
Keyboard Acoustic Emanations Revisited

Li Zhuang, Feng Zhou, J. D. Tygar

University of California, Berkeley

{zl,zf,tygar}@cs.berkeley.edu

ABSTRACT
We examine the problem of keyboard acoustic emanations. We
present a novel attack taking as input a 10-minute sound recording
of a user typing English text using a keyboard, and then recover-
ing up to 96% of typed characters. There is no need for a labeled
training recording. Moreover the recognizer bootstrapped this way
can even recognize random text such as passwords: In our experi-
ments, 90% of 5-character random passwords using only letters can
be generated in fewer than 20 attempts by an adversary; 80% of 10-
character passwords can be generated in fewer than 75 attempts.
Our attack uses the statistical constraints of the underlying con-
tent, English language, to reconstruct text from sound recordings
without any labeled training data. The attack uses a combination
of standard machine learning and speech recognition techniques,
including cepstrum features, Hidden Markov Models, linear classi-
fication, and feedback-based incremental learning.

Categories and Subject Descriptors: K.6.5 Security and
Protection: Unauthorized access; K.4.1 Public Policy Issues:
Privacy

General Terms: Security

Keywords: Computer Security, Human Factors, Acoustic
Emanations, Learning Theory, Hidden Markov Models, HMM,
Cepstrum, Signal Analysis, Keyboards, Privacy, Electronic
Eavesdropping

1. INTRODUCTION
Emanations produced by electronic devices have long been a

topic of concern in the security and privacy communities [5]. Both
electromagnetic and optical emanations have been used as sources
for attacks. For example, Kuhn was able to recover the display on
a CRT monitor by using indirectly reflected optical emanations [9].
Recently he also successfully attacked LCD monitors [10]. Acous-
tic emanations are another source of data for attacks. Researchers
have shown that acoustic emanations of matrix printers carry sub-
stantial information about the printed text [5]. Some researchers

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’05, November 7–11, 2005, Alexandria, Virginia, USA.
Copyright 2005 ACM 1-59593-226-7/05/0011 ...$5.00.

suggest it may be possible to discover CPU operations from acous-
tic emanations [12]. Most recently, Asonov and Agrawal showed
that it is possible to recover text from the acoustic emanations from
typing on a keyboard [1].

Most emanations, including acoustic keyboard emanations, are
not uniform across different instances, even when the same device
model is used; and they are often affected by the environment. Dif-
ferent keyboards of the same model, or the same keyboard typed by
different people emit different sounds, making reliable recognition
hard [1]. Asonov and Agrawal achieved relatively high recogni-
tion rate (approximately 80%) only when they trained neural net-
works with text-labeled sound samples of the same keyboard typed
by the same person. This is in some ways analogous to a known-
plaintext attack on a cipher – the cryptanalyst has a sample of plain-
text (the keys typed) and the corresponding ciphertext (the record-
ing of acoustic emanations). This labeled training sample require-
ment suggests a limited attack, because the attacker needs to obtain
training samples of significant length. Presumably these could be
obtained from video surveillance or network sniffing. However,
video surveillance in most cases should render the acoustic attack
irrelevant, because even if passwords are masked on the screen, a
video shot of the keyboard could directly reveal typed keys. Net-
work sniffing of interactive network logins is becoming less viable
since unencrypted login mechanisms are being phased out.

In this paper we argue that a labeled training sample requirement
is unnecessary for an attacker. This implies keyboard emanation
attacks are more serious than previous work suggests. The key in-
sight in our work is that the typed text is often not random. When
one types English text, the limited number of English words limits
the possible temporal combinations of keys, and English grammar
limits the word combinations. One can first cluster (using unsuper-
vised methods) keystrokes into a number of classes based on their
sound. Given sufficient (unlabeled) training samples, a most-likely
mapping between these classes and actual typed characters can be
established using the language constraints.

This task is not trivial. Challenges include: 1) How can one
model these language constraints in a mathematical way and me-
chanically apply them? 2) In the first sound-based clustering step,
how can one addresses the problem of multiple keys clustered in
the same class and the same key clustered into multiple classes? 3)
Can we improve the accuracy of the guesses by the algorithm to
match the level achieved with labeled samples?

Our work answers these challenges, using a combination of ma-
chine learning and speech recognition techniques. We show how
to build a keystroke recognizer that has better recognition rate than
labeled sample recognizers in [1]. We use only a sound recording
of a user typing.

Our method can be viewed as a machine learning version of clas-

To appear in Proceedings of the 12th ACM Conference on Computer and Communications Security
(Preprint of paper to appear November 2005)

sic attacks to simple substitution ciphers. Assuming the ideal case
in which a key sounds exactly the same each time it is pressed,
each keystroke is easily given a class according to the sound. The
class assignment is a permutation of the key labels. This is exactly
an instance of a substitution cipher. Early cryptographers devel-
oped methods for recovering plaintext, using features of the plain-
text language. Our attack follows the same lines as those methods,
although the problem is harder because a keystroke sounds differ-
ently each time it is pressed, so we need new techniques.

We built a prototype that can bootstrap the recognizer from about
10 minutes of English text typing, using about 30 minutes of com-
putation on a desktop computer with Pentium IV 3.0G CPU and
1G memory. After that it can recognize keystrokes in real time,
including random ones such as passwords, with an accuracy rate
of about 90%. For English text, the language constraints can be
applied resulting in a 90-96% accuracy rate for characters and a
75-90% accuracy rate for words.

We posit that out framework also applies to other types of em-
anations with inherent statistical constraints, such as power con-
sumption or electromagnetic radiation. One only need adapt the
methods of extracting features and modeling constraints. Our work
implies that emanation attacks are far more challenging, serious,
and realistic than previously realized. Emanation attacks deserve
greater attention in the computer security community.

