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Abstract control systems (DCS), programmable logic controllers
Pointer taintedness is a concept which has been success- (PLC), emergency shut down systems, supervisory control

fully employed as basis for vulnerability analysis of C/C++ .data acquisition (SCADA t[13 For the sake of
source code, and as a run-time mitigation technique against
memory corruption attacks. Nevertheless, pointer tainted- simplicity in this paper we use the term SCADA to re-
ness interferes with the specification of several industrial fer to any industrial control system. Generally speaking,
control protocols. As a consequence it is not directly usable SCADA consists in one or more central stations referred to
in detecting memory corruption vulnerabilities in implemen-
tations of those industrial control protocols. Furthermore, as master terminal units (MTU) which send commands via
source-code analysis may have no visibility on certain low- network to remote field devices such as intelligent electronic
level vulnerabilities since there may be a considerable dif- devices (IED's) or remote terminal units (RTU's). MTU
ference between what programmers intend with the source
code they write and what the CPU really executes. A set of c
memory corruption vulnerabilities specific to implementa- vice or instruct a field device to perform mechanical actions
tions of industrial control protocols may escape source code such as opening or closing valves. Field devices in turn
analysis as they are related to a dynamic organization of communicate with various sensors and actuators deployed
data in memory.

In this paper we define a new concept referred to as in a critical infrastructure utility to be monitored and con-
memory access taintedness. We discuss the logical moti- trolled. MTU's communicate with field devices usually in
vations behind our definition of memory access taintedness a master-slave mode according to especially developed in-
and demonstrate that memory access taintedness is fully
employable in vulnerability analysis of the machine code of dustrial control protocols
implementations of industrial control protocols. We ana- SCADA systems historically relied on proprietary net-
lyze the main low-level characteristics of both traditional works, communication protocols, hardware and operat-
attacks and attacks specific to process control systems, and
demonstrate the ability of memory access taintedness to de- i s
tect memory corruption vulnerabilities. We represent mem- SCADA network was relatively isolated from public net-
ory access taintedness as a decision tree and use it as the works in all senses. Nevertheless, SCADA has evolved into
fundamental component of a finite state machine model we using Ethernet based TCP/IP networks open industrial
devised for the purpose of dynamically detecting memory usng as C Unetworks open.industr
corruption vulnerabilities in implementations of industrial control protocols, Windows and Unix like operating sys-
control protocols. tems, common CPU architectures, etc. Actually common

Keywords SCADA networks get connected to the company Intranet
Critical infrastructure defense, Industrial control proto- and in some cases even to Internet, fact that exposes them

cols, SCADA systems, Vulnerability analysis. to cyber attack. In fact SCADA systems may be subject
to various vulnerabilities in their data, security adminis-

I. INTRODUCTION tration, architecture, networks and platforms[11].
Industrial process control systems are computer-based In this paper we discuss a novel vulnerability analysis tech-

devices used to remotely monitor and control critical in- nique for uncovering memory corruption vulnerabilities in
frastructure facilities such as nuclear plants, oil and gas fa- industrial control protocol binaries. Our practical exper-
cilities, electric power generation and distribution utilities, iments were mainly performed on an implementation of
transportation infrastructures, water treatment plants, etc. MODBUS TCP protocol[17] [21] running on an emulator of
Examples of process control systems include distributed a 32-bit ARM microprocessor. The binaries we analyzed

are formatted according to ARM ELF file format[20] un-
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of implementing those techniques may vary, we still refer behavior they exhibit during the analysis.
to them as the exploitation logic behind them remains the Other research work related to our vulnerability analysis
same. model have been proposed as run-time mitigation of mem-

ory vulnerabilities. FireBuff[5] is a run-time defense mech-
II. RELATED WORK anism which defines a logical separation between tainted

data, i.e. any data derived from user supplied data, and
One of the most significant frameworks that performs other data in the address space of a protected process. It

