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Abstract— Graphical models provide a powerful formalism for In estimation problems in which the prior and observa-
statistical signal processing. Due to their sophisticated modeling tion models have normally distributed random components,
capabilities, they have found applications in a variety of fields computing the Bayes least-squares estimate is equivalent to
such as computer vision, image processing, and distributed sensor h . . e
networks. In this paper, we present a general class of algorithms §OIV|ng {i linear system of equations spec!f!ed In tgrms o.f the
for estimation in Gaussian graphical models with arbitrary information-form parameters of the conditional distribution.
structure. These algorithms involve a sequence of inference Due to its cubic computational complexity in the number of
problems on tractable subgraphs over subsets of variables. This variables, direct matrix inversion to solve the Gaussian estima-
framework includes parallel iterations such as Embedded Trees, tion problem is intractable in many applications in which the

serial iterations such as block Gauss-Seidel, and hybrid versions b f iables i | . h b
of these iterations. We also discuss a method that uses local"Umber of variables is very large (e.g., in oceanography prob-

memory at each node to overcome temporary communication 1€ms [8] the number of variables may be on the order(s.
failures that may arise in distributed sensor network applications. For tree-structured MRFs (i.e., graphs with no cycles), Belief
We analyze these algorithms based on the recently developedpropagation (BP) [9] provides an efficient linear complexity
walk-sum interpretation of Gaussian inference. We describe the algorithm to compute exact estimates. However, tree-structured
walks “computed” by the algorithms using walk-sum diagrams . L Y s

and show that for iterations based on a very large and flexible set Gaussian processes p(_)ssess limited mod_ell_ng capabilities [_10]'
of sequences of Subgraphs’ convergence is guaranteed in Wa|k_ln order to model a richer class of statistical dependenCIeS
summable models. Consequently, we are free to choose spanningamong variables, one often requires loopy graphical models.
trees and subsets of variablesdaptivelyat each iteration. This As estimation on graphs with cycles is substantially more
leads to efficient methods for optimizing the next iteration step to complex, considerable effort has been and still is being put

achieve maximum reduction in error. Simulation results demon- . to d lopi thods that thi tati |
strate that these non-stationary algorithms provide a significant Into developing methods thal overcome this computationa

speedup in convergence over traditional one-tree and two-tree barrier, including a variety of methods that employ the idea of
iterations. performing inference computations on tractable subgraphs [11,
Index Terms—Graphical models, Gauss-Markov Random 12]..The recently proposed Embedded Trees (ET) itera.tion [10,
Fields, walk-sums, distributed estimation, walk-sum diagrams, 13] is one such approach that solves a sequence of inference
subgraph preconditioners, maximum walk-sum tree, maximum problems on trees or, more generally, tractable subgraphs. If

walk-sum block. ET converges, it yields the correct conditional estimates, thus
providing an effective inference algorithm for graphs with
|. INTRODUCTION essentially arbitrary structure.

Graphical models offer a convenient representation for joint For the case dftationaryET iterations — in which the same
probability distributions and convey the Markov structure itree or tractable subgraph is used at each iteration — necessary
a large number of random variables compactly. A graphicahd sufficient conditions for convergence are provided in [10,
model [1, 2] is a collection of variables defined with respect tb3]. However, experimental results in [13] provide compelling
a graph; each vertex of the graph is associated with a randemdence that much faster convergence can often be obtained
variable and the edge structure specifies the conditional indly- changing the embedded subgraph that is used from one
pendence properties among the variables. Due to their soplitisration to the next. The work in [13] provided very limited
ticated modeling capabilities, graphical models (also known asalysis for suchon-stationaryiterations, thus leaving open
Markov random fields or MRFs) have found applications in #he problem of providing easily computable broadly applicable
variety of signal processing tasks involving distributed sensoonditions that guarantee convergence.
networks [3], images [4, 5], and computer vision [6]. Our focus In related work that builds on [10], Delouille et al. [14]
in this paper is on the important class of Gaussian graphicidscribe a stationary block Gauss-Jacobi (GJ) iteration for
models, also known as Gauss-Markov random fields (GMRFsplving the Gaussian estimation problem with the added con-
which have been widely used to model natural phenomenasimaint that messages between variables connected by an edge

many large-scale estimation problems [7, 8]. in the graph may occasionally be “dropped”. The local blocks
subgraphs) are assumed to be small in size. Such a framework
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there is a breakdown in communication to prevent the iteratigignificant speedup in convergence over traditional approaches
from diverging. However, the analysis in [14] is also restricteitivolving a single preconditioner or alternating between two
to the case of stationary iterations, in that the same partitionipgeconditioners.
of the graph into local subgraphs is used at every iteration. Our walk-sum analysis also shows that local memory at each

Finally, we note that ET iterations fall under the classode can be used to achieve convergence for any of the above
of parallel update algorithms, in that every variable mustlgorithms when communication failures occur in distributed
be updated in an iteration before one can proceed to thensor networks. Our protocol differs from the description in
next iteration. Howevesserial schemes involving updates over{14], and as opposed to that work, allows for non-stationary
subsets of variables also offer tractable methods for solvingdates. Also, our walk-sum diagrams provide a simple,
large linear systems [15, 16]. An important example in thistuitive representation for the propagation of information with
class of algorithms is block Gauss-Seidel (GS) in which eaelach iteration.
iteration involves updating a small subset of variables. One of the conditions for walk-summability in Section 1I-C

In this paper, we analyze non-stationary iterations bassbows that walk-summable models are equivalent to models
on an arbitrary sequence of embedded trees or tractafde which the information matrix is an H-matrix [16, 18].
subgraphs. We refer to these trees and subgraphs on wtggveral methods for finding good preconditioners for such
inference is performed at each iteration preconditioners matrices have been explored in the linear algebra literature,
following the terminology used in the linear algebra literaturdaut these have been restricted to either cycling through a fixed
We present a general class of algorithms that includes the nest of preconditioners [19] or to so-called “multi-splitting”
stationary ET and block GS iterations, and provide a geneedgjorithms [20, 21]. These results do not address the problem
and very easily tested condition that guarantees convergenfeconvergence of non-stationary iterations using arbitrary
for any of these algorithms. Our framework allows for hybrignon-cyclic) sequences of subgraphs. The analysis of such
non-stationary algorithms that combine aspects of both bloalgorithms along with the development of methods to pick
GS and ET. We also consider the problem of failing linka good sequence of preconditioners are the main novel con-
and describe a method that uses local memory at each naidleutions of this paper, and the recently developed concept of
to address this problem in general non-stationary parallel awdlk-sums is critical to our analysis.
serial iterations. In Section Il, we provide the necessary background about

Our analysis is based on a recently introduced framewoBMRFs and the walk-sum view of inference. Section |l
for interpreting and analyzing inference in GMRFs based afescribes all the algorithms that we analyze in this paper, while
sums over walks in graphs [17]. We descrilvalk-sum dia- Section IV contains the analysis and walk-sum diagrams that
gramsthat provide an intuitive interpretation of the estimategrovide interpretations of the algorithms in terms of walk-sum
computed by each of the algorithms after every iteration. domputations. In Section V, we use the walk-sum interpreta-
walk-sum diagram is a graph that corresponds to the wallisn of Section IV to show that these algorithms converge in
“accumulated” after each iteration. As developed in [17] walkvalk-summable models. Section VI presents techniques for
summability is an easily tested condition which, as we wilthoosing tree-based preconditioners and subsets of variables
show, yields a simple necessary and sufficient condition fadaptively for the ET and block GS iterations respectively,
the convergence of the algorithms. As there are broad clasaes demonstrates the effectiveness of these methods through
of models (including attractive, diagonally-dominant, and s@imulation. We conclude with a brief discussion in Section VII.
called pairwise-normalizable models) that are walk-summabiehe appendix provides additional details and proofs.
our analysis shows that our algorithms provide a convergent,
computationally attractive method for inference. Il. GAUSSIAN GRAPHICAL MODELS AND WALK -SUMS