Below, Section 2 briefly reviews previous keyboard emanation
attacks. Section 3 presents an informal description of the new at-
tack, followed by additional details in Section 4. Section 5 presents
experiment results. Section 6 discusses issues and future work.
Section 7 concludes the paper.

2. PREVIOUS ATTACKS
Asonov and Agrawal are the first researchers we are aware of

who present a concrete attack exploiting keyboard acoustic ema-
nations [1]. Their attack uses FFT values of the push peaks (see
Figure 3) of keystrokes as features, and trains a classifier using a
labeled acoustic recording with 100 clicks of each key. After train-
ing, the classifier recognizes keystrokes.

Asonov and Agrawal’s work is seminal. They opened a new
field. However, there are limitations in their approach.

1. As we discuss in Section 1, their attack is for labeled acous-
tic recordings. Given that the attack works well only with
the same settings (i.e. the same keyboard, person, record-
ing environment, etc.) as the training recording, the train-
ing data are hard to obtain in typical cases. Training on one
keyboard and recognizing on another keyboard of the same
model yields lower accuracy rates, around 25% [1]. Even
if we count all occasions when the correct key is among the
top four candidates, the accuracy rate is still only about 50%.
Lower recognition rates are also observed when the model
is trained by one person and used on another. Asonov and
Agrawal admit that this may not be sufficient for eavesdrop-
ping.

2. The combination of classification techniques leaves room for
improvement. We found superior techniques to FFT as fea-
tures and neural networks as classifiers. Figure 1 shows com-
parisons. The classifier is trained on the training set data and
is then used to classify the training set itself and two other
data sets. The Figure shows that the recognition rate with
cepstrum features (discussed below in Section 4.1.2) is con-
sistently higher than that of FFT. This is true for all data sets
and classification methods. The Figure also shows that neu-
ral networks perform worse than linear classification on the

two test sets. In this experiment, we could only approxi-
mate the exact experiment settings of Asonov and Agrawal.
But significant performance differences indicate that there
are better alternatives to FFT and neural networks combina-
tion.

Linear Classification

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

training set test set 1 test set 2

FFT Cepstrum

Neural Network

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

training set test set 1 test set 2

FFT Cepstrum

Gaussian Mixtures

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70
0.80
0.90
1.00

training set test set 1 test set 2

FFT Cepstrum

Figure 1: Recognition rates using FFT and cepstrum features.
The Y axis shows the recognition rate. Three different classifi-
cation methods are used on the same sets of FFT or cepstrum
features.

3. OUR ATTACK
In this section, we survey our attack without statistical details.

Section 4 presents the attack in full.
We take a recording of a user typing English text on a keyboard,

and produce a recognizer that can, with high accuracy, determine
subsequent keystrokes from sound recordings if it is typed by the
same person, with the same keyboard, under the same recording
conditions. These conditions can easily be satisfied by, for exam-
ple, placing a wireless microphone in the user’s work area or by us-
ing parabolic microphones. Although we do not know in advance

Sample
Collector

probably
−correct
samples

classifier)

(feedback
to improve
keystrokes

Language Model
Correction

labels of
keystrokes

keystroke
classifier

labels of
keystrokes

Language Model
Correction

Keystroke

Builder

features
Unsupervised

Learning
Module

Classifier

features

Classifier
Keystroke

(b) Recognition Phase: Recognize keystrokes using the classifier from (a).

(a) Training Phase: Build keystroke classifier using unsupervised learning

extract the start of
each keystroke

compute spectrum
features

extract the start of
each keystroke

compute spectrum
features

(signal)
Feature Extraction Module

(signal)
Feature Extraction Module

Figure 2: Overview of the attack.

whether a user is typing English text, in practice we can record
continuously, try to apply the attack, and see if meaningful text is
recovered.

Figure 2 presents a high level overview of the attack.
The first phase (Figure 2(a)) trains the recognizer:

1. Feature extraction. We use cepstrum features, a technique
developed by researchers in voice recognition [13]. As we
discuss below in Section 4.1, cepstrum features give better
results than FFT.

2. Unsupervised key recognition using unlabeled training data.
We cluster each keystroke into one of K classes, using stan-
dard data clustering methods. K is chosen to be slightly
larger than the number of keys on the keyboard.

As discussed in Section 1, if these clustering classes corre-
spond exactly to different keys in a one-to-one mapping, we
can easily determine the mapping between keys and classes.
However, clustering algorithms are imprecise. Keystrokes of
the same key are sometimes placed in different classes and
conversely keystrokes of different keys can be in the same
class. We let the class be a random variable conditioned on
the actual key typed. A particular key will be in each class
with a certain probability. In well clustered data, probabili-
ties of one or a few classes will dominate for each key.

Once the conditional distributions of the classes are deter-
mined, we try to find the most likely sequence of keys given
a sequence of classes for each keystroke. Naively, one might
think picking the letter with highest probability for each key-
stroke yields the best estimation and we can declare our job
done. But we can do better. We use a Hidden Markov Mod-
els (HMM) [7]. HMMs predict a stochastic process with
state. They capture the correlation between keys typed in
sequence. For example, if the current key can be either “h”
or “j” (e.g. because they are physically close on the key-
board) and we know the previous key is “t”, then the current
key is more likely to be “h” because “th” is more common
than “tj”. Using these correlations, both the keys and the
key-to-class mapping distributions are efficiently estimated
using standard HMM algorithms. This step yields accuracy

rates of slightly over 60% for characters, which in turn yields
accuracy rates of over 20% for words.

3. Spelling and grammar checking. We use dictionary-based
spelling correction and a simple statistical model of English
grammar. These two approaches, spelling and grammar, are
combined in a single Hidden Markov Model. This increases
the character accuracy rate to over 70%, yielding a word ac-
curacy rate of about 50% or more. At this point, the text is
quite readable (see Section 4.3).