vulnerability analysis of SCADA software written in C does so by encrypting all input data as they enter user
and C++ is the developer environment for automated space, and by having a protected process elaborate input
buffer overflow testing (DEADBOLT)[16]. DEADBOLT data differently than other data. Thus, FireBuff tries to
performs a source-to-source transformation in order to in- eliminate the offensive capabilities of pointer taintedness,
sert instrumentation instructions into SCADA software for i.e the IT equivalent of memory access taintedness in indus-
the purpose of detecting buffer overflows during an auto- trial control protocols. Our vulnerability analysis model is
mated testing. DEADBOLT automatically generates tar- similar to FireBuff as it defines the boundaries between
geted test cases from sample input data. Such test cases are taintable data and other data as those boundaries change
then sent to SCADA software under analysis. During the throughout a program execution.
dynamic analysis the instrumentation instructions extract Chen et al. in [23] define an architectural technique and
memory access information and send them to a test-run employ their memory model to detect at run-time any
result analyzer, which in turn decides whether any buffer dereferences of tainted data. Such a model consists in asso-
overflow took place and possibly generates suggestions on ciating with each memory location and with each register
next to use test cases. Our deterministic finite state ma- a boolean property, namely taintedness, which indicates
chine (DFSM) model moves towards the same direction as whether the data stored in those memory locations and
DEADBOLT since it analyzes memory accesses in front registers respectively are derived from user supplied data.
of test cases in order to identify memory vulnerabilities. Whenever a tainted word is used for memory access the
Nevertheless, the research ideas behind the vulnerability processor raises an exception. Our vulnerability analysis
detection technique differ substantially since DEADBOLT model is similar to the defensive technique of Chen et al.
uses instrumentation, while in our work we use a DFSM. as just like their work ours keeps track of taintedness prop-
Fuzzing is employed by Franz in [15] and by Mora in [14] agation. But unlike the work of Chen et al. where any
to test implementations of the Inter Control Center Proto- memory access to an address derived from tainted data
col (ICCP)[10] and OPC, respectively. Although in these indicates the existence of a vulnerability, in our work a
cases fuzzing succeeded in triggering several vulnerabilities, memory access with these characteristics is just a starting
fuzzing alone may not be sufficient to uncover all memory point which is further investigated through a decision tree.
vulnerabilities in implementations of industrial control pro- Furthermore, unlike the work of Chen at al. that treats
tocols. For example, certain memory corruption vulnera- pointer taintedness as an observed value, our work tries to
bilities may be reachable only through an accurate data- calculate the SCADA equivalent of pointer taintedness, i.e.
flow analysis. Furthermore, fuzzing may not have the ca- memory access taintedness.
pacity to provide sufficient information necessary for iden-
tifying a triggered vulnerability. Such a limitation is due to
the fact that fuzzing has no visibility on the target execu-
tion internals such as memory and CPU register informa-
tion. In fact a heap overflow vulnerability [26] discovered III. MEMORY ACCESS TAINTEDNESS
by Franz in certain implementations of ICCP was only trig-
gered through fuzzing. The identification of such a vulner-
ability was performed through complementary techniques In this section we describe an analysis on the main low-
a considerable amount of time after the corresponding dis- level characteristics of memory vulnerabilities in implemen-
covery. tations of communication protocols used by industrial con-
blackPeer described by Byres et al. in [6], and Kube and trol systems. We also describe the main characteristics
Hoffman in [18], is complementary to our vulnerability at machine code level of both basic and advanced attack
analysis model. Such a tool uses attributed grammars, i.e. techniques which we employed in a monitored exploitation
grammars whose definition is overloaded with defined at- of memory vulnerabilities in industrial control protocols.
tributes, to generate and execute meaningful sequences of Such a low-level analysis served for defining memory ac-
PDU's which are sent to the implementation of a defined cess taintedness, i.e. a concept which represents a poten-
industrial control protocol under analysis. Not only does tial triggered memory vulnerability and which we used in
blackPeer automate generation of test cases for industrial a dynamic binary analysis technique described in the next
control protocols, but it also automatically interprets the section of this paper.
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A. A Representation of Pointer Taintedness at Machine The prolog of a procedure with frame pointed by R11
Code Level MOV R12, R13