The walk-sum analysis and convergence results show that ) ) ) )
arbitrary non-stationary iterations of our algorithms basdtt Gaussian graphical models and estimation
on a very large and flexible set of sequences of subgraph®\ graph G = (V, &) consists of a set of verticeg and
or subsets of variables converge in walk-summable modedssociated edge§ C (‘2/) where (‘2/) is the set of all
Consequently, we are free to use any sequence of trees inuherdered pairs of vertices. A subsgetC V is said toseparate
ET algorithm or any valid sequence of subsets of variablesbsetsd, B C V if every path inG between any vertex il
(one that updates each variable infinitely often) in the blo@dnd any vertex il3 passes through a vertex # A graphical
GS iteration, and still achieve convergence in walk-summahieodel [1, 2] is a collection of random variables indexed by the
models. We exploit this flexibility by choosing trees or subsetertices of a graph; each vertexc V' corresponds to a random
of variables adaptively to minimize the error at iteration variable z,, and where for anyA C V, z4 = {zs|s € A}.
based on the residual error at iteration- 1. To make these A distribution p(xy/) is Markov with respect tog if for any
choices optimally, we formulate combinatorial optimizatiosubsetsA, B C V that are separated by sonte C V, the
problems that maximize certain re-weighted walk-sums. Véeibset of variables 4 is conditionally independent of g
describe efficient methods to solve relaxed versions of thegigen zg, i.e. p(za,zp|zs) = p(zalzs) p(rp|rs).
problems. For the case of choosing the “next best” tree,We consider GMRFs{z;s|s € V} parameterized by a
our method reduces to solving a maximum-spanning tregean vectory and a positive-definite covariance matriX
problem. Simulation results indicate that our algorithms fddenoted byP > 0): xy ~ N (w, P) [1,22]. For simplicity,
choosing trees and subsets of variables adaptively provideach 2, is assumed to be a scalar variable. An alternate



natural parameterization for GMRFs is specified in terms &r each: = 0,...,¢ — 1. Thus, there is no restriction on
the information matrixJ = P~! (also calledprecisionor a walk crossing the same node or traversing the same edge
concentrationmatrix) and potential vectorh = P~!y, and multiple times. Theweight of the walk ¢(w) is defined:
is denoted byzy ~ N~Y(h,J). In particular, if p(xy) is 1
Markov with respect to grapld/, then the specialization of $(w) 2 HR
the Hammersley-Clifford theorem for Gaussian models [1, bl Wi Wi
22] directly relates the sparsity of to the sparsity ofG:
Jo: # 0 if and only if the edge{s,t} € & for every pair Note that the partial-correlation matriR is essentially a
of verticess, t € V. The partial correlation coefficienp, , is Matrix of edge weights. Interpreted differently, one can also
the correlation coefficient of variables, andz, conditioned View each element ofz as the weight of the length-walk
on knowledge of all the other variables [1]: between two vertices. In generé‘R‘f)s_’t is then the walk-sum

poy 2 COV(T5; T4 |27 (5,0)) Jau " ¢([i7f> t)hovert;he ({iknite) set of afl_l I.fngtﬂt—\{vaJI[Ir(]s froms ]Ec;h

st = =TT t , where thewalk-sumover a finite set is the sum of the
Vvarzsley s n Varzle .. Toisdue weights of the walks in the set. Based on this point of view,

Hence, J;; = 0 implies thatzs and x; are conditionally we can interpret estimation in Gaussian models from equation
independent given all the other variableg ;. (2) in terms of walk-sums:

Letx ~ N*l(hprior, Jprior), @and suppose that we are given - -
noisy observationg = Cx + v of x, with v ~ N(0, S). The _ —1 _ Y _ ¢
goal of the Gaussian estimation problem is Eo cc)Jmpute anPS’t = (-’77, = Z (7). = Z¢(S RS
estimater that minimizes the expected squared-error between
Z and z. The solution to this problem is the mean of thd hus, the covariance between variabigsandz, is the length-
posterior distributionz|y ~ N~1(h,.J), with J = Jouor + ordered sum over all walks_ from to ¢. This_, however, is a
CTS=1C andh = hpyior + CT S~y [23]. Thus, the posterior Very specific instance of an inference algorithm that converges
meanu = J~lh can be computed as the solution to th# the spectral radius conditiop(R) < 1 is satisfied (so
following linear system: that the matrix geometric series converges). Other inference

algorithms, however, may compute walksdifferent orders
(Jorior +CTSTIO)E = hprin +CTS™'y & JZ=h. (2) In order to analyze the convergence of general inference

We note that/ is a symmetric positive-definite matrix. (& algorithms that submit to a walk-sum interpretation, a stronger

and S are diagonal (corresponding to local measuremenfs‘?ndition was developed in [17] as follows. Given a countable
J has the same sparsity structure as thatJgfio,. The sét of walksV, the walk-sumover WV is the unordered sum

conditions for all our convergence results and analysis ff the individual weights of the walks contained ity
this paper are specified in terms of the posterior graphical SOWV) £ Z (w).

model parameterized by. As described in the introduction,
solving the linear system (2) is computationally expensive by
direct matrix inversion even for moderate-size problems. If order for this sum to be well-defined, we consider the

this paper, we discuss tractable methods to solve this lind@fowing class of Gaussian graphical models.
system. Definition 1: A Gaussian graphical model defined n=

(V, &) is said to bewalk-summabléf the absolute walk-sums
over the set of all walks between every pair of verticegjin
are well-defined. That is, for every pairt € V,

=0 =0

weW

B. Walk-summable Gaussian graphical models

We assume that the information matrik of a Gaussian
model defined org = (V,&) has been normalized to have (s —t) = Z |p(w)| < oo.
unit diagonal entries. For example, Ip is a diagonal ma- wWEW (5—t)
trix 1contailning the diagonal entries of, then the matrix Here, ¢ denotes absolute walk-sums over a set of walks.
D~2JD~= contains re-scaled entries of at off-diagonal V(s — t) corresponds to the set of all wafkbeginning at
locations and'’s along the diagonal. Such a re-scaling does nokrtexs and ending at the vertexin G. Section II-C lists some
affect the convergence results of the algorithms in this papesasily tested equivalent and sufficient conditions for walk-
However, re-scaled matrices are useful in order to providammability. Based on the absolute convergence condition,
simple characterizations of walk-sums. LBt= I — J. The walk-summability implies that walk-sums over a countable set
off-diagonal elements aR are precisely the partial correlationof walks can be computed #ny orderand that the unordered
coefficients from (1), and have the same sparsity structurevaslk-sum ¢(s — t) is well-defined [24, 25]. Therefore, in
that of J (and consequently the same structur&nd et these walk-summable models, the covariances and means can be
off-diagonal entries be the edge weightsgni.e. R, ; = ps: interpreted as follows:
is the weight of the edgés, ¢t}. A walkin G is defined to be a
sequence of vertices = {w;}’_, such that{w;, w; 11} € £ Py =¢(s — 1), (4)

1Aithough our analysis of the algorithms in Section IIl is specified for 2We denote walk-sets by but generally drop this notation when referring
normalized models, these algorithms and our analysis can be easily extenethe walk-sum ovelV, i.e. the walk-sum of the sétV(~) is denoted by
to the un-normalized case. See Appendix A. o(~).



pe=> Pishe=Y hPsy=Y hid(s—t), (5) An example of a commonly encountered walk-summable
sEV seV sEV model in statistical image processing is the thin-membrane
where (3) is used in the first equation, and (4) in the secorfior [26]. Further, linear systems involving sparse diagonally
In words, the covariance between variablesand z; is the dominant matrices are also a common feature in finite element
walk-sum over the set of all walks fromto ¢, and the mean of @pproximations of elliptical partial differential equations [27].
variablez, is the walk-sum over all walks endingéwith each ~ We now describe some operations that can be performed on
walk being re-weighted by the potential value at the startiijalk-sets, and the corresponding walk-sum formulas. These

node. relations are valid in walk-summable models [17]:
The goal in walk-sum analysis is to interpret an inference « Let {4, }.-, be a countable collection of mutually dis-
algorithm as the computation of walk-sums & If the joint walk-sets. From the sum-partition theorem for abso-

analysis shows that the walks being computed by an inference lutely summable series [25], we have thgt)>> ,U,,) =
algorithm are the same as those required for the computation > | ¢(U4,,). This implies that for a countable collection
of the means and covariances above, then the correctness of of walk-sets {Vn}ff:l where V,,_1 C V,, we have
the algorithm can be concluded directly for walk-summable that (U ,V,,) = lim, . ¢(V,). This is easily seen
models. This conclusion can be reached regardless of the order by defining mutually disjoint walk-set§if,,} -, with

in which the algorithm computes the walks due to the fact that ¢/, = V,,\V,,—1.

walk-sums can be computed any order in walk-summable o Letu = ugu; - - - Uend ANAV = Vgpart V1 - - - V() 0E Walks
models. Thus, the walk-sum formalism allows for very strong  such thatue,q = vsiart. The concatenation of the walks
yet intuitive statements about the convergence of inference is defined to beu - v £ UQUL * * * Uend V1 * * * Vyg(v)- NOW
algorithms that submit to a walk-sum interpretation. Indeed, consider a walk-s&f with all walks ending at vertex,, q
the overall template for analyzing our inference algorithms is and a walk-seV with all walks starting avgiart = teng.
simple. First, we show that the algorithms submit to a walk- The concatenation of the walk-séis )V is defined:

sum interpretation. Next, we show that the walk-sets computed A

by these algorithms are nested, W,, C W, 1, where W, UV ={u-v|ueldveVy

is the set of walks computed at iteratian Finally, we show
that every walk required for the computation of the mean (5) is

contained inW,, for somen. A key ingredient in our analysis is said to beuniquely decomposablieto the setd/, V.

is that in computing all the walks in (5), the algorithms must  gqr such uniquely decomposable walk-setf{ ® V) =
not overcountny walks. Although each step in this procedure dU)P(V).

is non-trivial, combined together they allow us to conclude that
the algorithms converge in walk-summable models.

