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Abstract— We consider the problem of data association for
multi-target tracking in the presence of an unknown number
of targets. For this application, inference in models which
place parametric priors on large numbers of targets becomes
computationally intractable. As an alternative to parametric
models, we explore the utility of nonparametric Bayesian meth-
ods, specifically Dirichlet processes, which allow us to put a
flexible, data-driven prior on the number of targets present in our
observations. Dirichlet processes provide a prior on partitions of
the observations among targets whose dynamics are individually
described by state space models. These partitions represent the
tracks with which the observations are associated. We provide
preliminary data association results for the implementation of
Dirichlet processes in this scenario.

I. INTRODUCTION

We examine the problem of assigning observations to target
tracks when the number of targets present is unknown apriori.
In the presence of multiple targets, a sensor will generally
collect multiple measurements of each target over time, but
lack the inherent ability to associate each measurement with
its underlying target. Inference on track assignments given the
measurements becomes intractably complex for large numbers
of targets when using enumerative or parametric models (the
current state-of-the-art). In addition, parametric models can be
overly restrictive. As an alternative to parametric model-based
association methods, we consider a class of nonparametric
Bayesian methods called Dirichlet processes which allow us
to put a flexible, data-driven prior on the number of targets
present in our observations.

Although termed nonparametric, these Bayesian methods
are not free of parameters since they have closed functional
forms. Rather, they are processes which learn distributions
on function spaces. Therefore, nonparametric Bayesian meth-
ods are actually defined by infinitely many parameters. The
Dirichlet process is a computationally tractable distribution
on probability measures defined over infinite dimensional
parameter spaces. In this paper we explore the utility of this
distribution as a prior on the unknown number of targets.
When combined with an observation likelihood distribution,
we obtain a Dirichlet process mixture model, which we will
show provides a simple framework for efficiently learning
distributions over the space of possible track assignments.

In this paper we first present the motivating application for
this work as well as related work in this area. We then describe

how the target tracking problem can be formulated as a mixture
model and how Dirichlet processes are useful in this context.
After describing the model, we present an approach to learning
the track assignments and provide results from an example
problem. We conclude with a discussion of future work.

II. BACKGROUND

Data association for target tracking is a challenging problem
even when the number of targets being observed is known.
When there is little to no prior knowledge about the number
of targets, the challenge is compounded. There have been a
variety of approaches to solving this problem including brute
force methods which enumerate all target track possibilities as
well as methods which place parametric prior distributions on
the number of targets. There has been a considerable amount
of prior research on data association techniques and we will
only describe a few of the most relevant methods. For a survey
of these methods see [1].

When the number of tracks is known, the joint probabilistic
data association filter (JPDAF) performs a time step by time
step greedy measurement association. With this formulation,
there is no possibility of generating new tracks or terminating
old ones. When the number of target tracks is unknown, the
multiple hypothesis tracker (MHT) provides a method of data
association by enumerating all possible tracks at every time
step. The hypothesis space grows exponentially with time, so
in practice heuristics must be used to restrict the search space.
The approach of Oh, Russell, and Sastry [1] places a Poisson
prior on the number of tracks and uses a Markov chain Monte
Carlo (MCMC) method to sample the track assignments.
Although the Poisson distribution is a valid prior over an
arbitrary number of targets, there is a large concentration of
probability about the mean of this heavy-tailed distribution.
Thus, the Poisson parameter implicitly defines knowledge on
the expected number of tracks. Therefore, this parameter must
be fine tuned in order to achieve good performance.

By using a Dirichlet process prior we build on the assets of
these methods while avoiding the use of heuristics or having to
fine-tune parameters. Also, Dirichlet process priors are easily
extendible to the more complicated models we consider in the
future work section. It is in these extensions that we think
the utility of nonparametric Bayesian methods will become
apparent.