STMDB R13!, {RO-R3} * - -s-_vdt_-
The concept of pointer taintedness was first introduced STMDB R13!, {R4-R12, R141 saved to RSA

by Chen et al. in [25] as a basis for reasoning about mem- SUB Rl1,Rl2,#16 - spaceforLTA
ory vulnerabilities. A pointer is said to be tainted if its
value is derived directly or indirectly from user supplied The epilog of a procedure with frame pointed by Rl
data. Chen et al. analyze C source code to determine the LDMDB R11, {R4-R11, R13, R151
potential for pointers to be tainted. They use equational --- In this case R11 is used as
logic to formally define a memory model which forms the a base register during the
basis for a formal semantics of pointer taintedness. For a Notes: restore of saved registers

sets to 1 the W bit of the corresponding instruction
given function they define the corresponding formal seman- specifying that the base register is to be updated by
tics and then extract preconditions which must be satisfied the instruction.
for pointer taintedness not to be possible .If during the The use of R11 as base register is crucial to a frame

pointer overwrite attack which aims at loading to R15
analysis any of those preconditions results to be violated from a memory location where attack data are stored
then a pointer may be tainted, therefore a potential secu-
rity vulnerability may exist. Fig. 1. Relevant observations on typical prolog and epilog of a pro-
While we deem the work by Chen at al. to be a powerful cedure running on ARM microprocessor.
approach to uncover memory vulnerabilities, the visibility
of such an approach may not be deeper than the max-
imum level of structural information provided by source niques as applied against an implementation of MODBUS
code analysis. In fact Balakrishnan et al. have demon- protocol[17] [21]. MODBUS is an application layer messag-
strated the existence of the WYSINWYX phenomenon, i.e. ing protocol which enables SCADA devices to communi-
what you see is not what you execute[8]. According to cate in a master-slave mode within possibly different types
Balakrishnan et al. the WYSINWYX phenomenon could of buses and networks. The analyzed attack techniques
consist in a considerable difference between what program- are a stack overflow exploitation with shellcode injection[1]
mers intend with the source code they write and what the or arc injection[19] corrupting the value of R14 (link reg-
CPU really executes. Furthermore, the WYSINWYX phe- ister) saved on stack, heap overflow exploitation[3] with
nomenon may cause vulnerability analysis on source code shellcode injection corrupting the value of R14 saved on
to fail to uncover certain vulnerabilities. Such vulnerabili- stack, frame pointer overwrite attack[12] with shellcode in-
ties may be uncovered only by examining the machine code jection corrupting the value of Rl1 (frame pointer) saved
which has been emitted by a compiler. on stack, format string exploitation[9] [22] with shellcode
Certain vulnerabilities are generally caused by platform injection corrupting a function pointer in the global offset
specific features. Some examples include compiler opti- table (GOT), an indirect pointer overwrite attack[4] with
mizations, memory layout, register usage, compiler flaws, shellcode injection corrupting a function pointer in GOT,
etc. [8]. In implementations of industrial control proto- and exploitation of an out of boundary array index with
cols several memory accesses are directly or indirectly con- shellcode injection corrupting the value of R14 saved on
trolled by input data usually sent over a network by a com- stack.
municating SCADA device. As a consequence in an indus- In ARM a procedure sets up a stack frame only if it needs
trial environment various memory vulnerabilities may be to save permanent registers, allocate space for local vari-
caused in front of certain organizations of data in mem- ables, or allocate space for outgoing argument areas which
ory and lack of ability to detect an out of range memory are larger than 4 words. Thus, the frame pointer attack
access. More information on these vulnerabilities and re- was applied against procedures with a frame set up. Re-
lated attacks are given in the next subsection. Since actual ferring to Figure 1, the stack overflow attack succeeds as
memory addresses and organization of data in memory are the register save area (RSA), i.e. stack memory used to
only visible during machine code execution, static analysis hold the preserved values of permanent registers including
of source code would have little visibility on these vulner- the saved link register stored during procedure prolog, gets
abilities. This fact motivated us to search for a represen- corrupted by user supplied data. Consequently a tainted
tation of pointer taintedness at machine code level. More value is loaded from RSA into the R15 register (see proce-
precisely, we searched for a representation of pointer taint- dure epilog). In ARM a load into R15 is referred to as a
edness in the form of a characteristic which is visible at long jump[2] and is sufficient to transfer execution control
machine code level since it is at this level that we operate. to the loaded value.
Such a characteristic is supposed to always hold if a given A heap overflow attack corrupts a memory chunk on heap
pointer was corrupted with user supplied data. and is characterized by stores of a user specified value to a
We examined the characteristics of a set of attack tech- user specified address. In our case the user specified value
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is the address of injected shellcode, and the user specified TABLE I
address is the memory location on stack where the value of MAIN FEATURES OF MEMORY CORRUPTION ATTACKS AS WE APPLIED