If every walk w € & ® V can be decomposed uniquely
intou € Y andv € V so thatw = u - v, thenld @ V

Finally, the following notational convention is employed
in the rest of this paper. We use wild-card symbolsafd
) e) to denote a union over all vertices iG. For example,
C. Properties of walk-summable models given a collection of walk-set3V(s), we interpret W (x)

Very importantly, there are easily testable necessary aaéusev W(s). Further, the walk-sum over the sgY(x) is
sufficient conditions for walk-summability. Le® denote the defined dW(x)) & > ser @(W(s)). In addition to edges
matrix of the absolute values of the elements /af Then, being assigned weights, vertices can also be assigned weights

walk-summability is equivalent to either [17] (for example, the potential vectd). A re-weighted walk-sum
e o(R) <1, o0r of a walk w = wy - - - we With vertex weight vector is then
e« I—R>0. defined to bep(h; w) £ h,,¢(w). Based on this notation, the

From the second condition, one can draw a connection to Fean of variabler, from (5) can be re-written as
matrices in the linear algebra literature [16, 18]. Specifically,
) ; . : - pr = ¢(hyx — t). (6)
walk-summable information matrices are symmetric, positive-
definite H-matrices.
Walk-summability of a model is sufficient but not neces-  Ill. NON-STATIONARY EMBEDDED SUBGRAPH
sary for the validity of the model (positive-definite informa- ALGORITHMS
tion/covariance). Many classes of models are walk-summablen this section, we describe a framework for the computa-
[17]: tion of the conditional mean estimates in order to solve the
1) Diagonally-dominant models, i.e. for each € V, Gaussian estimation problem of Section II-A. We present three
Z#S [ Js.t| < Js.s- algorithms that become successively more complex in nature.
2) Valid non-frustrated models, i.e. every cycle has an ev&¥e begin with the parallel ET algorithm originally presented in
number of negative edge weights ahd R > 0. Special [10, 13]. Next, we describe a serial update scheme that involves
cases include valid attractive modelB;(; > 0 for all processing only a subset of the variables at each iteration.
s,t € V) and tree-structured models. Finally, we discuss a generalization to these non-stationary
3) Pairwise normalizablemodels, i.e. there exists a di-algorithms that is tolerant to temporary communication fail-
agonal matrixD = 0 and a collection of matrices ure by using local memory at each node to remember past
{Je = 0|(Je)ss = 0if (s,t) # e, e € £} such that messages from neighboring nodes. A similar memory-based
J=D+3 . cce. approach was used in [14] for the special case of stationary



iterations. The key theme underlying all these algorithnidere, V¢ refers to the complement of the vertex $éf. In

is that they are based on solving a sequence of infereremuation (9),Rv, v. refers to the sub-matrix of edge weights

problems on tractable subgraphs involving all or a subset af edges from the verticeg¢ to V,,. Every step of the above

the variables. Convergent iterations that compute means eagorithm is tractable as long as applyidg”rl to a vector

also be used to compute exact error variances [10]. Hengan be performed efficiently.

we restrict ourselves to analyzing iterations that compute thewe now present a general serial iteration that incorporates

conditional mean. an element of the ET algorithm of Section 1lI-A. This update

) scheme involves a single ET iteration within the induced

A. Non-Stationary Parallel Updates: Embedded Trees subgraph of the update variablgs. We split the edges (V)
Let S be some subgraph of the gragh The stationary ET in the induced subgraph df,, into a tractable ses, and

algorithm is derived by splitting the matri{ = Js — Ks, a set of cut edges(V,,)\S,. Such a splitting leads to a

where Js is known as thepreconditionerand Ks is known tractable subgrapi$, of the induced subgraph df,. That

as thecutting matrix Each edge irg is either an element of s, the matrix.J (™ is split asJ(™ = Js — K, . This matrix

S or £\S. Accordingly, every non-zero off-diagonal entry ofsplitting is defined analogous to the splitting in Section IlI-

J is either an element of s or of —Ks. The diagonal entries A. The modified conditional mean update at iteratioris as

of J are part ofJs. Hence, the matrixKs is symmetric, follows:

zero along the diagonal, and contains non-zero entries onlx(n) . (n—1) _(n_1)

in those locations that correspond to edges not included ifv, = s, (Ksnxvn + Ry, vy, +hvn) , (11)

the subgraph generated by the splitting. Cutting matrices may.(») _  ~(n—1) (12)
= @y, .

have non-zero diagonal entries in general, but we only consider "=
zero-diagonal cutting matrices in this paper. The splitting &very step of this algorithm is tractable as long as applying
J according toS transforms (2) toJsz = KsZ + h, which Jgnl to a vector can be performed efficiently.
suggests an iterative method to solve (2) by recursively solvingThe preceding algorithm is a generalization of both the
Jsz™) = Ksz(»=1) 4 h, yielding a sequence of estimates: block GS update (9)(10) and the non-stationary ET algorithm

~A(n) _ 7—1 A(n—1 (8), thus allowing for a unified analysis framework. Specifi-

& = Is (K‘Sx( '+ h). ) cally, by lettingS,, = £(V,,) for all n above, we obtain the
If ng exists then a necessary and sufficient condition for tiigock GS algorithm. On the other hand, by lettivig = V' for
iterates{z("}>2; to converge taJ~'h for any initial guess all », we recover the ET algorithm. This hybrid approach also
2 is that o(J5 ' Ks) < 1 [10]. ET iterations can be Very offers a tractable and flexible method for inference in large-
effective if applyingJ5' to a vector is efficient, e.g. i§  scale estimation problems, because it possesses all the benefits
corresponds to a tree or, in general, any tractable subgrapbf the ET and block GS iterations.

A non-stationary ET iteration is obtained by lettinlg=  \we note that in general applications there is one potential
Js, — Ks,, where the matrices/s, correspond to some complication with both the serial and the parallel iterations
embedded tree or subgragh in G and can vary in an arbitrary presented so far. Specifically, for an arbitrary graphical model
manner withn. This leads to the following ET iteration:  \jth positive-definite information matris, the corresponding

() — ng(KS”ZE\(”—l) +h). (8) information sub-matrix/s, for some choices of subgrapis

may be invalid or even singular, i.e. may have negative or zero
Our walk-sum analysis proves the convergence of nop-

: . i igenvalues. Importantly, this problermeverarises for walk-
stationary ET iterations based on any sequence of SUbgraQUg%mable models, and thus we are free to use any sequence
{Sn}22, in walk-summable models. Every step of the abo

! ; . o V6t embedded subgraphs for our iterations and be guaranteed
algorithm is tractable if applying/s " to a vector can be

‘ d efficientl deed - q  freed that the computations make sense probabilistically.
performed efficiently. Indeed, an important degree of free OM| amma 1: Let J be a walk-summable model, 18 C V/,

in the above algorithm is the choice &, at each stage so and let.Js be the|V| x |V|-dimensional information matrix

as to speed up convergence, while keeping the COmF’L‘t"]‘tlé??rresponding to the distribution over some subgraplof

at every iteration tractable. We discuss some approachestﬁg induced subgrapﬁ(f/). Then, Js is walk-summable, and
addressing this issue in Section VI. Js = 0 ’ '

Proof: For every pair of vertices, ¢t € V, itis clear that the
walks betweers andt in S are a subset of the walks between
%hese vertices irg, i.e. W(s =, t) € W(s — t). Hence,
d(s 25 1) < d(s — t) < oo, becauseJ is walk-summable.
Thus, the model specified bys is walk-summable. This
allows us to conclude thafs > 0 because walk-summability
implies validity of a model[]

B. Non-Stationary Serial Updates of Subsets of Variables

We begin by describing the block GS iteration [15, 16]. F
eachn = 1,2,..., let V,, C V be some subset df. The
variableszy, = {z, : s € V,,} are updated at iteration.
The remaining variables do not change from iteration1 to
n. Let J™ = [J]y.. be the|V,| x |V,|-dimensional principal
sub-matrix corresponding to the variablgs. The block GS
update at iteratiom is as follows: 3For example, consider@&cycle with each edge having a partial correlation
~(n) (n)~ 1 ~(n—1) of —0.6. This model is valid (but not walk-summable) with the corresponding
Ty, = J (RVmV# xV,f + hVn) ’ (9) J having a minimum eigenvalue d3.0292. A spanning tree models
~(n) ~(n—1) obtained by removing one of the edges in the cycle, however, is invalid with
Tye = Tye . (10)  a minimum eigenvalue 0f0.0392.