4. Feedback-based training. Feedback-based training produces
a keystroke classifier that does not require an English spelling
and grammar model, enabling random text recognition, in-
cluding password recognition. We use the previously ob-
tained corrected results as labeled training samples. Note
that even our corrected results are not 100% correct. We
use heuristics to select words that are more likely to be cor-
rect. For examples, a word that is not spell-corrected or one
that changes only slightly during correction in the last step is
more likely to be correct than those that had greater changes.
In our experiments, we pick out those words with fewer than
1/4 of characters corrected and use them as labeled samples
to train a classifier. The recognition phase (Figure 2(b), de-
scribed below) recognizes the training samples again.This
second recognition typically yields a higher keystroke accu-
racy rate. We use the number of corrections made in the
spelling and grammar correction step as a quality indicator.
Fewer corrections indicate better results. The same feedback
procedure is done repeatedly until no significant improve-
ment is seen. In our experiments, we perform three feedback
cycles. Our experiments indicate both linear classification
and Gaussian mixtures perform well as classification algo-
rithms [7], and both are better than neural networks as used
in [1]. In our experiments, character accuracy rates (with-
out a final spelling and grammar correction step) reach up to
92%.

The second phase, the recognition phase, uses the trained key-
stroke classifier to recognize new sound recordings. If the text con-
sists of random strings, such as passwords, the result is output di-

rectly. For English text, the above spelling and grammar language
model is used to further correct the result. To distinguish between
two types of input, random or English, we apply the correction and
see if reasonable text is produced. In practice, a human attacker can
typically determine if text is random. An attacker can also iden-
tify occasions when the user types user names and passwords. For
example, password entry typically follows a URL for a password
protected website. Meaningful text recovered from the recognition
phase during an attack can also be fedback to the first phase. These
new samples along with existing samples can be used together to
get an even more accurate keystroke classifier. Our recognition rate
improves over time (see Section 4.4).

Our experiments include data sets recorded in quiet and noisy
environments and with four different keyboards (See Table 2 and
Table 4 in Section 5). Refer to Appendix A for an example of
recovered text.

4. TECHNICAL DETAILS
This Section describes in detail the steps of our attack. Some

steps (feature extraction and supervised classification) are used in
both the training phase and the recognition phase.

4.1 Keystroke Feature Extraction

4.1.1 Keystroke Extraction
Typical users can type up to about 300 characters per minutes.

Keystrokes contain a push and a release. Our experiments con-
firm Asonov and Agrawal’s observation that the period from push
to release is typically about 100 milliseconds. That is, more than
100 milliseconds is left between consecutive keystrokes, which is
large enough for distinguishing the consecutive keystrokes. Fig-
ure 3 shows the acoustic signal of a push peak and a release peak.
We need to detect the start of a keystroke which is essentially the
start of the push peak in a keystroke acoustic signal.

We distinguish between keystrokes and silence using energy lev-
els in time windows. In particular, we calculate windowed discrete
Fourier transform of the signal and use the sum of all FFT coef-
ficients as energy. We use a threshold to detect the start of key-
strokes. Figure 4 shows an example.

4.1.2 Features: Cepstrum vs. FFT
Given the start of each keystroke (i.e. wav position), features

of this keystroke are extracted from the audio signal during the pe-
riod from wav position to wav position + ΔT . Two different
types of features are compared in our experiments. First we use
FFT features with ΔT ≈ 5ms, as in [1]. This time period roughly
corresponds to the touch peak of the keystroke, which is when the
finger touches the key. An alternative would be to use the hit peak,
when the key hits the supporting plate. But that is harder to pinpoint
in the signal, so our experiments use the touch peak.

As shown in Figure 1, the classification results using FFT fea-
tures are not satisfactory and we could not achieve the levels re-
ported in [1].

Next we use cepstrum features. Cepstrum features are widely
used in speech analysis and recognition [13]. Cepstrum features
have been empirically verified to be more effective than plain FFT
coefficients for voice signals. In particular, we use Mel-Frequency
Cepstral Coefficients (MFCCs) [8]. In our experiments, we set
the number of channels in the Mel-Scale Filter Bank to 32 and
use the first 16 MFCCs computed using 10ms windows, shifting
2.5ms each time. MFCCs of a keystroke are extracted from the pe-
riod from wav position to wav position+ΔT ′, where ΔT ′ ≈

40ms which covers the whole push peak. As Figure 1 reports, this
yields far better results than from FFT features.

Asonov and Agrawal’s observation shows that high frequency
acoustic data provides limited value. We ignore data over 12KHz.
After feature extraction, each keystroke is represented as a vector
of features (FFT coefficients or MFCCs). For details of feature
extraction, see Appendix B.

4.2 Unsupervised Single Keystroke Recogni-
tion

As discussed above, the unsupervised recognition step recog-
nizes keystrokes using audio recording data only and no training
or language data.

The first step is to cluster the feature vectors into K classes. Pos-
sible algorithms to do this include K-means and EM on Gaussian
mixtures [7]. Our experiments indicate that for tried K (from 40 to
55), values of K = 50 yield the best results. We use thirty keys,
so K ≥ 30. A larger K captures more information from the sound
samples, but it also makes the system more sensitive to noise. It is
interesting to consider future experiments using Dirichlet processes
to predict K automatically [7].