R14 is saved. At the end the attack causes a long jump to THEM AGAINST MODBUS PROTOCOL RUNNING ON ARM
injected shellcode. A frame pointer overwriting attack cor- MICROPROCESSOR.

rupts the value of Rl1 saved on stack during a procedure
prolog. During the procedure epilog the corrupted value Attack Corrupted TRelevan
of Rl1 is loaded into the Rl1 register. When the original technique Memory Action(s)
caller procedure enters its epilog, the Rl1 register holding Stack overflow RSA |A long brancr to a user
a user supplied value is used as base register to load pre- exploitatlon supplied address.
served register values from RSA including the saved value Heap overflow Heap Two stores to user
of R14 register. Since we control the value of Rl1 register exploitation RSA supplied addresses.
during the epilog of the original caller procedure, we load Frame pointer cSA A load from an address
into R15 a value from a memory location where we have overwriting constructed upon
preliminarily stored the address of injected shellcode. user supplied data.
Thus, a load into R15 from a user controlled address causes Format string GOT A store to an user
a long jump to an arbitrary address, in our case to the exploitation supplied address.
address of injected shellcode. During a format string at- Indirect pointer LTA A store to an user
tack a store instruction stores at a user specified address a overwriting GOT supplied address.
value which may be controlled by the user through format Exploitation RSA A store to an address
directives. In our case there was a store of the address of of an out of constructed upon
injected shellcode at an address in GOT where a pointer to boundary user supplied data.
a dynamic library function was stored. Since the hijacked array index
function was called by our MODBUS implementation after
the GOT corruption, execution control was transferred to
injected shellcode. 2. Those data are derived either directly or indirectly from
During an indirect pointer overwrite attack we corrupted input data or from data which in general are classified as
a pointer value stored at the locals and temporaries area tainted (recursive definition).
(LTA), i.e. stack memory used to hold local variables and 3 Relevant aspects of those data are controlled either di-
compiler-generated temporaries. We set the corrupting rectly or indirectly by tainted data (recursive definition).
value to the address in GOT where a pointer to a dynamic At this point we define the main characteristic of pointer
library function was stored. At machine code level this was taintedness at machine code level as any machine instruc-
reflected in a store to an user specified memory location. tion accessing main memory at an address which is derived
During the exploitation of an out of boundary array index either directly or indirectly from tainted data. In the next
we specified an index which when added to the base ad- subsection we describe a mechanism which we deem ap-
dress would point to the memory location on stack where propriate to be used for memory vulnerability detection
the saved value of R14 was stored. We stored there the ad- in industrial control protocols along with relevant context
dress of injected shellcode. At machine code level such an dependent considerations on the machine code level repre-
operation is represented by a store instruction whose index sentation of pointer taintedness.
register holds a user specified value. Although we don't B. Memory Access Taintedness as a Vulnerability Detec-
control the base register we can still dictate the memory tion Mechanism
location used by the store instruction since we control the
index register. We extended our study on a set of attacks and related
As a conclusion, the main features extracted from a memory vulnerabilities specific to implementations of com-
machine-level analysis of all the attacks we analyzed are munication protocols used for supervisory and control by
summarized in Table I. The main characteristic which may industrial control systems. The protocols which have been
be extracted from the attack information given in Table I subject to our analysis are MODBUS and OLE for Pro-
and which is due to pointer taintedness consists in the fact cess Control (OPC)[7]. After such an extended analysis
that all the attack techniques that we analyzed resulted at we reached at the conclusion that pointer taintedness as
least in a memory access at an address dictated directly or defined by Chen et al. in [25] cannot be directly used as
indirectly by user supplied data. We extend the definition a vulnerability detection mechanism during a vulnerabil-
of tainted data given by Chen at al. in [25] and classify any ity analysis of industrial protocol binaries. As a matter of
data in the address space of a defined process as tainted if: fact in implementations of industrial protocols it happens