C. Distributed Interpretation of (11)(12) and Communica- This operation is possible since the edget} is assumed to
tion Failure active. Apart from these two rules, all other aspects of the

We first re-interpret the equations (:i(12) as local @lgorithm presented previously remain the same. Note that
message-passing steps between nodes followed by infereR¢@y new message received overwrites the existing stored
within the subgrapfs,,. At iterationn, let x,, denote the set message, and only the most recent message received is stored

of directededges ing(V,,)\S,, and fromV¢ to V,,: in memory. . . o
Thus, link failure affects only equation (14) in our iterative

ki = {(s,) | {s,t} € E(Va)\Sn Or s € Vi5,t € V). (13)  procedure. Suppose that a message to be received: at,
H‘éom nodes is unavailable due to communication failure. The
messageM (s — t) from memory can be used instead in
used to communicate information about the values at iteratiif fusion formula (14). Let, (s — t) denote the iteration
n — 1 to neighboring nodes for processing at iteratian pount of. the mpst recent mformauon at nodabouts at the
For eacht € V,, the messag@/(s — t) — R, 21 g information fugon step (1'4) at iteration In genera'lrn(s._>
- t) <n — 1, with equality ift € V,, and (s, t) € &, is active.

sent at iteratiom from s to ¢ using the links ins,,. Let M,,(¢) With thi ati e the fusi tion (14)-
denote the summary of all the messages received at hatle ! is notation, we can re-write the fusion equation (14):

iteration n: M, (t) = Z M(s —t) = Z R Egn(s%).
Mn(t) = Z ]V[(S — t) = Z Rt,s :L\gnfl) {s|(s,t)Ern} {s|(s,t)€rn}
{s|(s,t)Ekn} {s|(s,t)Ern}

The edge sek,, corresponds to the non-zero elements of t
matricesKs, and Ry, v. in equation (11). Edges iR, are

17)
(14)

Thus, eacht € V,, fusesall the information received about the  |V. WALK-SUM INTERPRETATION ANDWALK -SUM
previous iteration and combines this with its local potential DIAGRAMS
valueh; to form a modified potential vector that is then used |n this section, we analyze each iteration of the algorithms
for inference within the subgrap,: of Section Il as the computation of walk-sums ¢h Our

f(vn) = J5Y (Mo(Vi) + hy,), (15) gnalygi; is .preser?ted for the most genera! algorithm .involv-

n n ing failing links, since the parallel and serial non-stationary
where M,,(V,,) denotes the entire vector of fused messagepdates without failing links are special cases. For each of
M, (t) for t € V,,. An interesting aspect of these messagéhese algorithms, we then present walk-sum diagrams that
passing operations is that they doeal and only nodes that provide intuitive, graphical interpretations of the walks being
are neighbors ity may participate in any communication. Ifcomputed. Examples that we discuss include classic methods
the subgrapls,, is tree-structured, the inference step (15) casuch as GJ and GS, and iterations involving general subgraphs.
also be performed efficiently in a distributed manner usinbhroughout this section, we assume that the initial guess
only local BP messages [9]. (9 =0, and we initializeM (s — t) = 0 andri(s — t) =0
We now present an algorithm that is tolerant to temporafgr each directed edgés, t) € £. In Section V, we prove the

link failure by using local memory at each nodeto store convergence of our algorithms for any initial gues8).
the most recent messadéd (s — t) received att from s. If
the link (s, t) f_ails at some future iteration the stored message \y51k-sum interpretation
can be used in place of the new expected message. In order ) ) ] )
for the overall memory-based protocol to be consistent, weFOr every pair of vertices,t € V, we define a recursive
also introduce an additional post-inference message-passifguence of walk-sets. We then show that these walk-sets are
step at each iteration. To make the above points precise, f&ctly the walks being computed by the iterative procedure
specify a memory protocol that the network must follow; wé Section l11-C:
assume that each node in the network has sufficient memegy (s, ¢) =W,
to store the most-recent messages received from its neighbors.

n(x—e) (S - *)®W(* KL(l’) .)®W(. i) t)

Sn
First, S,, must not contain any failed links; every lirfs, t} € U W(s ==1), seviteV, (18)
E(V,,) that fails at iterationn must be a part of the cut-Set Wi(s = 1) =W,_1(s = t), s€ V,t € VE, (29)

(s,t),(t,s) € kyn. Therefore, the linksS,, that are used for
the inference step (15) must be active at iteratiorSecond, With
in order for nodes to synchronize after each iteration, they Wo(s =) =0, s,teV. (20)

must perform a post-inference message-passing Afeg.the The notation in these equations is defined in Section II-C.

inference step (15) at iteration, the variables inV,, must w denotes the walks starting at hodeom-
update their neighborim the subgraphS,,. That is, for each r(e—e) (8 = %) o (1) g

t € V,,, a message must be received post-inference from evé#fed up to iteration, (+x — e). W(x = e) corresponds
s such that{s, ¢} € Sy to a lengtht walk (called ahop) across a directed edge in
K. Finally, W(e S, t) denotes walks withirs,, that end at
t. Thus, the first RHS term in (18) is the set of previously

40ne way to ensure this is to sele$}, to explicitly avoid the failed links. ComPUted walks starting at that hOp across an esdge .,

See Section VI-B for more details. and then propagate withi§,, (ending att). W(s — t) is

M(s —t) = Ry, 2. (16)

S
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Fig. 1. (Left) Gauss-Jacobi walk-sum diagragi€?) for n = 1,2, 3. (Right) Gauss-Seidel walk-sum diagrags® for n = 1,2, 3, 4.

the set of walks froms to ¢ that live entirely withinS,,. To and the final levelh corresponds to the results at the end of
simplify notation, we define,, (s — t) £ ¢(W,,(s — t)). We iteration n. Although some variables may not be updated at
now relate the walk-set®V,, (s — t) to the estimate”ﬁg”) at each iteration, the values of those variables are preserved for

iterationn. use in subsequent iterations; thus, each leve} 6t includes
Proposition 1: At iterationn = 0,1,..., with z(® = 0, all the nodes iri/. The update variables at any iteration (i.e.,
the estimate for node¢ € V in walk-summable models is the nodes irS,,) are represented as solid circles, and the non-
given by: update ones as open circles. All edges in efgh— edges
~(n) of G included in this subgraph — are included in that level
e = Z‘/h5¢"(5 = 1) = ¢n(hix — 1), (1) of the diagram. As ing, these are undirected edges, as our
ElS]

algorithms perform inference on this subgraph. However, this
where the walk-sum is over the walk-sets defined by{(28), inference update uses some values from preceding iterations
andz" is computed using (15,17). (15,17); hence, we use directed edges (corresponding,Xo
This proposition, proven in Appendix B, states that eadfom nodes at preceding levels. The directed nature of these
of our algorithms has a precise walk-sum interpretation. édges is critical as they capture the one-directional flow of
consequence of this statement is that no walk is over-countedmputations from iteration to iteration, while the undirected
i.e., each walk inV,, submits to a unique decomposition withedges within each level capture the inference computation (15)
respect to the construction process {2®) (see proof for at each iteration. At the end of iteration only the values at
details), and appears exactly once in the sum at each iteratieel . are of interest. Therefore, the set of walks (re-weighted
As discussed in Section V (Propositions 3 and 4), the iteratiyg 1) in G(*) that begin at any solid node at any level, and end
process does even more; the walk-sets at successive iteratigingny node at the last level are of importance, where walks can
are nested and, under an appropriate condition, are “compleg@ly move in the direction of directed edges between levels,
so that convergence is guaranteed for walk-summable modeist in any direction along the undirected edges within each
Showing and understanding all these properties are greadlyel.
facilitated by the introduction of a visual representation of | gter in this section we provide a general procedure for
how each of our algorithms computes walks, and that is tegnstructing walk-sum diagrams for our most general algo-

subject of the next subsection. rithms, but we begin by illustrating these diagrams and the
_ points made in the preceding paragraph using a sidylede,
B. Walk-sum diagrams fully connected graph (with variables denoted x, z3). We

In the rest of this section, we present a graphical interpr@ok at two of the simplest iterative algorithms in the classes
tation of our algorithms, and of the walk-sexs, (18—20) We have described, namely the classic GJ and GS iterations
that are central to Proposition 1 (which in turn is the key tB5,16]. Figure 1 shows the walk-sum diagrams for these
our convergence analysis in Section V). This interpretatigigorithms.
provides a clearer picture of memory usage and informationin the GJ algorithm each variable is updated at each iteration
flow at each iteration. Specifically, for each algorithm wesing the values from the preceding iteration of every other
construct a sequence of grapg§” such that a particular variable (this corresponds to a stationary ET algorithm (7)
set of walks in these graphs correspordsictlyto the sets with the subgraphs,, being the fully disconnected graph of
W, (18—20) computed by the sequence of iterat®®. The all the nodesV). Thus each level on the left in Figure 1
graphsG(™ are calledwalk-sum diagramsRecall thatS, s fully disconnected, with solid nodes for all variables and
corresponds to the subgraph used at iterationgenerally directed edges from each node at the preceding level to every
using some of the values computed from a preceding iteratiather node at the next level. This provides a simple way of
The graphG(™) captures all of these preceding computatiorseeing both how walks are extended from one level to the next
leading up to and including the computations at iteration and, more subtly, how walks captured at one iteration are also

As a result,G™ has very specific structure for eachcaptured at subsequent iterations. For example, the Vaik
algorithm. It consists of a number kefvels— within each level G2 is captured by the directed edge that begins at riode
we capture the subgraph used at the corresponding iteratiewel 1 and proceeds to node at level 2 (the final level of
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Fig. 2. (Left) Non-stationary ET: subgraphs and walk-sum diagram. (Right) Hybrid serial updates: subgraphs and walk-sum diagram.