The second step is to recover text from these classes. For this we
use a Hidden Markov Model (HMM) [7]. HMMs are often used to
model finite-state stochastic processes. In a Markov chain, the next
state depends only on the current state. Examples of processes that
are close to Markov chains include sequences of words in a sen-
tence, weather patterns, etc. For processes modeled with HMM,
the true state of the system is unknown and thus is represented with
hidden random variables. What is known are observations that de-
pend on the state. These are represented with known output vari-
ables. One common problem of interest in an HMM is the inference
problem, where the unknown state variables are inferred from a se-
quence of observations. This is often solved with the Viterbi algo-
rithm [11]. Another problem is the parameter estimation problem,
where the parameters of the conditional distribution of the observa-
tions are estimated from the sequence of observations. This can be
solved with the EM (Expectation Maximization) algorithm [4].

The HMM we use is shown in Figure 51. It is represented as a
statistical graphical model [7]. Circles represent random variables.
Shaded circles (yi) are observations while unshaded circles (qi) are
unknown state variables we wish to infer. Here qi is the label of
the i-th key in the sequence, and yi is the class of the keystroke
we obtained in the clustering step. The arrows from qi to qi+1

and from qi to yi indicate that the latter is conditionally dependent
on the former; the value on the arrow is an entry in the probabil-
ity matrix. So here we have p(qi+1|qi) = Aqi,qi+1 , which is the
probability of the key qi+1 appearing after key qi. The A matrix is
another way of representing plaintext bigram distribution data. The
A matrix (called the transition matrix) is determined by the English
language and thus is obtained from a large corpus of English text.
We also have p(yi|qi) = ηqi,yi , which is the probability of the key
qi being clustered into class yi in the previous step. Our observa-
tions (the yi values) are known. The output matrix η is unknown.
We wish to infer the qi values. Note that one set of values for qi

and η are better than another set if the likelihood (joint probability)
of the whole set of variables, computed simply by multiplying all
conditional probabilities, is larger with the first set than the other.

1One might think that a more generalized Hidden Markov Model,
such as one that uses Gaussian mixture emissions [7], would give
better results. However, the HMM with Gaussian mixture emission
has a much larger number of parameters and thus faces the “over-
fitting” problem. We found a discrete HMM as presented here gave
better results.

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3
S

am
pl

e
V

al
ue

Touch
Peak

Hit
Peak

Push Peak Release Peak

Figure 3: The audio signal of a keystroke.

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500

S
um

 o
f F

FT
 C

oe
ffi

ci
en

ts

keystrokes start positions

Figure 4: Energy levels over the duration of 5 keystrokes.

A A A A

η η η η

q0 q1 q2 qT

y0 y1 y2 yT

π

Figure 5: The Hidden Markov Model for unsupervised key recognition.

Ideally, we want a set of values that maximize the likelihood, so we
are performing a type of Maximum Likelihood Estimation [11].

We use the EM algorithm [4] for parameter estimation. It goes
through a number of rounds, alternately improving qi and η. The
output of this step is the η matrix. After that, the Viterbi algorithm
[11] is used to infer qi, i.e. the best sequence of keys.

EM is a randomized algorithm. Good initial values make the
chance of getting satisfactory results better. We found initializing
the row in η corresponding to the Space key to an informed guess
makes the EM results more stable. This is probably because spaces
delimit words and strongly affect the distribution of keys before and
after the spaces. This task is performed manually. Space keys are
easy to distinguish by ear in the recording because of the key’s dis-
tinctive sound and frequency of use. We mark several dozen space
keys, look at the class that the clustering algorithm assigns to each
of them, calculate their estimated probabilities for class member-
ship, and put these into η. This approach yields good results for
most of the runs. However, it is not necessary. Even without space
keys guessing, running EM with different random initial values will
eventually yield a good set of parameters. All other keys, including
punctuation keys are initialized to random values in η. We believe
that initialization of η can be completely automated, and hope to
explore this idea in the future work.

4.3 Error Correction with a Language Model
As we discussed in Section 3, error correction is a crucial step

in improving the results. It is used in unsupervised training, super-
vised training and also recognition of English text.

4.3.1 Simple Probabilistic Spell Correction
Using a spelling checker is one of the easiest ways to exploit

knowledge about the language. We ran spell checks using Aspell

[2] on recognized text and found some improvements. However
stock spell checkers are quite limited in the kinds of spelling errors
they can handle, e.g. at most two letters wrong in a word. They are
designed to cope well with the common errors that human typists
make, not the kinds of errors that acoustic emanation classifiers
make. It is not surprising that their utility here is quite limited.

Fortunately, there are patterns in the errors that the keystroke
classifier makes. For example, it may have difficulty with several
keys, often confusing one with another. Suppose we know the cor-
rect plaintext. (This is of course not true, but as we iterate the
algorithm, we will predict the correct plaintext with increasing ac-
curacy. Below, we address the case of unsupervised step, where we
know no plaintext at all.) Under this assumption, we have a simple
method to exploit these patterns. We run the keystroke classifier on
some training data and record all classification results, including
errors. With this, we calculate a matrix E (sometimes called the
confusion matrix in the machine learning literature),

Eij = p̂(y = i|x = j) =
Nx=j,y=i

Nx=j
(1)

where p̂(·) denotes estimated probability, x is the typed key and
y is the recognized key, Nx=j,y=i is the number of times x =
j, y = i is observed. Columns of E give the estimated conditional
probability distribution of y given x.

Assume that letters are independent of each other and the same
is true for words. (This is a false assumption because there is much
dependence in natural languages, but works well in practice for our
experiments.) We compute the conditional probability of the recog-
nized word Y (the corresponding string returned by the recognizer,
not necessarily a correct word) given each dictionary word X.

p(Y|X) =

length of XY

i=1

p(Yi|Xi) ≈
Y

i

Eyi,xi (2)

We compute this probability for each dictionary word, which
takes only a fraction of a second. The word list we use is SCOWL
[3] which ranks words by complexity. We use words up to level 10
(higher-level words are obscure), giving us 95,997 words in total.
By simply selecting the word with the largest posterior probability
as our correction result, we correct many errors.