that the value of a pointer is tainted data. Regardless of
1. Those data are input data, thus they may be directly the aforementioned consideration, during analysis of such
defined and supplied by a potential attacker. implementations it is common to notice memory accesses
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at an address computed upon at least a tainted value, and Thus, implementations of several industrial control proto-
this is not in conflict with the specification of the corre- cols maintain an area in main memory dedicated to the
sponding industrial protocols. storage of control and monitoring data. In this paper we
The OPC data access specification for example defines the refer to this area as the acquisition data area (ADA) and
use of a set of interfaces to access heterogeneous devices in use it in the definition of memory access taintedness. What
an industrial control network. OPC communications use prevents the concept of pointer taintedness from being di-
Distributed Component Object Model (DCOM) and are rectly usable as a vulnerability detection mechanism in in-
intended to take place according to a client-server model. dustrial control protocol binaries is the following:
What OPC data access specification defines are the func- 1. Explicit or implicit existence of an ADA. Since input
tionalities that OPC clients and OPC servers are supposed data is used to calculate the address of any accesses to
to provide while no further constraints are specified on the ADA each legitimate request for acquisition data would
implementation of various interfaces. With regard to mem- g
ory corruption attacks one of the most interesting elements 2.rte a tat thea
of OPC are server handles, i.e. unique 32-bit identifiers sist in tainted data even though no pointer value has been

item in OPC maybto tfs addresso A preliminarily corrupted. An attempt to classify a memoryaccess as tainted only if a related pointer has been tainted
resource, while a group is used to organize items. A client would result in false negatives.
receives from a server a handle each time that client creates
a new group or item. The client then uses such a handle to With regard to the second point in the list above we can
refer to a group or access items in a group. As described by take into account the attacks to OPC described by Mora in
Mora in [14] several OPC server implementations use the [14] and other protocol specific attacks we applied against
memory address of a group or item as the corresponding MODBUS. According to Mora the element deletion func-
handle. tions such as RemoveGroup() or Removeltems() in some
Thus, in order to refer to a group or access items in a group implementations of OPC employ the handle that the server
a client specifies the address in server's memory where that receives from a client in deriving the address of a mem-
group or item is stored. Applying pointer taintedness as ory chunk to be deallocated through a call to free(). If a
a memory vulnerability detection mechanism would report target OPC server doesn't properly validate handles that
a potential vulnerability each time an OPC client refers it receives from clients, then an attacker could specify a
to a group or item. We analyzed the direct usability of non-existent address forcing a server to deallocate non-
pointer taintedness as a vulnerability detection mechanism reachable addresses. An attacker could also specify a han-
also on MODBUS protocol. The main data items defined dle which could force the server to execute the memory
by MODBUS data model are the following: discrete input deallocation algorithm upon attack data, fact that could
which are read-only one bit data provided by the I/O sys- result in shellcode execution.
tem, coils which are one bit data alterable by a MODBUS Although not covered by Mora, we believe that under these
process, input registers which are read-only 16-bit data pro- assumptions passing a valid handle twice to an element
vided by the I/O system, and holding registers which are deletion function could result in the server trying to call
16-bit data alterable by a MODBUS process. These data free() twice on the same chunk, fact that could result in
items are addressed using a number from 0 to 65535, and shellcode execution as well. The Write() function of the
are stored in the main memory of a MODBUS device. I/O interface which takes as parameters an item handle
Each MODBUS implementation maintains a premapping and a value to write to it is also subject to similar attacks
between a data item address as used by MODBUS and the described by Mora. In this case such an attack would aim
address in memory where that data item is stored. Thus, at writing an arbitrary value to a memory address leading
a MODBUS request specifies the address of a data item to shellcode execution. Thus, although during the attacks
of a certain kind as a number n. The MODBUS process described by Mora and the attack variant we propose no
then uses its premapping table to define the memory ad- pointers are corrupted with tainted data, memory corrup-
dress of the requested data item. In common MODBUS tion attacks may still be carried out resulting even in shell-
implementations each time a master station sends a MOD- code execution.
BUS request to a slave device, the address of the data item We build on the results described so far to define the con-
specified in that request taints the memory address which cept of memory access taintedness in implementations of
is used to load the requested data item from the main mem- an industrial control protocol. We deem the relation be-
ory of the slave. One of the causes of such a taintedness is tween the criteria used for classifying a memory access as
the use of the MODBUS address as an offset from a base tainted and the specification of the protocol whose imple-
register to form the address of the memory location where mentation is subject to vulnerability analysis to be quite
the requested data item is stored. important in deciding whether a given memory access indi-

cates the existence of a memory vulnerability. Let's define a

1-4244-1304-4/07/$25.00 ©2007 IEEE 345



Proceedings of the 2007 IEEE
Workshop on Information Assurance

United States Military Academy, West Point, NY 20-22 June 2007

tainted address? Byte count Registers value
(set to 2 times (set to the address
quantity of registers) of injected shellcode)

no yes

Quantity of registers
(set to 2 since a register

noADA ? is 16-bit data and we are

writing a 32-bit address)
yes no

Number
of bytes: 1 2 1 4

instruction 0Oxl 0x 0x0002 10x04 Ox....

