finite set, as in the step function

scenario, the HDP-HMM-KF describes the data with fewer

model components than the more complicated modulated

sinusoid scenario. These results emphasize the flexibility of

the HDP-HMM-KF approach. A caveat, however, is that there

may be several control inputs which produce similar target

trajectories, and our HDP prior does not explicitly discourage

fast transitions between modes. As a result, the sampler visits

input sample paths that describe the observations but not the

dynamic behavior we wish to capture. An area of future

research is to consider priors that prefer slow switching or to

learn a semi-Markov process formulation, which may better

approximate the true target dynamics.

VI. ONLINE LEARNING

The batch processing of the MCMC sampler may be im-

practical and offline-training online-tracking infeasible for cer-

tain tracking applications. However, the developed algorithm

could be converted into a recursive online implementation of

joint learning-estimation using sequential Monte Carlo (SMC)

methods, namely a Rao-Blackwellized particle filter [15]. Each

of the particles represents a different sequence of latent control

input and maneuver mode values from which a Kalman filter

may be run to estimate the target state. Another approach for

an online implementation is that of decayed MCMC filtering

[16]. The decayed MCMC algorithm is similar to standard

MCMC methods except instead of uniformly sampling the

state variables the algorithm concentrates sampling activity to

the recent past, since these states are the most relevant to the

current state. Decayed MCMC is guaranteed to converge to the

true marginal distribution given an appropriate decay function,

and has provable rates of convergence.

VII. CONCLUSIONS

We have developed methods for learning models of unob-

served, correlated inputs to dynamical systems. Our nonpara-

metric approach adapts the hierarchical Dirichlet process to

discover an appropriate set of input modes in a flexible, data-

driven fashion. Using a Rao-Blackwellized Gibbs sampler, we

may efficiently compute smoothed state estimates from noisy

observation sequences. The parameters inferred by this sam-

pler also lead to online IMM filters adapted to the structure of

specific dynamical systems. Our maneuvering target tracking

results demonstrate the effectiveness of this approach, and

show significant gains over a fixed model set commonly used

in tracking applications.
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APPENDIX

We analyze each of the integrals from Sec.IV-B in turn,

beginning with the integral over π. Let βk be the probability of

global parameter θk and βK̄ = 1−
∑Kt

k=1 βk be the probability

associated with a new, previously unseen maneuver mode

K̄, where Kt is the number of unique states instantiated by

z\t. Then, p(πj |β, α) is distributed as a Dirichlet distribution
Dir(αβ1, . . . , αβKt

, αβK̄). In addition, p(z|π) is distributed as
a multinomial which is conjugate to the Dirichlet distribution.

Using properties of these distributions and taking zt−1 = j

and zt+1 = ℓ, one can show that,

p(zt = k|z\t, β) ∝

∫

π

∏

j

p(πj |β, α)
∏

τ

p(zτ |πzτ−1
)dπ

∝







(αβk + n−t
jk )(

αβℓ+n
−t
kℓ

+δ(j,k)δ(k,ℓ)

α+n
−t
k.

+δ(j,k)
) k = 1, . . . ,Kt

αβK̄βℓ k = K̄

, Nk (18)

where n−t
jk is defined as in Sec.IV-B.

Let us analyze the integral over θk. For θk = {µk,Σk}
defining the parameters of a Gaussian, we can place a

conjugate normal-inverse-Wishart prior NIW(κ, ϑ, ν,∆) so
that the posterior distribution of θk given the control inputs

currently assigned to the kth mode is distributed as an updated

normal-inverse-Wishart NIW(κ̄, ϑ̄, ν̄, ∆̄). For these posterior
parameter update formulas, see [9]. Marginalizing θk induces

a multivariate Student-t predictive distribution for ut, which

can be approximated by a moment-matched Gaussian,

p(ut|zt = k, z\t, u\t) ∝

∫

Θk

p(θk)
∏

τ |zτ=k

p(uτ |θk)dθk

≃ N

(

ut; ϑ̄,
(κ̄ + 1)ν̄

κ̄(ν̄ − d − 1)
∆̄

)

, N (ut; µ̂k, Σ̂k). (19)
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Fig. 4. Plots of (a) observation sequence (gray) with track estimates and (b) associated L2 error for the CV-CA IMM (blue,—), HDP-HMM-KF learned
IMMs (red,- -), and HDP-HMM-KF smoother (green,· · · ) on a modulated sinusoid (top) and step function (bottom) control input. (c) Histogram of number
of HDP-HMM-KF maneuver modes over 1,000 Gibbs iterations on the training sequence for the learned IMMs. (d) Total L2 error versus self transition
probability pii depicting the model sensitivity of the IMM as compared to the HDP-HMM-KF learned IMMs or HDP-HMM-KF smoother, which do not
depend on presetting this parameter.

We then marginalize the state x1:T ∈ X for fixed u\t to

find the likelihood of our observations y as a function of ut,

p(y|ut) ∝

∫

X

∏

t

p(xt|xt−1, ut−1)
∏

t

p(yt|xt)dx

∝

∫

Xt−1

N (xt−1; x̂
f

t−1|t−1, P
f

t−1|t−1)

∫

Xt

N (xt;Axt−1 + But, Q)

N (xt; x̂
b
t|t, P

b
t|t)dxtdxt−1

= N−1(ut;φut
,Λut

) (20)

where N−1(φ,Λ) represents the information form of a Gaus-
sian N (µ, P ) with information parameters φ = P−1µ and

Λ = P−1. Using manipulations of Gaussian identities, we

determine,

Λut
=BT Σ−1

t B − BT Σ−1
t A(AT Σ−1

t A + Λf

t−1|t−1)
−1AT Σ−1

t B

φut
=BT Q−1K−1

t θb
t|t − BT Σ−1

t A(AT Σ−1
t A + Λf

t−1|t−1)
−1

(θf

t−1|t−1 + AT Q−1K−1
t θb

t|t) (21)

where Σt = Q−1 + Q−1K−1
t Q−1 and Kt = Q−1 + Λb

t|t.

Joining the distributions in terms of ut, we obtain,

p(ut|zt = k, z\t, u\t)p(y|ut)

∝ CkN
−1(ut; Σ̂

−1
k µ̂k + φut

, Σ̂−1
k + Λut

)

, CkN
−1(ut;φk,ut

,Λk,ut
), (22)

where,

Ck =
|Σ̂−1

k |
1

2

|Λk,ut
|
1

2

exp{−
1

2
[µ̂T

k Σ̂−1
k µ̂k − φT

k,ut
Λ−1

k,ut
φk,ut

]} (23)

We now have all of the components necessary to write the

distributions of Eq.8 in closed form,

p(zt = k|z\t, u\t, y, β) ∝ NkCk (24)

p(ut|zt = k, z\t, u\t, y, β) ∝ N−1(ut;φk,ut
,Λk,ut

) (25)
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