Because of the limited amount of training data, there will be
many zeroes in E if Equation (1) is used directly, i.e. the matrix is
sparse. This is undesirable because the corresponding combination
may actually occur in the recognition data. This problem is similar
to the zero-occurrence problem in n-gram models [8]. We assign
an artificial occurrence count (we use 0.1) to each zero-occurrence
event.

In the discussion above we assume the plaintext is known, but
we do not even have an approximate idea of the plaintext in the first
round of (unsupervised) training. We work around this by letting
Eii = p0 where p0 is a constant (we use 0.5) and distribute the
remaining 1 − p0 uniformly over all Eij where j �= i. Obviously
this gives suboptimal results, but the feedback mechanism corrects
this later.

4.3.2 Adding an n-gram Language Model
The spelling correction scheme above does not take into account

relative word frequency or grammar issues: for example, some
words are more common than others, and there are rules in forming
phrases and sentences. Spelling correction will happily accept “fur
example” as a correct spelling because “fur” is a dictionary word,
even though the original phrase is probably “for example”.

One way to fix this is to use an n-gram language model that mod-
els word frequency and relationship between adjacent words proba-
bilistically [8]. Specifically, we combine trigrams with the spelling
correction above and model a sentence using the graphical model
show in Figure 6. The hidden variables wt are words in the original
sentence. The observations vt are recognized words. p(vt|wt) is
calculated using Equation (2) above. Note this HMM model is a
second-order one, because every hidden variable depends on two
prior variables. The conditional probability p(wt|wt−1, wt−2) is
determined by a trigram model obtained by training on a large cor-
pus of English text.

In this model only the wi values are unknown. To infer the most
likely sentence, we again use the Viterbi algorithm. We use a ver-
sion of the Viterbi algorithm for second order HMMs, similar to the
one in [14]. The complexity of the algorithm is O(TN3), where T
is the length of the sentence and N is the number of possible values
for each hidden variable, that is, the number of dictionary words
of the appropriate length. To reduce complexity, only the top M
candidates from the spelling correction process of each word are
considered in the Viterbi algorithm, lowering the cost to O(TM3).
We use M = 20 in our experiments. Larger M values provide little
improvement.

4.4 Supervised Training and Recognition
Supervised training refers to training processes performed with

labeled training data. We apply our feedback-based training pro-
cesses iteratively, using in each iteration characters “recognized”
in previous iterations as training samples to improve the accuracy
of the keystroke classifier.

We discuss three different methods we use in our experiments,
including the one used in [1]. Like any supervised classification

problem, there are two stages:

• Training: input feature vectors and corresponding labels (the
key pressed) and output a model to be used in recognition;

• Recognition: input feature vectors and the trained classifica-
tion model and output the label of each feature vector (key-
stroke).

4.4.1 Neural Network
The first method is neural networks, also used by Asonov and

Agrawal [1]. Specifically, we use probabilistic neural networks,
which are arguably the best available for for classification prob-
lems [15]. We use Matlab’s newpnn() function, setting spread
radius parameter to 1.4 (this gave the best results in our experi-
ments).

4.4.2 Linear Classification (Discriminant)
The second method is simple linear (discriminant) classifica-

tion [7]. This method assumes the data to be Gaussian and try
to find hyperplanes in the space to divide the classes. We use
classify() function from Matlab.

4.4.3 Gaussian Mixtures
The third method is more sophisticated than linear classification

(although it gave worse result in our experiments). Instead of as-
suming Gaussian distribution of data, it assumes that each class
corresponds to a mixture of Gaussian distributions [7]. A mixture is
a distribution composed of several sub-distributions. For example,
a random variable with distribution of a mixture of two Gaussians
could have a probability of 0.6 to being in one Gaussian distribution
and 0.4 of being in the other Gaussian distribution. This captures
the fact that each key may have several slightly different sounds
depending on typing styling, e.g. the direction it is hit.

We also use the EM algorithm to train the Gaussian mixture
model. In our experiment, we use mixtures of five Gaussian distri-
butions of diagonal covariance matrices. Mixtures of more Gaus-
sians provide potentially better model accuracy but need more pa-
rameters to be trained, requiring more training data and often mak-
ing EM less stable. We find using five components seems to pro-
vide a good tradeoff. Using diagonal covariance matrices reduces
the number of parameters. Without this restriction, EM has very
little chance of yielding a useful set of parameters.

5. EXPERIMENTS
Our experiments evaluate the attacks. In our first experiment, we

work with four recordings of various lengths of news articles being
typed. We use a Logitech Elite cordless keyboard in use for about
two years (manufacturer part number: 867223-0100), a $10 generic
PC microphone and a Soundblaster Audigy 2 soundcard. The typist
is the same for each recording. The keys typed include “a”-“z”,
comma, period, Space and Enter. The article is typed entirely in
lower case so the Shift key is never used. (We discuss this issue in
Section 6.)

Table 1 shows the statistics of each test set. Sets 1 and 2 are
from quiet environments, while sets 3 and 4 are from noisy environ-
ments. Our algorithm for detecting the start of a keystroke some-
time fails. We manually corrected the results of the algorithm for
sets 1, 2 and 3, requiring ten to twenty minutes of human time per
data set. (Sets 1 and 2 needed about 10 corrections; set 3 required
about 20 corrections.) For comparison purposes, set 4 (which has
about 50 errors in determining the start of keystrokes) is not cor-
rected.

...
v0 v1 v2 vT

wTw2w1w0

”for”

”fur” ”examplf”

”example” ”the”

”tbe”

Figure 6: Trigram language model with spell correction.

recording length number of words number of keys
Set 1 12m17s 409 2514
Set 2 26m56s 1000 5476
Set 3 21m49s 753 4188
Set 4 23m54s 732 4300

Table 1: Statistics of each test set.