G). However, this walk ing® is captured by the walk that each levelk < n. Interpreted in this manner, walks &
begins at nodd at level2 and proceeds to nodeat level3 re-weighted byh and ending at one of the variablé$) are
in G©, exactly the walks computed @".

The GS algorithm is a serial iteration that updates one Proposition 2: Let G(") be a walk-sum diagram con-
variable at a time, cyclically, so that aftglr| iterations each structed and interpreted according to the preceding rules. In
variable is updated exactly once. On the right-hand side @hlk-summable models, for anyc V andk < n,

Figure 1, only one node at each level is solid, using values
of the other nodes from the preceding level. For non-update 20 = B(hsx ¢ k). (22)

variables at any iteration, a weightdirected edge is included  Proof: Based on the preceding discussion, one can check the
from the same node at the preceding level. For example, singfuivalence of the walks computed by the walk-sum diagrams
Ty is updated at level, we have open circles for nodésand with the walk-sets (1820). Proposition 1 then yields (22)

3 at that level and weight-directed edges from their copies at The following sections describe walk-sum diagrams for the
level 1. Weight-l edges do not affect the weight of any walkyarious algorithms presented in Section III.

Hence, at leveld we still capture the walki2 from level 2

(from nodel at level 1 to node2 at level 2); the walk is .

extended to node at levels3 and 4 with weight-l directed C. Non-Stationary Parallel Updates

edges. _ We describe walk-sum diagrams for the parallel ET algo-
For general graphs, the walk-sum diagrgtt) of one of rithm of Section IlI-A. Here,V,, = V for all n. Since there
our algorithms is constructed as follows: is no link failurer,(x — e) = n — 1. Hence, the walk-sum

1) Forn =1, create a new copy of eac¢he V using solid formulas (18-19) reduce to
circles for update variables and open circles for non-
update variables; label these). Draw the subgraply; Wi.(s — t) = W,_1(s — x) @ W(x* ) o) @ W(e 22 4)
using the solid nodes and undirected edges weighted by Sn
the partial correlation coefficient of each edge! is Unes == 1), stev. (23)
the same a8, with the exception thaf!) also contains The stationary GJ iteration discussed previously falls in this
non-update variables denoted by open circles. class. The left-hand side of Figure 2 shows the t®esS,, Ss,

2) Given G("~Y, create a new copy of each € V and the corresponding first three levels of the walk-sum
using solid circles for update variables and open circlefagrams for a more general non-stationary ET iteration. This
otherwise; label thes€™. Draw S,, using the update example illustrates how walks are “collected” in walk-sum
variables with undirected edges. Drawdiected edge diagrams at each iteration. First, walks can proceed along
from the variableu’ =% in G~V (sincer,(u — undirected edges within each level, and from one level to
v) < n—1)tov™ for each(u,v) € k,. If there are no the next along directed edges (capturing cut edges). Second,
failed links, r,,(u — v) = n — 1. Both these undirected the walks relevant at each iteration must end at that level.
and directed edges are weighted by their respectiver example, the walk 3231 is captured at iteration as it
partial correlation coefficients. Draw a directed edge tg present in the undirected edges at levelAt iteration 2,
each non-update variabé™ from the corresponding however, we are interested in walks ending at l&vdlhe walk

(=1 with unit edge weight. 13231 is still captured, but in a different manner — through
A level k in a walk-sum diagram refers to thi€th replica of the walk 1323 at level 1, followed by the hop31 along the
the variables. directed edge from nodg at level1 to nodel at level2. At

Rules for walks in G("): Walks must respect the orientationiteration 3, this walk is captured first by the hop from noile
of each edge, i.e., walks can cross an undirected edge in eithelevel 1 to node3 at level 2, then by the ho2 at level 2,
direction, but can only cross directed edges in one directidonllowed by the hop from node at level2 to node3 at level
In addition, walks can only start at the update varialggor 3, and finally by the ho31 at level 3.
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D. Non-Stationary Serial Updates node3 to nodel. Further, post-inference message-passing at

We describe similar walk-sum diagrams for the serial upddfS iteration only takes place between nodeand2 because
scheme of Section I1I-B. Since there is no link failurg(+ — the only edge inS, is {1,2}.
e¢) = n — 1. The recursive walk-set update (18) can be
specialized as follows: V. CONVERGENCEANALYSIS
Ko (1) s, We now show that all the algorithms of Section Il converge
Wals = 1) = Wno1(s = %) @ W(x — &) @W(e —=1) iy walk-summable models. As in Section IV-A, we focus on
UW(S Sn, t), seV,t € V,. (24) the most general non-stationary algorithm with failing links
of Section 11I-C. We begin by showing that™ converges to
While (23) is a specialization to iterations with parallel upthe correct means whe(® = 0. Next, we use this result to

dates, (24) is relevant for serial updates. The GS iteratigRow that we can achieve convergence to the correct means
discussed in Section IV-B falls in this class, as do mofxgy any initial guessz(®).

general serial updates described in Section 1lI-B in which The proof thate,, (h;* — t) — (J='h), asn — oo relies

we update a subset of variablé§ based on a subgraph ofgn the fact thatV, (s — t) eventually contains every element
the induced graph o#/,. The right-hand side of Figure 2qf the setW(s — t) of all the walks inG from s to ¢, a
illustrates an example for ou-node model. We show the condition we refer to agompletenessShowing this begins
subgraphsS,, used in the first four stages of the algorithmyith the following proposition proved in Appendix C.
and the correspondingtlevel walk-sum diagram. Note that at Proposition 3: (Nesting The walk-sets defined in equa-
iteration2 we update variables, andzs without taking into tions (18-20) are nested, i.e. for every pair of vertices €
account the edge connecting them. Indeed, the updates atﬂth/\;nil(s — 1) C Wi (s — t) for eachn.
first four iterations of this example include block GS, a hybrid This statement is easily seen for a stationary ET algorithm
of ET and block GS, parallel ET, and GS, respectively. because the walk-sum diagra@™ from levels2 to n is a
replica of G"~1) (for example, the GJ diagram in Figure 1).
E. Failing links However, the proposition is less clear for non-stationary iter-
We now discuss the general non-stationary update Scheﬂt'igns. The discussion in Section 1V-C iIIustra}tes this poinF;
of Section IlI-C involving failing links. The recursive walk—setthe paths thgt a walk traversgs change dr_ast|cally depending
computation equations for this iteration are given by-28). on the level in the Walk'Sl.Jm d'agrafT‘ at which the walk ends.
Figure 3 shows the subgraph and the edges,inthat fail No_neth_eless, as shown in Appendm C, the structure of the
estimation algorithms that we consider ensures that whenever

at each iteration, and the correspondiggdevel walk-sum alk is not exolicitly cantured in the same form it appeared
diagram. We elaborate on the computation and propagati%HV ' xplicitly captu ! 't app

of information at each iteration. At iteratiofh, inference In the preceding iteration, it is recovered through a different

is performed using subgrap,, followed by nodesl and path in the subsequent walk-sum diagram (no walks are lost).

2 passing a message to each other according to the poS(_:ompleteness relies on both nesting and the following

: : : additional condition.
inference message-passing rule (16). At iteratdooonly x3 - } . :
is updated. As no links fail, nodd gets information from Definition 2 Let (u, v) be any directed edge . For each

active i i
nodesl and?2 at level 1. At iteration 3, the link (2,1) fails. " let ry; C kn denote the set of directed active edges

But nodel has information about at level 1 (due to the (Iinks that do not f?")."'!’*n at itera}tionn. The edge(u, v) is
post-inference message passing step from iteratjorThis said to beupdated infinitely oftehif for everny > 0, there