III. FORMULATION

We assume we have a data set of noisy range measurements
versus time for some unknown number of targets, as shown
in Fig.1. Our goal is to assign the measurements to a set of
tracks in order to maximize the likelihood of the model. We
model the dynamics with the following state space equations,

N ∼ Pnumtracks(N)
xk(t + 1) = Axk(t) + Buk(t), k = 1, . . . , N

yk(t) = Cxk(t) + wk(t), k = 1, . . . , N

detection probability pd

where xk(t) is the state of the kth target at time t ∈ Z+,
yk(t) are our observations, uk(t) ∼ N (0, Q) is process noise
on acceleration, and wk(t) ∼ N (0, R) is measurement noise
independent of the process noise. We assume a probability of
detection pd and that the number of targets N is a random
variable whose distribution Pnumtracks may be unknown. We
proceed by showing that we can model this system as a finite
mixture model when the number of targets N is deterministic
and known, and as a Dirichlet process mixture model when
N is random with unknown distribution Pnumtracks.
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Fig. 1. Noisy range measurements versus time (dots) and true target tracks
(dashed lines).

A. Finite Mixture Models

We begin our analysis by assuming that we know there are
N targets present. For each target k = 1, . . . , N we can rewrite
the standard state space equations in terms of the initial con-
dition xk(0) and process noise sequence {uk(1), . . . , uk(T )},

yk(t) = CAtxk(0) +
t∑

τ=1

At−τBuk(τ) + wk(t)

wk(t) ∼ N (0, R).

It is this set of random variables that uniquely define each
track. Therefore, let us define a parameter, θk, for each track
as follows,

θk , [xk(0) uk(1) . . . uk(T )]

At every time step there may be multiple measurements
to assign to the various tracks. If we assume that the jth

observation at time t is associated with the kth track, then the

observation y
(j)
t is distributed according to a Gaussian centered

about µt(θk),

f(y(j)
t |θk) = N (y;µt(θk), R),

where µt(θk) = CAtxk(0) +
∑t

τ=1 CAt−τBuk(τ).
Let πk be the prior probability that an observation is gener-

ated by the kth target. We can then represent our observations
as being generated according to the following mixture of
Gaussians,

p(y(j)
t |π, θ1, . . . , θN ) ∼

N∑
k=1

πkf(y|t, θk).

This finite mixture model can be represented by the graphical
model shown in Fig.2(a), where each node of the graph
represents a random variable in our model and every edge
represents the condition dependency between the random
variables. The rectangles (or ”plates”) denote replication of
that portion of the graph by the number of times indicated in
the lower righthand corner of the rectangle. Here, Jt is the
number of measurements at time t and T is the number of
time steps in the window of measurements.

π ∼ Dir(α/N, . . . , α/N) π ∼ stick(α)
(a) (b)

Fig. 2. (a) Finite mixture graphical model for tracking N targets. (b) Dirichlet
process mixture model for tracking an unknown number of targets.

In this model, we have N parameters corresponding to each
component of the mixture model. In our scenario, these are
the parameters that uniquely define each track. Each obser-
vation y

(j)
t has an indicator variable, z

(j)
t , which indexes the

parameter associated with the given observation. Therefore, in
our scenario, z

(j)
t represents the track number. The distribution

π determines the mixture weights for each of the conditional
densities f(y|t, θk). Thus, π defines a multinomial distribution
from which the indicator variables are drawn.

When there is no prior bias towards one component over
another, that is to say we do not preference one track over
another track, we can define π to be a uniform discrete density.
However, there are scenarios in which a uniform density is
not appropriate, but we lack prior knowledge on the correct
assignment of observations to target tracks. In such situations,
we can place a Dirichlet distribution prior on the mixture
weights π. A random draw from a Dirichlet distribution is
a N -dimensional vector which is constrained to lie within
the (N − 1)-dimensional simplex. Therefore, a Dirichlet dis-
tribution defines a distribution over probability measures on



the integers {1, . . . , N}. In addition, the Dirichlet distribution
is conjugate to the multinomial, which makes it suitable for
this application. One can also place a prior distribution H(λ)
on the parameters θk. The generative mixture model can be
described by the following equations,

π ∼ Dir(α/N, . . . , α/N)
θk ∼ H(λ)

z
(j)
t ∼ π

y
(j)
t ∼ f(y|t, θ

z
(j)
t

).