In our second experiment, we recorded keystrokes from three
additional models of keyboards (see Section 5.1.2). The same key-
stroke recognition experiments are run on these recordings and re-
sults compared. We use identical texts in this experiments on all
these keyboards.

5.1 English Text Recognition

5.1.1 A Single Keyboard
In our experiments, we use linear classification to train the key-

stroke classifier. In Table 2, the result after each step is shown in
separate rows. First, the unsupervised learning step (Figure 2(a))
is run. In this unsupervised step, the HMM model shown in Fig-
ure 5 is trained using EM algorithm described above2. The output
from this step is the recovered text from HMM/Viterbi unsuper-
vised learning, and the text after language model correction. These
two are denoted as keystrokes and language respectively in the ta-
ble. Then the first round of feedback supervised training produces
a new classifier. The iterated corrected text from this classifier (and
corresponding text corrected by the language model) are shown
in the row marked “1st supervised feedback”. We perform three
rounds of feedback supervised learning. The bold numbers show
our final results. The bold numbers in the “language” row are the
final recognition rate we achieve for each test set. The bold num-
bers in the “keystroke” row are the recognition rates of the key-
stroke classifier, without using the language model. These are the
recognition rates for random or non-English text.

The results show that:

• The language model correction greatly improves the correct
recovery rate for words.

• The recover rates in quiet environment (sets 1 and 2) are
slightly better that those in noisy environment (sets 3 and
4). But the difference becomes smaller after several rounds
of feedback.

• Correctness of the keystroke position detection affects the
results. The recovery rate in set 3 is better than set 4 because
of the keystroke location mistakes included in set 4.

2Since EM algorithm is a randomized algorithm, it might get stuck
in local optima sometimes. To avoid this, in each of these experi-
ments, we run the same training process eight times and use results
from the run with the highest log-likelihood.

 30

 40

 50

 60

 70

 80

 90

 100

 2 4 6 8 10 12 14

Fi
na

l R
ec

og
ni

tio
n

R
at

e

Length of Recording

word correct rate
char correct rate

Figure 7: Length of recording vs. recognition rate.

• When keystroke positions have been corrected after several
rounds of feedback, we achieve an average recovery rate of
87.6% for words and 95.7% for characters.

To understand how different classification methods in the super-
vised training step affect the results, we rerun the same experiment
on set 1, using different supervised classification methods. Table 3
shows our results. The best method is linear classification, then
Gaussian mixtures, and then neural networks. Experiments with
other data sets give similar results.

In the experiments above, we use recordings longer than 10 min-
utes. To discover the minimal amount of training data needed for
reasonable results, we take the first data set (i.e. “Set 1” above) and
use only the first 4, 5, 7 and 10 minutes of the 12-minute recording
for training and recognition. Figure 7 shows the recognition results
we get. This figure suggests that at least 5 minutes of recording
data are necessary to get good results for this particular recording.

5.1.2 Multiple Keyboards
To verify that our approach applies to different models of key-

boards, we perform the keystroke recognition experiment on differ-
ent keyboards, using linear classification in the supervised training
step. The models of the keyboards we use are:

Set 1 Set 2 Set 3 Set 4
words chars words chars words chars words chars

unsupervised keystrokes 34.72 76.17 38.50 79.60 31.61 72.99 23.22 67.67
learning language 74.57 87.19 71.30 87.05 56.57 80.37 51.23 75.07

1st supervised keystrokes 58.19 89.02 58.20 89.86 51.53 87.37 37.84 82.02
feedback language 89.73 95.94 88.10 95.64 78.75 92.55 73.22 88.60

2nd supervised keystrokes 65.28 91.81 62.80 91.07 61.75 90.76 45.36 85.98
feedback language 90.95 96.46 88.70 95.93 82.74 94.48 78.42 91.49

3rd supervised keystrokes 66.01 92.04 62.70 91.20 63.35 91.21 48.22 86.58
feedback language 90.46 96.34 89.30 96.09 83.13 94.72 79.51 92.49

Table 2: Text recovery rate at each step. All numbers are percentages.

Neural Network Linear Classification Gaussian Mixtures
words chars words chars words chars

1st supervised keystrokes 59.17 87.07 58.19 89.02 59.66 87.03
feedback language 80.20 90.85 89.73 95.94 78.97 90.45

2nd supervised keystrokes 70.42 90.33 65.28 91.81 66.99 90.25
feedback language 81.17 91.21 90.95 96.46 80.20 90.73

3rd supervised keystrokes 71.39 90.81 66.01 92.04 69.68 91.57
feedback language 81.42 91.93 90.46 96.34 83.86 93.60

Table 3: Recognition rate of classification methods in supervised learning. All numbers are percentages.

• Keyboard 1: DellTM Quietkey R© PS/2 keyboard, manufac-
turer part number 2P121, in use for about 6 months.

• Keyboard 2: DellTM Quietkey R© PS/2 keyboard, manufac-
turer part number 035KKW, in use for more than 5 years.

• Keyboard 3: DellTM Wireless keyboard, manufacturer part
number W0147, new.

The same document (2273 characters) is typed on all three key-
boards and the sound of keystrokes is recorded. Each recording
lasts about 12 minutes. In these recordings, the background ma-
chine fan noise is noticeable. While recording from the third key-
board, we get several seconds of unexpected noise from a cellphone
nearby. The results are shown in Table 4. Results in the table show
that the first and the second keyboards achieve higher recognition
rate than the third one. But in general, all keyboards are vulnerable
to the attack we present in this paper.