. active
information is used from the local memory at nodén (17), exists anm > N .SUCh .that(u,v.) < S?”.L.J Fom :
and is represented by the arrow from nclat level 1 to | If there is no Imk faylure, this definition r_ed_uc_:es to includ-
node1 at level 3. At iteration 4, the links (1,3) and (3,1) ing each vertex inV in the update sel/,, infinitely often.
fail. Similar reasoqing as in iteratiod applies to the arrows st g contains a singleton node, then this node must be updated at least
drawn across multiple levels from noddo node3, and from once.
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For parallel non-stationary ET iterations (Section 11I-A), this We note that in the parallel ET iteration (with no link
property is satisfied foany sequence of subgraphsote that failure), it is not necessary to include each edge in some
there are cases in which inference algorithms may not hasebgraphsS,,; indeed, even stationary algorithms that use the
to traverse each edge infinitely often. For instance, suppaseme subgraph at each iteration are guaranteed to converge.
that G can be decomposed into subgraphs and G, that Theorem 2 shows that walk-summability is sufficient
are connected by a single edge, with having small size condition forall our algorithms to converge for a very large
so that we can perform exact computations. For exanple, and flexible set of sequences of tractable subgraphs or subsets
could be a leaf node (i.e., have degree one). We can eliminafevariables (ones that update each edge infinitely often) on
the variables inG,, propagate information “into'y; along which to perform successive updates. Corollary 1 requires even
the single connecting edge, perform inference witiin and weaker conditions for convergence if there is no communica-
then back-substitute. Hence, the single connecting edgetié failure. The following result, proven in Appendix F, shows
traversed only finitely often. In this case the hard part of thteat walk-summability is alsaecessaryfor this complete
overall inference procedure is on the reduced graph with leaibility. Thus, while any of our algorithmsayconverge for
and small, dangling subgraphs eliminated, and we focus some sequence of subsets of variables and tractable subgraphs
inference problems on such graphs. Thus, we assume that dacd non-walk-summable model, there is at least one sequence
vertex inG has degree at least two and study algorithms that updates that leads to a divergent iteration.
traverse each edge infinitely often. Theorem 3: For any non-walk-summable model, there ex-
Proposition 4: (CompletenegsLet w = s---t be an arbi- ists at least one sequence of iterative steps that is ill-posed, or
trary walk froms to t in G. If every edge inG is updated for which zZ("), computed according to (15,17), diverges.
infinitely often (in both directions), then there exists ah
such thatw € W, (s — t) for all n > N, where the walk-set
Wi (s — t) is defined in (18-20).
The proof of this proposition appears in Appendix D. We In this section we address two topics. The first is taking
can now state and prove the following. advantage of the great flexibility in choosing successive iter-

Theorem 1: If every edge ing is updated infinitely often ative steps by developing techniques that adaptively optimize

(in both directions), them,, (h;+ — t) — (J~'h), asn — the on-line choice of the next tree or subset of variables to
o in walk-summable models, with,, (s — t) as tdeﬁned in use in order to reduce the error as quickly as possible. The

Section IV-A. second is providing experimental results that demonstrate the
Proof: One can check thaltV, (s — t) C W(s — t),¥n. CONvergence behavior of these adaptive algorithms.

This is because equations (280) only use edges from the

original graphg. We have from Proposition 4 that every walky - choosing trees and subsets of variables adaptively

from s to ¢t in G is eventually contained iW,,(s — t). Thus, ) ) L

U2 Wh(s — £) = W(s — t). Given these arguments and At iteration n, let the error be ¢(") = Z — (") and the

the nesting of the walk-set&/, (s — ¢) from Proposition 3, fesidual errorbe h(") = — J 7). Note that it is tractable

we can appeal to the results in Section II-C to conclude th& compute the residual error at each iteration.
Gn(hix — t) — (J'h), asn — co. O A.l Trees. We de.scrllbe an efficient alg%r_n_hm to phor?se
Theorem 1 shows th;ﬁgn) R <J,1h)t for 70 — 0. The SPanning trees aplap'uvey to use as preconditioners in the ET
. : . : algorithm of Section IlI-A. We have the following relationship
following result, proven in Appendix E, shows that in walk- . ; :
. . ; beftween the error at iteration and the residual error at
summable models convergence is achieved for any choice. 0

initial condition® Iterationn — 1.

VI. ADAPTIVE ITERATIONS AND EXPERIMENTAL RESULTS

Theorem 2: If every edge is updated infinitely often, then e = (J = J3h p(n—1)
z(") computed according to (15,17) converges to the correct "
means in walk-summable models for any initial gug&s. Based on this relationship, we have the walk-sum interpre-

Next, we describe a stronger convergence result when theggon ¢ = A1)« 9\Sy s), and consequently the

is no communication failure. following bound on the?; norm of e(™):

Corollary 1: Assuming no communication failure, we have

the following special cases for convergence in walk-summable ||6(n)H121 = Z qs(h(”*l); « DSy s)
models (with any initial guess): sev

1) The hybrid algorithms of Section IlI-B converge to < (M"Y G\S,)
the correct mean as long as each variable is updated = oM Y;G) — o(|h " V|;S,),  (25)
infinitely often.

2) The parallel ET iterations of Section IlI-A (with;, = whereG\S,, denotes walks i that must traverse edges not
V) converge to the correct mean usiagy sequence of in S,,, |h("~Y)| refers to the entry-wise absolute value vector
subgraphs. of A=V 4(|h(»=V|;G) refers to the re-weighted absolute

walk-sum over all walks ing, and ¢(|h("~V|;S,,) refers

SNote that in this case the messages must be initializetifas — ¢) = t0 the re-weighted absolute walk-sum over all walksSin

Res ) for each directed edges, t) € &. Minimizing the errore(™ reduces to choosing, to maximize
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o(|h(»=1];S,). Hence, if we maximize among all trees, wavhere % denotes the restriction that walks can traverse at

have the followingmaximum walk-sum tregroblem: most one edge. The walks in (31) are a subset of the walks
(). in (30). Thus, solving (31) provides a lower bound on (30),
arg Max, ayee 9(|h [ Sn)- (26) hence minimizing a looser upper bound on the error than (29).

Rather than solving this combinatorially complex problem, we Solving (31) is also combinatorially complex; therefore, we
instead solve a problem that minimizes a looser upper bouwde a greedy method for an approximate solution:

than (25). Specifically, consider any edge v} € £ and all of 1) SetV,, = 0. Assuming that the goal is to solve the
the walksS(u,v) = (uv, vu, uvu, vuv, vvuv, vuvy, . .. ) that problem fork = 1, compute node weights

live solely on this single edge. It is not difficult to show that

S(Ih" VL S (u,v))

Wy = |h£tn—1)|’

1>

wu v
’ 00 based on the walks captured by (31) if nodevere to
= (IhI+ RITIDD |Ru[f be included inV,.
=1 2) Find the maximum weight node* from V\V,,, and set
|Ru,v| Vn — Vn U u*.

(IhG D]+ R 1)) @7

3) If |V,,| =k, stop. Otherwise, update each neighbar
V\V,, of v* and go to step:

1- ‘Ru,vl'
This weight provides a measure of the error-reduction capacity

of edge{u,v} by itself at iterationn. This leads directly to (n—1) (n—1) | R o
choosing themaximum spanning tref28] by solving Wy = Wy + (‘hu* |+ 1R ‘) 1— [Ru |
arg Mmax, , yee Z Wy, p- (28) This update captures the extra walks in (31) ifvere

{u,v}€S, to be added td/,.

For any treeS, the set of walks captured in the sum inStep 3 is the greedy aspect of the algorithm as it updates
(28) is a subset of all the walks if,,, so that solving (28) weights by computing the extra walks that would be captured
provides a lower bound on (26) and thus a looser uppér(31) if nodev were added td/,, with the assumption that
bound than (25). Each iteration of this method can be solv#ite nodes already ifv;, remain unchanged. Note that only
using O(|€|log |V|) computations based on standard greed}le weights of the neighbors af are updated in step thus,
approaches for the maximum spanning tree problem [28]. Fdere is a bias towards choosing a connected block. In choosing
sparse graphs, more sophisticated variants can also be usegiggessive blocks in this way, we collect walks adaptively
achieve a per-iteration complexity 6¥(|€|loglog|V]) [28]. without explicit regard for the objective of updating each
A.2 Subsets of variables. We present an algorithm to node infinitely often. However, our method is biased towards

choose the next best subset/ofvariables for the block GS choosing variables that have not been updated for a few
algorithm of Section 1I-B. The error at iteration can be iterations as the residual error of such variables becomes larger

written as follows: relative to the other variables. Indeed, empirical evidence
() R ~(n) (m)~1 1 n) confirms th?s be_havior with all the simqlatiops Iea_ding fo
ey, = Tv, 7y, =J Ry, velJ7 b Jve, convergent iterations. Fdr bounded, each iteration using this
egy) = Tye— 33§/”) = 63151) — [J71 D)y technique require®(k log |£]) computations using an efficient
" " " sort data structure [28]. The space complexity of maintaining
As with (25), we have the following upper bound: such a structure can be significant compared to the adaptive
1€y, = ||6(n)|| I He@m ET procedure.
o Vo llfa vii Il A.3 Experimental lllustration. We test the preceding two

< é(\h("’l)l’*i%)—é(lh("’l)\'% E(Vn) V) adaptive algorithms on randomly generatedx 15 nearest-
7 ’ neighbor grid models witho(R) = 0.99, and withz(®) = 0.
+ (| LV;) The blocks used in_block GS were of size = 5. We
i _ . £(V) compare these adaptive methods to standard non-adaptive one-
= ¢(Ih"V;6) — (W V|V, = Vh), (29) tree and two-tree ET iterations [13]. Figure 4 shows the

whereg (V) refers to the edges in the induced subgraphi,of performance of these algorithms. The plot shows the relative

L . ) . ; ; ; A e,
Minimizing this upper bound reduces to solving the followinglécrease in the normalized residual er%(—;ﬁ oy, versus the

maximum walk-sum blogiroblem: number of iterations. The table shows the avzerage number of
- (V) iterations required for these algorithms to reduce the normal-
arg maxy, |y ¢(|h("‘1)|;Vn = V). (30) ized residual error belowt0~1°. The average was computed

. . L based on the performance ©00 randomly generated models.
As with the maximum walk-sum tree problem, finding the optla) these models are poorly conditioned because they are

mal such block directly is combinatorially complex. Thereforeoarely walk-summable. The number of iterations for block
we consider the following relaxed maximum walk-sum block

prObIem based on smgle-edge walks: “The grid edge weights are chosen uniformly at random fferh, 1]. The
1 (ne1) le matrix R is then scaled so that R) = 0.99. The potential vectoh is chosen
arg maxy, <, ¢([h" V[ Vi — Vo), (31) to be the all-ones vector.
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Fig. 4. (Left) Convergence results for a randomly generatea 15 nearest-neighbor grid-structured model. (Right) Average number of iterations required
for the normalized residual to reduce by a factorl6f 10 over 100 randomly generated models.