B. Dirichlet Process Mixture Model

In the discussion thus far we have assumed that we know
the number of tracks. This begs the question: What if this
is unknown apriori and what if we do not want to restrict
ourselves to considering a fixed finite number of tracks?

If the number of tracks is allowed to be countably infinite,
we need a method of constructing a countably infinite set of
mixture weights that satisfy the axioms of probability. In this
situation, it is not possible to set π to be a uniform density.

Previously we defined a finite mixture model with a Dirich-
let distribution prior on the finite set of mixture weights π (see
Fig.2(a)). This can be extended to a countably infinite mixture
model by placing a Dirichlet process prior on the countably
infinite set of mixture weights (see Fig.2(b)). This gives us
what is called a Dirichlet process mixture model [2].

A Dirichlet process defines a distribution over probability
measures on potentially infinite parameter spaces Θ. This
stochastic process is uniquely defined by a concentration
parameter, α, and base measure, H , on the parameter space Θ;
we denote it by DP (α, H). A tutorial on Dirichlet processes,
including references to seminal work, can be found in [3], [4].

It can be shown that the Dirichlet process actually defines
a distribution over discrete probability measures. Namely,
w.p.1 a random draw G ∼ DP (α, H) is equivalent to
G =

∑∞
k=1 πkδθk

, where πk and θk are random. We use
the notation δθk

to indicate a Dirac delta at θk. The weights
πk of this discrete density can be described by the following
stick breaking construction. We divide a unit-length stick by
the mixture weights π defined over an infinite set of random
parameters. The kth mixture weight is a random proportion
βk of the remaining stick after the previous (k − 1) weights
have been defined,

βk ∼ Beta(1, α) k = 2, 3, . . .

πk = βk

k−1∏
l=1

(1− βl) k = 2, 3, . . . .

One can easily prove that the axioms of probability are
satisfied, namely

∑∞
k=1 πk

a.s.= 1. We now have a random
probability measure π = {πk}∞k=1 ∼ stick(α) defined over the
positive integers, not just {1, . . . , N}. From this construction
we see that the parameter α controls the relative proportion of
the weights π, and thus controls model complexity in terms

of the expected number of components (e.g. tracks).1

When the Dirichlet process prior is combined with a likeli-
hood distribution for the observations (as depicted in the graph
of Fig.2(b)), we have a Dirichlet process mixture model. The
generative mixture model can be described by,

π ∼ stick(α)
θk ∼ H(λ)

z
(j)
t ∼ π

y
(j)
t ∼ f(y|t, θ

z
(j)
t

).

C. Properties of the Dirichlet Process Prior

Because random probability measures drawn from a Dirich-
let process are discrete w.p.1, there is a strictly positive
probability of associating the same parameter with multiple
observations which creates a clustering effect. The data is
assigned to a target track based on the parameter with which
it is associated.

In addition, there is a reinforcement property that makes it
more likely to assign an observation to a track to which other
observations have already been assigned. This is described
by the predictive distribution of a new track assignment
conditioned on all other previous track assignments,

p(zM+1 = z|z1:M , α,H) =
1

α + M
(αδ(z,N + 1) +

N∑
k=1

Mkδ(z, k)),

where M is the total number of observations and Mk are those
assigned to the kth track. Here, we use the notation δ(z, k)
to indicate the Kronecker delta. This distribution is the prior
distribution on the track assignment of an observation (i.e. the
probability of a track assignment when ignoring the likelihood
of the observation given that assignment.) We see that the
prior probability that the observation was generated from a
new, previously unseen track N + 1 is proportional to α and
the prior probability that the observation was generated by an
existing track k is proportional to the number of assignments
to track k, namely Mk. Therefore, Dirichlet processes favor
simpler models. It can be shown that under mild conditions
if the data is generated by a finite mixture then the Dirichlet
process posterior is guaranteed to converge (in distribution) to
that finite set of mixture parameters [5].