5.2 Random Text Recognition and Password
Stealing

We used the keystroke classifier trained by set 1 to mount pass-
word stealing attacks. All password input recorded in our experi-
ment are randomly generated sequences, not user names or dictio-
nary words. The output of the keystroke classifier for each key-
stroke is a set of posterior probabilities:

p(this keystroke has label i|observed-sound), i = 1, 2, . . . , 30.

Given these conditional probabilities, one can calculate probabili-
ties for all sequences of keys being the real password. These se-
quences are sorted by their probabilities from the largest to the
smallest. This produces a candidate list and the attacker can try
one-by-one from the top to the bottom. To measure the efficacy
of the attack, we use the position of the real password in this list.
A user inputs 500 random passwords each of length 5, 8 and 10.
Figure 8 shows the cumulative distribution function of the posi-
tion of the real password. For example, with twenty trials, 90% of
5-character passwords, 77% of 8-character passwords and 69% of
10-character passwords are detected. As Figure 8 also shows, with
seventy-five trials, we can detect 80% of 10-character passwords.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 4 8 16 32 64 128

C
um

ul
at

iv
e

D
is

tri
bu

tio
n

Fu
nc

tio
n

Number of Trials Needed

password length = 5
password length = 8

password length = 10

Figure 8: Password stealing: distribution of the number of tri-
als required by the attacker.

6. DISCUSSION

6.1 Attack Improvements
The current attack does not take into account special keys such

as Shift, Control, Backspace and Capslock. There are two issues
here. One is whether keystrokes of special keys are separable from
other keystrokes at signal processing time. Our preliminary exper-
iments suggest this is possible; push peaks of keystrokes are easily
separable in the recordings we looked at. The other issue is how
modifier keys such as Shift fit into spelling correction scheme. We
believe ad hoc solutions such as replacing Shift or Capslock keys
with spaces will work. Backspace is also important. The ideal so-
lution would be to figure out what the final text is after applying
the backspaces. But that probably will complicate the error correc-
tion algorithms. So one could just recognize these keys and leave
the “word” before and after out of error-correction because they
are probably not full words. Here a bit of human aid could be use-

Keyboard 1 Keyboard 2 Keyboard 3
words chars words chars words chars

unsupervised keystrokes 30.99 71.67 20.05 62.40 22.77 63.71
learning language 61.50 80.04 47.66 73.09 49.21 72.63

1st supervised keystrokes 44.37 84.16 34.90 76.42 33.51 75.04
feedback language 73.00 89.57 66.41 85.22 63.61 81.24

2nd supervised keystrokes 56.34 88.66 54.69 86.94 42.15 81.59
feedback language 80.28 92.97 76.56 91.78 70.42 86.12

Final keystrokes 60.09 89.85 61.72 90.24 51.05 86.16
result language 82.63 93.56 82.29 94.42 74.87 89.81

Table 4: Text recovery rate at each step. With different keyboards.

ful because backspaces are relatively easy to detect by ear based
on sound and context, although it is harder than spaces. Assum-
ing this is possible, the classifier can be trained to recognize them
accurately.

In future work, it is particularly interesting to try to detect key-
strokes typed in a particular application, such as a visual editor (e.g.
emacs) or a software development environment (e.g. Eclipse). Ex-
amining text typed in these environment presents challenges be-
cause more keys maybe used and special keys maybe used more
often. Furthermore, the bigram or transition matrix A will be dif-
ferent. Nonetheless we believe that our techniques may be applica-
ble to detecting keystrokes of users in these applications and indeed
can even cover input as different as other small alphabet languages,
such as Russian or Arabic, large alphabet languages, such as Chi-
nese or Japanese, and even programming languages.

A possible alternative method for feedback training procedure is
Hierarchical Hidden Markov Models (HHMMs) [6]. In a HHMM,
HMMs of multiple levels, grammar level and spelling level in this
case, are built into a single model. Algorithms to maximize global
joint probability presumably will result in similar effectiveness as
the feedback training procedure. This approach merits further in-
vestigation.

We have shown that the recognition rate is lower in noisy en-
vironments. Attacks will be less successful when, say, the user is
playing music while typing. However, there is research in the signal
processing area that separates voice from other sound in the same
channel. For example, sophisticated Karaoke systems can separate
voice and music. These techniques may also apply here.

6.2 Defenses
To defend against attacks, one can ensure the physical security

of the machine and the room. Given the effectiveness of modern
parabolic microphones, it must be ensured both that no bugging
device is in the room and also that sound cannot possibly be cap-
tured from outside the room. The usage of quieter keyboards, as
suggested by [1] may also reduce vulnerability. However, the two
so-called “quiet” keyboards we use in our experiments prove inef-
fective against the attack.

The more important message, however, is that the practice of re-
lying only on typed passwords or even long passphrases should be
reexamined. One alternative is two-factor authentication that com-
bines password or pass-phrase with smart cards, one-time-password
tokens, biometric authentication and etc. However two-factor au-
thentication does not solve all our problems. Typed text other than
passwords is also valuable to attackers.

Asonov and Agrawal suggest that keyboard makers could pro-
duce keyboards having keys that sound so similar that they are not
easily distinguishable. They claim that one reason keys sound dif-
ferent today is that the plate underneath the keys makes different

sounds when hit at different places. If this is true, using a more
uniform plate may alleviate the attack. However, it is not clear
whether these kinds of keyboards are commercially viable. There
is the possibility that more subtle differences between keys can still
be captured by an attacker. Further, keyboards may develop distinct
keystroke sounds after months of use.

7. CONCLUSION
Our new attack on keyboard emanations needs only acoustic

recording of typing using a keyboard and recovers the typed con-
tent. Compared to previous work that requires clear-text labeled
training data, this attack is much more general and serious in na-
ture. More important, the techniques we use to exploit inherent
statistical constraints in the input and to perform feedback training
can be applied to other emanations with similar properties.