GS is scaled appropriately to account for the different pgoarallel iterations such as ET, in which inference is performed

iteration computational cost€(|€]loglog|V]|) for adaptive on a tractable subgraph of the whole graph at each iteration,
ET and O(klog|&|) for adaptive block GS). The one-treeand serial iterations such as block GS, in which the induced
ET method uses a spanning tree obtained by removing sillbgraph of a small subset of variables is directly inverted at
the vertical edges except the middle column. The two-treach iteration. We describe hybrid versions of these algorithms
method alternates between this tree and its rotation (obtairthdt involve inference on a subgraph of a subset of variables.
by removing all the horizontal edges except the middle rowjVe also discuss a method that uses local memory at each

Both the adaptive ET and block GS algorithms provideode to overcome temporary communication failures that

far faster convergence compared to the one-tree and two-tnegy arise in distributed sensor networks. Our memory-based
iterations, thus providing a computationally attractive methddamework applies to the non-stationary ET, block GS, and

for estimation in the broad class of walk-summable modelshybrid algorithms.

We analyze these algorithms based on the recently in-
B. Communication Failure: Experimental lllustration troduced walk-sum interpretation of Gaussian inference. A

. . . salient feature in our analysis is the development of walk-
To illustrate our adaptive methods in the context of commuy- m diagrams. These graphs correspond exactly to the walks
nication failure, we consider a simple model for a distribute bmputed after each iteration, and provide an intuitive graph-
sensor network in which links (edges) fail independently wit al comparison between the, various algorithms. This walk-
failure prob_ability @, and e_ach failed Ii_nk remains inactive_sum analysis allows us to conclude that for the broad class of
for a certa_m num_ber of iterations gven by a g_eomet”\%/alk—summable models, our algorithms converge for a very
random var!able with meag. At each |terat|on,.we f'nd the.large and flexible set of sequences of subgraphs and subsets
best spanning tree _(or forest) among the active Imks.us%g variables used. We also describe how this flexibility can
the approach described in Section \(I'A'l'. The maximuig,, exploited by formulating efficient algorithms that choose
spanning tree problem can be _solved n a cﬂstnbuted man anning trees and subsets of variables adaptively at each
using the algorithms presented in [29, 30.]' Figure 5 ShO_WS t ration. These algorithms are then used in the ET and block
convergence of our memory-based algorlthm from Section i 5S iterations respectively to demonstrate that significantly
C on the same randqmly_ generatbfdx_15 grid model used faster convergence can be obtained using these methods over
goﬁgenerate the plot Ln Flglérg 4 (again, LV?(P) = 0). Th% traditional one-tree and two-tree ET iterations.
ifferent curves are obtaine varyingand 5. As expected, ) ) . )
the first plot shows that our alg%rith%ni?slower to C(F))nverge asOur adaptive algor_lthm_s are greedy m_tha_t they consider
the failure probabilityr increases, while the second plot showi'e €ffect O:j edges |Ind|v(|jduaIIyA(by consr:defrmg walkl-squs
that convergence is faster asis increased (which decreaseé:oncemrat?f, %'.1 S'”r? €e ges). ) strer)gth 0 ourdane:)yslls or
the average inactive time). These results show that our adaptiie casl,)e 0 dm mat e n;a?d est tree(;sr: at we oho tain ‘Zrl‘
algorithms provide a scalable, flexible, and convergent methgPer bound on the resulting error, and hence on t € possible
for the estimation problem in a distributed setting with confd@pP t.)e'twee.n our greedy procedure and th,e truly optimal one.
munication failure. Obtaining tighter error bounds, or conditions on graphical
models under which our choice of tree yields near-optimal
solutions is an open problem. Another interesting question

is the development of general versions of the maximum
In this paper, we have described and analyzed a rich setwsdlk-sum tree and maximum walk-sum block algorithms that

algorithms for estimation in Gaussian graphical models withoose theK next best trees or blocks jointly in order to
arbitrary structure. These algorithms are iterative in natuaehieve maximum reduction in error aftéf iterations. For

and involve a sequence of inference problems on tractallgplications involving communication failure, extending our
subgraphs over subsets of variables. Our framework includegaptive algorithms in a principled manner to explicitly avoid

VIl. CONCLUSION
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Fig. 5. Convergence of memory-based algorithm on same randomly genébatedl5 used in Figure 4: Varyingx with 8 = 0.3 (left) and varyingg with
a = 0.3 (right).

1

failed links while optimizing the rate of convergence is aW,orm “— D72 Junnorm D72, hnorm — D72 hunnorm),
important problem. Finally, the fundamental principle of solvthen apply the algorithms of Section Ill, and finally “de-
ing a sequence of tractable inference problems on subgrapbsmalize” the resulting estimat@((;i,)mm,, — D2 %ﬁ,,’f))m,,,).

has been exploited for non-Gaussian inference problems (eSgch a procedure would provide the same estimate as the
[12]), and extending our methods to this more general settid@ect application of the un-normalized versions of the algo-
is of clear interest. rithms in Section Il as outlined above.
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APPENDIX Remarks. Before proceeding with the proof of the proposi-

A. Dealing with un-normalized models tion, we make some observations about the walk-®éts —
Consider an information matri¥ = D — H (whereD is t) that will prove useful for the other proofs as well. For
the diagonal part of) that is not normalized, i.eD # I. The t €V, notice that since the set of edges contained,jrand
weight of a walkw = {wz}z _o can be re-defined as follows: x,, are disjoint, the walk- SetBV(s Sn, t) andW;, (s—e) (s —
tin (1)

Hé 1 le,wi+1 )®W(* — .) ®W(. _} t) are dlSjOInt Therefore, frOm
L VT Section II-C,
Hi:O Dwi,wi
12 VD R/ Do ronas S
: Hf:o Do, s, (f)n(s — t) = (,25(5 n, t)
Dwo,woDwg,w( .
= ¢(s—>1)

where ¢ (w) is the weight ofw with respect to the un-
normalized model, andj(w) is the weight ofw in the
corresponding normalized model. We can then define walk=? U W (usw) (8 = 1) @W(u
summability in terms of the absolute convergence of the un- \“v€V

normalized walk-sumy(s — t) over all walks froms to (32)
t (for each pair of verticess,t € V). A necessary and
sufficient condition for this un-normalized notion of walk-
summability is o (D*% H D—%) < 1, which is equivalent Every walk w € W, (u—.)(s — u) @ W(u v) ®
to the original conditiong(R) < 1 in the corresponding W(v %, 1) can bedecomposed uniquelsw = w, - w;, - we,
normalized model. Un-normalized versions of the algorithmghere w, € W’r,, (o (s — 1), Wy € W(u Fn(1) v), and
in Section Ill can be constructed by replacing every occurrence cW
of the partial correlation matrixt by the un-normalized off-
diagonal matrixH. The rest of our analysis and convergencg
results remain unchanged because we deal with abstract wal S,
sets. (Note that in the proof of Proposition 1, every odhat Wi (s = ) @ W(u ™= v) @ W(v = 1) and
currence of R must be changed td7.) Alternatively, given W, (,_.)(s — u') @ W(u' G ) @ W' S, t) are
an un-normalized model, one can first normalize the modaikjoint if (u,v) # (v/,v’). Based on these two observations,

nn(l

v)eW(v == 1)|.