IV. LEARNING

In order to learn the set of track assignments, we use
a Markov chain Monte Carlo (MCMC) method, specifically
Gibbs sampling. We briefly describe MCMC theory and then
present a the Gibbs sampler for our model.

A. Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods [6] are a class
of algorithms used to sample from probability distributions

1If the value of α is unknown, the model may be augmented with a gamma
prior distribution on α, so that the parameter is learned from the data [2].



that are challenging to sample from directly. A Markov chain is
constructed whose stationary distribution is the desired density.

x(n) ∼ q(x|x(n−1)) n = 1, 2, . . .

After a certain ”burn-in” period N̄ , the state evolution of
this chain provides samples from the desired distribution (i.e.
x(n) ∼ p(x), n > N̄ ).

Gibbs sampling is a type of MCMC method that is well
suited to state spaces with internal structure. Consider a state
space with M states where we wish to draw samples from
the joint distribution. With a Gibbs sampler, a sample x

(n)
i is

drawn from the conditional distribution given the previous set
of samples for the other states. We iterate through every state
using a specific or random node ordering τ ,

x = (x1, x2, . . . , xM )
for n = 1 : Niter

x
(n)
i ∼ p(xi|x(n−1)

\i ) i = τ(n)

x
(n)
j = x

(n−1)
j j 6= τ(n)

end

A node in an undirected graph is conditionally independent
of all other nodes given its neighbors. This is equivalent to
saying in a directed graph a node is conditionally independent
of all other nodes given its Markov blanket, p(xi|xV\i) =
p(xi|xMB(i)), where the Markov blanket consists of the node’s
parents, co-parents, and children. Therefore, in the case of
sparse graphs, the conditional density from which we are
sampling is of much lower dimension than the joint.

B. Gibbs Sampling on Dirichlet Process Mixture Models

In order to infer the set of track assignments z
(j)
t in

our model, we use a Rao-Blackwellized Gibbs sampler by
marginalizing over the infinite set of parameters θ and mixture
weights π as in [7]. We map the jth observation at time t to
an index i and sample each zi as follows,

for n = 1 : Niter
z
(n)
i ∼ p(zi|z(n−1)

\i , y, α, λ) i = τ(n)

z
(n)
j = z

(n−1)
i j 6= τ(n)

end,

where Niter is the number of iterations of the Gibbs sampler.
The conditional density of zi is proportional to the prior pre-
dictive probability of the track assignment times the likelihood
of the observation yi given that track assignment and the
other observations and assignments. We can determine the
probability of each of the finite set of track assignments as,

p(zi = k|z\i, y, α, λ) ∝ p(zi = k|z\i, α)p(yi|zi = k, z\i, y\i, λ).

We note that the conditional dependency between the assign-
ment variables z arises from the marginalization over π.

We can find closed form solutions for the prior and like-
lihood distributions as follows. The Dirichlet process induces
an exchangeable distribution on partitions of the data, so the

joint distribution is invariant to the order in which observations
are assigned to clusters. Exchangeability implies that we can
assume that the ith observation is the last and sample from
the predictive distribution of zi just as we would for zM+1,

p(zi|z\i, α) =
1

α + M − 1
(αδ(zi, N + 1) +

N∑
j=1

Mjδ(zi, j)).

The likelihood distribution is found by analytically marginal-
izing over θ,

p(yi|zi = k, z\i, y\i, λ) ∝
∫

Θ

∏
j

p(yj |θ, zj)p(θ|λ)dθ

∝
∫

Θk

∏
j|zj=k

p(yj |θk)p(θ|λ)dθk.

There is a one-to-one mapping between θk and Xk, where,

Xk , [xk(0) xk(1) . . . xk(T )].