store load I

Function code
block ? n (set to 16 indicating Starting MODBUS address

write multiple registers) (set to a value whose faulty
discretes holding mapping would produce

input registers the address in memory where
coils *nput control data such as saved

egisters instruction pointer or function
pointers, or pure data such

yes no yes no a sdata pointers, are stored)

Fig. 2. A decision tree for the memory access taintedness in MOD- Fig. 3. A MODBUS protocol data unit as structured during MOD-
BUS implementations with a separate memory block for each BUS specific control-data and pure-data attacks against MOD-
kind of data item. BUS implementations.

tainted address as an address which is derived from tainted mapping would produce the address of the memory loca-
data. For classifying a memory access as tainted not only tion where control data are stored. The overwriting value
its address should be tainted but also that address along is specified in the attack PDU as the value to write at those
with the kind of instruction, i.e. store or load, should cause two registers and is set to the address of injected shellcode.
a violation of what (and how) a control protocol frame can Assuming a shellcode injection point exists in vulnerable
refer to in the memory of a control device. MODBUS implementations, such an attack would corrupt
We define memory access taintedness in implementations control data with the address of injected shellcode. These
of MODBUS protocol and present it as a pattern. For the MODBUS specific attacks in principle are similar to the
sake of simplicity we define memory taintedness on a MOD- attacks to OPC described by Mora in [14].
BUS implementation which maintains a separate block of Memory access taintedness as defined in the decision tree
main memory for each kind of data items. At microproces- of Figure 2 covers also these MODBUS specific attacks al-
sor emulator level we represent memory access taintedness though no pointer is ever tainted. As a matter of fact the
in the form of a decision tree Figure 2. If the address of a specification in the attack PDU of a malicious MODBUS
memory access is not tainted we deem that memory access address is reflected during process execution in a store to
as not being tainted. Otherwise we check the address to a memory address which is tainted, i.e. it is derived from
see if it falls within ADA. If it doesn't then memory access the MODBUS address, and falls outside ADA since it is
taintedness is in place. Such a decision covers the ma- the address where control data are stored. We replayed as
chine code level representation of pointer taintedness and pure data attacks[24] targeting ADA both the traditional
could detect all pointer corruptions we analyzed through memory corruption attacks described in the previous sub-
attack techniques described in the previous subsection. In section and the MODBUS specific attacks we devised for
fact those attack techniques applied as control-data attacks demonstrating memory corruption with no pointer taint-
need to corrupt data outside ADA in order to fulfill their edness. An attacker needs to carry out no offensive cyber
ultimate goal, i.e. hijacking of execution control. action to read or write coils and holding registers since they
We developed a set of memory corruption attacks targeting are writable by the application. Therefore the targets of a
faulty mappings between data items as addressed by MOD- possible corruption are discrete input and input registers
BUS and the memory locations where those data items are which should be read-only values.
stored. The protocol data unit (PDU) crafted for carry- When applied as pure-data attacks targeting ADA all the
ing out such MODBUS specific attacks is shown in Fig- memory corruption attacks that we analyzed soon or later
ure 3. The idea behind these attacks consists in requesting result in a store to a memory address which is tainted and
a target MODBUS device to write two holding registers, falls within either discrete input block or input registers
i.e. two 16-bit data in its main memory, by specifying a block. As a consequence any store with these characteris-
MODBUS address which as a result of a possible faulty tics leads to an affirmative value of memory access taint-
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edness in the decision tree given in Figure 2. The subtract instruction which belongs to the ARM
Instruction Set