Hn(l)

(v Sn, t). The unique decomposition property is a
consequence af,, andk,, being disjoint, and the walk in,,
ﬁlng restricted to a Iengthhop This property also implies
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we have from Section II-C that rn(u — v) <n — 1. Next, we have that

o (1) S On(hix —t) = (Jgnl hVn)t
ugv Wi, (u—) (8 = ) @ W(u = v) @ W(v = t) S U S Ry @t
’ 0 vEV, {ul(u,v)Ern}
K (1 Sn _ _
Z ¢< () (8 = W)W (u — v)@W(v — t)) = (anl hvn)t + Z (anl)m M, (v)
w,wEV vEVR
= Y b (s =) 0w = ) o0 1) (33) = &,

u,veV

where the second equality is from (17), and the third from

Proof of proposition: We provide an inductive proof. From (1%).4
(20), ¢o(s — t) = 0. Thus,
C. Proof of Proposition 3

~(0
Po(h;* —t) Z hs ¢o(s —t) =3, We prove the following lemma that will be useful later for
sV the proof of the proposition.
which is consistent with the proposition because we assumd-6MMa 2. LeLw = wsiare - P-4 Wena be an arbitrary
walk in W, (wstart — Wend), and letw = wgart -+ p

that our initial guess i9 at each node.
Assume that’z?ﬁ" ) = G (hyx —t), for0<n’ <n-1, as
the inductive hypothesis. Fare V¢,

be aleading sub-walk of w. There exists a, < n with
w € W, (wstart — p) SO that at least one of the following
conditions is true:k, = n and the edg€p,q) € S,, or
kn <rn(p — q).
Proof: The base case is vacuously true because

Wo(Wstart — wWenq) = 0. For the inductive hypothesis,
where the first equality is from (12), the second from thassume that the Statement is true foK 1’ < n — 1. This

:cggﬂgu(\)/ﬁ ggggtshlens/ls I?c:]rdt ??/tmng_r%rg) (iagr)l kl)_é epecsvr:lt\'ltgncaan be used to prove the statementuif,q € V5. Assume
' " that w € Wy, (Wstart — Wend) With weng € V,. From the

B =3 = pa(hix = 1) = dulhix — 1),

as:
remarks in Appendix B, eithew € W(wstart Sn, Wend), OF
dn(s —t) = ¢(s Sn, t) w € Wy, (u—v) (Wstart — u) @ W(u nll) v) @ W(v Sn,
fin (1) S Wenq) fOr some unique pair of vertices,v € V with

+ Y bryu—n) (s = wd(u = v)g(v = 1), (34)

ralu = v) < n-—11f w € W(wstart Sn, Wend), then

(o) Eren k, =n and(p,q) € S,.

” rn(1) Sn
becausep(u ™ v) = 0 if (u,v) ¢ #n. From (32-34) we  If @ EWr (ui) (Wstary — u) ©W(u == v) @ W(v =
have that: Wend), then from the remarks in Appendix By can be

uniquely decomposed a& = w, - wy - w. With w, €
On(hyx —t) = Zhsqb(s S—>t) Wr (u—v) (Wstare — u), wp = uv € W(u onll) v), and
sV we € W(v Sn, Wend ). Suppose the trailing papt: - - wenq Is @
+ Z h Z Br () (5 — W) (u in (1) v)p(v Sn, t)  sub-walk ofw,, or is equal taw.. We can uniquely decomeose
SEV  (uw)Ekn W aswg - wy - (V- p) € Wh, (umv) (Wstart — u) @W(u nll)
Z hs(Jg )t.s v) @ W(v Sn, p). This shows thak,, = n. Also, (p,q) € S,
n ’ STL
seV becausev. € W(v =% wepq)-
+Zhs Z Br () (5 — 1) Ry (J5 )t SuUpposep - - - weng IS NOt a sub-walk ofw,.; then either
seV  (wv)Crn " w = w, or w must be a leading sub-walk ab,. If w =

we, then (p,q) = (u,v) and k, = r,(p — ¢). If wis a
where we have used the walk-sum interpretation]g)j and leading sub-walk ofw,, we can use the inductive hypothesis

kn. Simplifying further, we have that (becauser, (u — v) < n — 1) to obtain ak, = k., (y—v) <
rp(u — v) < n. If ky = k. (yu—v) = To(u — v), then
On(hix —1t) = (Jgj hVn)t (p,q) € S, (u—v) and one can check that,(p — q) > k,

(because a post-inference message is passed on(gdge
at iterationr,, (u — v) = k). Otherwise k,, = k, (y—v) <
_1 T’I‘TL(UH’U) (p - Q) S Tn(p - q) O
= (an hVn)t Proof of proposition: We provide an inductive proof. Let
+ Z =) R (Jg_nl)t,v- (35) any two verticess,¢ € V' be given. The base casé(s —
t) € Wi (s — t) clearly follows from the fact thaWWy(s —
t) = () from (18). For the inductive hypothesis, assume that
The last equality is from the inductive hypothesis because W, _1(s = t) C Wy (s —t)for0<n’ <n—-1.1f t € VS,

+ Z ¢7*n(u—m)(h; * — ’LL) Rv,u (Jgnl)t,v

(u,v)Ekn

(u,v)€xn



the proposition follows because,,(s — t) = Wy,_1(s — t)
from (19). So we can restrict ourselves to the caseitlat/,.
Let somew € W,,_1(s — t) be given.

15

have from (15,17) that:

Y= Ut vt Y. (JsHew Ruw 50

First, we check ifw € W(s > 1), If this is the case, then . () . o ()
we are done. If notw can be uniquely decomposed as= = (s, hv, )+ Z (s, Dt Rou 2y
Wy - wy, - we, Wherew, € W( ity ), andw, € W(g =2 ¢) (wv)€rn
for somep, g € V. We must show thatv, € W, (p—q)(s — - (Jgnl (J ’:E(O))vn) - Z (JsDtw Rou 0
p). Butw, is a leading sub-walk of,. We have from Lemma 2 K (u,0)Ekn

that, with respect to the walk-séV,,_(s — t), there exists
akp—1 <n—1such thatw, € Wy, _,(s = p). If k,_1 =
n — 1, then(p,q) € S,—1 andr,(p — ¢q) = n— 1 (due to
post-inference message (16)). Heneg,e Wy, _,(s — p) =
WTF'(p_)qi_(s — p).zlf én_kl <n-—1,thenk,_1 <r,_1(p —

. n— < n— S n . H . H
Z; Lor:; _elm;?j we g;n alp pTy Tthelgzrz dac):ti?/)e hy;o(tﬁegs t")rhe second equality fqllows from the inductive hypothesis,
show the relationV,. _, (s — p) € W, yg)(s — p). Thus, and the last two from simple algebial
Wq € Wkn—l(s - p) c Wr"(p—>q)(3 - p)' u

~(0)

~(0)
Xy
VVL

Ty,

+ Ry, ve 5&9)))

ny Vo

7" — (Jgj (Jv,,ve By + v, v,

—|—K3" 55%23 ,

30,

F. Proof of Theorem 3

Before proving the converse, we have the following lemma
that is proved in [31].

Lemma 3: Suppose/ is a symmetric positive-definite ma-

Let w = s---u - t. We provide an inductive proof with trix, and J = Js — Ks is some splitting withK's symmetric
respect to the length af. If every edge is updated infinitely and Js non-singular. Theng(Jg'Ks) < 1 if and only if
often, it is clear that every node is updated infinitely often) + 2Ks > 0.
Therefore, the leading lengthpart (s) is computed wher Proof of converse Assume that/ = I — R is valid but
is first updated at some iteratidn By the nesting of the walk- non-walk-summable. Therefor& must contain some negative
setsW,, from Proposition 3, we have th@t) € Wy (s — s) partial correlation coefficients (since all valid attractive mod-
for all ¥’ > k. Now assume (as the inductive hypothesis) th&ls, i.e. those containing only non-negative partial correlation
the leading sub-walk - - - » including all but the last step-t  coefficients, are walk-summable; see Section 1I-C). Ret
of w is contained iNWy (s — u) for someN (> k). Given Ry + R with R, containing the positive coefficients and
the infinitely-often update property, there exists an> N R_ containing the negative coefficients (including the negative
such that the edgéu,t) € S, U k2tve If (u,t) € woctive, sign). Consider a stationary ET iteration (7) based on the
thenw € Wy_1(s — u) @ W(u rim (1) £) @ W(t Sm, t) e cutting the negative edges sothgt=7— R, andKs = R_.

— . . . . . . .
Win(s — t). This can be concluded from (18) and becauéfa Js is singular, then the iteration is ill-posed. Otherwise, the

s---u € Wy _1(s — u) by the nesting argument{—1 > N) iteration converges if and only |[;(J$1KS)' < 1 [15,16].

of Proposition SE Agai21 applying the nesting argument, we c&fom Lemma 3, we need to check the validity bft 2Ks:

prove the proposition because we now have tha W, (s —

t) for all n > m. We can use a similar argument to conclude -

thatw € W, (s — t) for all n > m, if (u,t) € S,,. O But I — R = 0 if and only if the model is walk-summable
(from Section 1I-C). Thus, this stationary iteration, if well-
posed, does not converge in non-walk-summable models.

D. Proof of Proposition 4

J+2Ks=I—-R+2R_=1-R.

E. Proof of Theorem 2
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