Therefore, we can equivalently write the likelihood as,

p(yi|zi = k, z\i, y\i, λ) ∝
∫

Xk

∏
j|zj=k

p(yj |Xk)p(Xk)dXk

∝
∫
Xk

∏
j|zj=k

p(yj |xk(tj))
∏
τ

p(xk(τ)|xk(τ − 1))dXk,

where tj is the time of the jth observation. Let {x̂k, Pk}
be the Kalman smoothed state estimate and associated error
covariance at ti generated from {yj |zj = k, j 6= i}, computed
by combining the forward filter predictive state statistics with
those of the reverse-time filter [8]. The likelihood of the
observation yi is then equivalent to the probability of yi given
the smoothed parameters for its track assignment,

p(yi|zi = k, z\i, y\i, λ) ∝
∫

p(yi|xk(ti))p(xk(ti)|x̂k, Pk)dxk(ti)

=
{

p(yi|x̂k, Pk) k = 1, . . . , N ;
p(yi|P0) k = N + 1.

Note that only local changes to the statistics in the smoothing
algorithm are needed when observations are reassigned. This
allows for an efficient implementation of the Gibbs sampler.

V. RESULTS

We apply the previously described Gibbs sampler to the
Dirichlet process mixture model we have presented in order to
learn track assignments. To speed up the rate of convergence,
we also insert a ”switch” step in our sampler as described in
[1]. Fig.3 depicts the correct assignment of observations to
tracks and the corresponding actual target tracks.

Because MCMC methods provide samples from the pos-
terior distributions after the burn-in period, there are many
ways to analyze the results. We examine a few of the statistics
resulting from 20,000 iterations of the Gibbs sampler.

In Fig.4(a) we consider the MAP estimate of the track
assignments. That is to say, this is the mode of the distribution
most often visited by the sampler over 20,000 iterations.
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Fig. 3. Correct track assignments.

There are 10 tracks in both the correct assignment and MAP
estimate. In addition, though similar, the estimated and true
track assignments differ in their target crossing patterns.

Determination of target crossing patterns is an ill-posed
problem. In Fig.4(b) we show the seventh most likely assign-
ment. By comparison with the MAP estimate, we see that the
Gibbs sampler explores the space of possible crossings. In
practice, we probably want to maintain multiple hypotheses
of track associations.
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Fig. 4. (a) MAP estimate of track assignments and (b) Seventh most likely
track assignments.

We can also consider the problem of track ID. Assume that
track ID information for targets 0-9 is known at the beginning
of the window of data, as depicted in Fig.5(b). The goal is then
to the preserve statistics of track ID at the end of the window
by correctly associating a-j with 0-9. Fig.5(a) shows the grid
of possible associations. The coloration indicates how likely
each association is given our Gibbs samples. The asterisks
represent the correct associations. The Munkres algorithm [9]
can be applied to find the most likely associations given that
each letter a-b can only be assigned to one number in 0-9.

VI. FUTURE WORK

We are interested in applying Dirichlet processes to a
number of extensions to this model including tracking a single
maneuvering target and multiple maneuvering targets as well
as groups of targets maneuvering in a coordinated fashion.
We are especially interested in the case where the number of
maneuver modes is unknown apriori.

For such applications where we are inherently grouping ob-
servations which share parameters, we can layer the Dirichlet
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Fig. 5. (a)Probability of start ID to end ID associations (*=correct,
o=Munkres). (b) True target tracks and ID associations.

process priors to create various hierarchical Dirichlet process
mixture models [4]. The discussion of these methods is beyond
the scope of this paper.

We are also interested in examining a recursive sliding
window version of this algorithm for performing on-line data
association and tracking.

VII. CONCLUSION

In conclusion, we have explored a nonparametric Bayesian
method for data association in a target tracking application
where the number of targets is unknown apriori. Specifically,
we have exploited the properties of Dirichlet processes in
placing a prior on the number of targets and shown that this
provides a flexible and computationally tractable model for
learning track associations. We have presented the theoreti-
cal background relevant to our modeling choices and have
described a learning method using MCMC sampling. Our
results indicate the utility of this method in performing data
association in the presence of an unknown number of targets.
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