Prototype code (in Matlab and Java) of the attack and the data
sets used in this paper are available at
http://www.keyboard-emanations.org.

8. ACKNOWLEDGMENTS
This work is funded by the United States Postal Service and US

National Science Foundation contracts EIA-01225989 and CCS-
0424422. This paper does not necessarily reflect the views of the
US government or any funding sponsor.

We would like to thank the anonymous reviewers for their com-
ments. We also want to thank Michael I. Jordan, Zile Wei, Hao
Zhang, Chris Karlof, Umesh Shankar, David Molnar and Naveen
Sastry, and especially Marco Barreno.

9. REFERENCES
[1] ASONOV, D., AND AGRAWAL, R. “Keyboard Acoustic

Emanations”. In Proceedings of the IEEE Symposium on
Security and Privacy (2004), pp. 3–11.

[2] ATKINSON, K. GNU Aspell.
http://aspell.sourceforge.net/.

[3] ATKINSON, K. Spell Checker Oriented Word Lists.
http://wordlist.sourceforge.net/.

[4] BILMES, J. A. A Gentle Tutorial of the EM Algorithm and
its Application to Parameter Estimation for Gaussian
Mixture and Hidden Markov Models. Technical Report
ICSI-TR-97-021, International Computer Science Institute,
Berkeley, California, 1997.

[5] BRIOL, R. “Emanation: How to Keep Your Data
Confidential”. In Proceedings of Symposium on
Electromagnetic Security For Information Protection (1991).

[6] FINE, S., SINGER, Y., AND TISHBY, N. “The Hierarchical
Hidden Markov Model: Analysis and Applications”.
Machine Learning 32, 1 (1998), 41–62.

[7] JORDAN, M. I. An Introduction to Probabilistic Graphical
Models. In preparation.

[8] JURAFSKY, D., AND MARTIN, J. H. Speech and Language
Processing: An Introduction to Natural Language
Processing, Computational Linguistics, and Speech
Recognition. Prentice Hall, 2000.

[9] KUHN, M. G. “Optical Time-Domain Eavesdropping Risks
of CRT Displays”. In Proceedings of the IEEE Symposium
on Security and Privacy (2002), pp. 3–18.

[10] KUHN, M. G. “Compromising Emanations: Eavesdropping
Risks of of Computer Displays”. Technical Report
UCAM-CL-TR-577, Computer Laboratory, University of
Cambridge, 2003.

[11] RUSSELL, S., AND NORVIG, P. Artificial Intelligence: A
Modern Approach, 2nd ed. Prentice Hall, 2003.

[12] SHAMIR, A., AND TROMER, E. Acoustic Cryptanalysis.
http://www.wisdom.weizmann.ac.il/
˜tromer/acoustic/.

[13] SPEECH VISION AND ROBOTICS GROUP OF THE

CAMBRIDGE UNIVERSITY ENGINEERING DEPARTMENT.
HTK Speech Recognition Toolkit.
http://htk.eng.cam.ac.uk/.

[14] THEDE, S. M., AND HARPER, M. P. “A Second-order
Hidden Markov Model for Part-of-speech Tagging”. In
Proceedings of the 37th conference on Association for
Computational Linguistics (1999), pp. 175–182.

[15] WASSERMAN, P. D. Advanced Methods in Neural
Computing. Wiley, 1993.

APPENDIX

A. RECOVERED TEXT EXAMPLES
Text recognized by the HMM classifier, with cepstrum features

(underlined words are wrong),

the big money fight has drawn the shoporo
od dosens of companies in the entertainment
industry as well as attorneys gnnerals on
states, who fear the fild shading softwate
will encourage illegal acyivitt, srem the
grosth of small arrists and lead to lost
cobs and dimished sales tas revenue.

Text after spell correction using trigram decoding,

the big money fight has drawn the support
of dozens of companies in the entertainment
industry as well as attorneys generals
in states, who fear the film sharing software
will encourage illegal activity, stem the
growth of small artists and lead to lost
jobs and finished sales tax revenue.

Original text. Notice that it actually contains two typos, one of
which is fixed by our spelling corrector.

the big money fight has drawn the support
of dozens of companies in the entertainment
industry as well as attorneys gnnerals
in states, who fear the file sharing software
will encourage illegal activity, stem the
growth of small artists and lead to lost
jobs and dimished sales tax revenue.

B. DETAILS OF FEATURE EXTRACTION
IMPLEMENTATION

The main difference between the duration of keystrokes and the
silent periods between keystrokes is the level of energy in a cer-
tain range of frequencies. The “silent” periods between keystrokes
might also have non-negligible energy because of other noises. The
major part of energy is in different frequency range than those from
keystrokes. Our experiments show that the energy of keystroke du-
rations is mainly in the frequencies between 400Hz and 12KHz.

To extract the start of each keystroke, we:

1. Compute the windowed discrete-time Fourier transform of a
signal using a sliding window (see Matlab specgram()) with
the magnitude of outputs as the spectrogram;

2. Sum over the spectrogram in the range [0.4, 12] KHz to get a
aggregate curve;

3. Set a threshold and find the start of each peak in the curve as
the start of a keystroke (see Figure 4).

Note that the positions of starts of keystrokes detected from the
curve in Figure 4 is the index of window number (win num), which
are converted back to the original location (wav position) in the
audio stream by:

wav position = (win num− 2) ∗ win shift + win length

The raw features might have high dimensionality. Possible algo-
rithms for dimensionality reduction are Factor Analysis (FA) or the
simpler Principal Component Analysis (PCA) [7]. Although some
of our preliminary experiments use PCA, our final experiments do
not use it. The FFT and cepstrum features we extract are not of very
high dimension (typically the number of dimension is between 60
and 80), so we do not need to apply dimension reduction.