IV. FINITE STATE MACHINE ANALYSIS OF MEMORY SUB {<cond>} {S} <Rd>, <Rn>, <shifteroperand>
ACCESS TAINTEDNESS

Now that we have the definition of memory access taint- An instance of the ARM subtract instruction where
edness in implementations of an example industrial control R4 holds the value 64 in decimal
protocol we can describe a DFSM model we devised for
identifying memory access taintedness in those implemen- SUB R2, R4, #32
tations. We describe such a vulnerability analysis model as
applied to the MODBUS protocol since it is for this proto- Fig. 4. An example of what we mean with an ARM instruction
col that we defined memory access taintedness indicating instance.
the existence of memory vulnerabilities. Taking into ac-
count both the amount and the kind of information needed
by our vulnerability analysis model a software implemen- tures such as ordered lists. These two lists get possibly
tation of the DFSM that we propose incorporated into an updated as new instructions are executed. A state of our
ARM microprocessor emulator is most suitable for dynami- DFSM consists in actually existent memory taintedness is-
cally analyzing memory access taintedness in SCADA bina- lands in the 4GB of address space of a MODBUS appli-
ries as single machine instructions execute. In fact we use cation, and in a set of those registers which are actually
a CPU emulator as we need real-time information about tainted. We treat banked registers individually as if they
memory accesses which we found easier, simpler and faster were different registers.
to extract from a CPU emulator rather than from any phys- For example, if a banked register such as R13 at each mo-
ical ARM microprocessor. Nevertheless, we do not exclude ment refers to 1 of the 5 possible 32-bit physical registers
the usefulness of other approaches different than ours, such depending on the current processor mode, we consider hav-
as for example using DFSM in a static analysis along with ing 5 registers rather than 1 and maintain in a list the
symbolic execution of an industrial protocol binary. ones which are tainted. With regard to the definition of to
In what follows we define each single element of our DFSM, we consider the memory locations where input data comes
namely each element in the tuple (T, to, E, R) where T is a from. In fact registers may get tainted only subsequently
non-empty and finite set of states, to is an initial state, E is after loads of tainted data. On ARM microprocessors the
an event queue, and R is a state transition relation. First standard way of performing I/O functions is through some
of all, we define an event queue the triple (V, S, C) where special memory locations referred to as memory-mapped
V= {instances of m / m c ARM Instruction Set}, S is I/0[2]. A given process receives input data by loading
the number of slots in the queue which we set to the num- from memory-mapped I/O locations. Storing to memory-
ber of instructions supported by the actual microprocessor mapped I/O locations is used for output. Thus, the initial
pipeline, and C is the contents of a queue, i.e. an ordered state of our DFSM consists of a memory taintedness island
set of S elements of V. V in this paper is referred to as created by addresses of memory-mapped I/O locations.
the queue vocabulary. We order the elements of C accord- The state transition relation R is responsible for determin-
ing to the order by which those instruction instances are ing if memory access taintedness is in place and possibly
prefetched by the ARM microprocessor, or more precisely updating the list of memory taintedness islands and/or the
in our case by the ARM emulator. With an instruction list of tainted registers. R uses the current state to deter-
instance we mean an instruction which is ready to be con- mine if the memory address which the event received in in-
sidered for execution by a CPU, thus an instruction whose put, i.e. an ARM instruction instance, is trying to access is
operands are determined already and hold a defined value tainted. Generally speaking, in ARM instruction instances
Figure 4. the determination of a memory address, or the determina-
In order to detect possible memory access taintedness we tion of several memory addresses in certain cases, depends
need to keep track of generation of tainted data and their on two factors, namely a base register and an offset. The
propagation throughout memory locations and CPU regis- offset in turn could be an immediate value, i.e. a constant
ters. For such a purpose we adapt the extended memory such as #n explicitly specified, or a register-based value.
model proposed by Chen at al. in [25] and define what A register holding an offset is often referred to as index
we call a memory taintedness island as a set of contiguous register. Therefore, R consults the current state to see if
memory locations which hold tainted data. Furthermore, either the base register or the index register (if existent)
each register is classified as tainted if it holds tainted data. are tainted. If any of those two registers belong to the cur-
In our DFSM model at each moment of the vulnerability rent list of tainted registers, then the memory address to
analysis interval we maintain only memory taintedness is- be accessed by the event under consideration is classified as
lands and tainted registers organizing them in data struc- tainted. The state transition relation R employs the deci-
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