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Abstract—We consider the design of a network in which packet
transmissions between two nodes are to be guaranteed a certain
probability of success. There areN independent paths between
the two nodes, each path having a fixed probability of success
(perhaps representing an a priori estimate of the security of
the path). The original message is encoded using a maximum-
distance separable code. We find the minimum redundancy and
optimal path symbol allocation for the 3-path case based on a
desired success probability and the path success probabilities.
Two algorithms are presented for determining the minimum
required redundancy – an exponential time algorithm (MRAET)
and a polynomial time algorithm (MRAPT). We show that
MRAET is optimal in several cases, and that both algorithms
perform very well.

Index Terms—Error Correction Coding, Networks, Redun-
dancy

I. I NTRODUCTION

In this paper we consider a scenario in which there are
multiple independent paths between a source-destination pair
through which information can be transmitted. We further
assume that some nodes along these paths may fail to co-
operate, leading to lost messages. One way to correct for
lost data is to add redundancy to the original message. As
unnecessary redundancy results in lower network efficiency, it
follows that some means must be found for estimation of the
minimum necessary redundancy. In [2], the authors introduce
a method of secure message transmission over a multipath
channel. They suggest a technique which assesses the integrity
of each available path set between the source and destination.
The degree of trustworthiness of a path is associated with
the probability of successful transmission. The paths thatare
determined to be secure, or the active path set (APS), are used
to transmit the message.

Mobile Ad Hoc Networks are wireless networks in which
topology is constantly changing due to link failures or wireless
channel conditions. Changing topology renders pre-determined
routing schemes inadequate, since a previously good link
might become inconsequential because of severe fading or
compromised nodes. Thus, it is important to determine the
reliability of each link, and further, how to dynamically

distribute data across the network. Our scheme is amenable
to these networks, since it considers the integrity of each link
and then allocates information accordingly.

The multipath routing literature is extensive. In [6], the
authors suggest a protocol for finding maximally disjoint
paths. They divide the message among the paths, though do
not consider different security levels in the paths. In [3],
the authors develop a multipath routing technique for the
case where the paths have equal failure probability. Given
the number of paths, they try to maximize the probability of
success by optimally allocating channel coded packets to the
paths. In [4], the authors extend their previous work to the
case where the path failure probabilities are all different. They
attempt to ameliorate the problem of a complicated probability
of success function by deriving an approximation, and then
determine the optimal block allocation to each path in order
to maximize the approximated function. In all of this work,
the encoded data is transmitted amongst the paths assuming
that the desired level of redundancy is known. In this paper we
attempt to find the minimum redundancy and optimal symbol
allocation to meet a minimum required success probability.

In [2] the authors use a redundancy coding technique based
on Rabin’s algorithm [5], which acts like an erasure code.
This adds redundant symbols to the message, allowing proper
decoding even if the encoded message is not fully received
at the destination node. To alleviate lost data caused by a
malevolent node, we consider the use of maximum-distance
separable (MDS) codes, which include the well-known Reed-
Solomon codes [9]. MDS codes are notable in this context, as
any k symbols in an(n, k) codeword can be used to recover
the originalk- symbol message.

We consider a technique in which the symbols in a
message are encoded using an MDS code. Then the symbols
in the given codeword are broken up and allocated across
the multiple paths to achieve the target success probability
at the destination. We determine the minimum amount of
redundancy necessary for this probability of success to be
achievable.



II. PROBLEM SETUP AND BACKGROUND INFORMATION

We have a source node that wishes to transmit a message
to a specified destination node, within a certain probability of
success. Between these two nodes there areN paths that have
a security level associated with them. In other words, pathi

has a valuepi assigned to it which represents the probability of
successfully receiving packets sent across this path. Without
loss of generality we assume thatp1 ≥ p2 ≥ . . . ≥ pN .
We want to disperse the message among these paths so that
successful reception has at least target success probability
p∗. In the case that one or more paths has a vicious node,
the destination node cannot recover the original message.
We suggest the use of maximum-distance separable codes to
mitigate this problem.

A. Maximum-Distance Separable Codes (MDS)

Before going into the details of MDS codes, we will begin
with some basic theorems and definitions [1].

Definition 1: Hamming Distance
TheHamming Distancebetween two codewordsu,v of length
n is the number of positions in which they differ or,

dHamming(u,v) = d(u,v) = |{i|ui 6= vi, i = 0, 1, . . . , n − 1}|

Definition 2: Minimum Distance of a Code
The Minimum Distance, dmin of a code is the minimum
Hamming distance between all distinct codewords in the
codebook.
An (n, k) code is one which starts with a message of length
k and encodes it to a codeword of lengthn, or addsn − k

redundant symbols. We call the ration
k

= γ.
Theorem 1:Singleton Bound

The minimum distancedmin for an (n, k) code is bounded by

dmin ≤ n − k + 1

Maximum-distance separable codes are linear block codes
that satisfy the Singleton Bound with equality; i.e., for an
(n, k) code,dmin = n− k + 1. Consider ak-symbol message
which is encoded into ann symbol MDS codeword. It is
known (see, for example, [1]) that any combination ofk out of
n symbols in an MDS code can be used to obtain the original
message. With this useful property, as long as≤ n−k symbols
are lost, we can perfectly reconstruct the primary message
(assuming that there are no errors in the received symbols).

B. System Model

The N paths between the source and destination node are
independent from one another, and are each assumed to be a
block erasure channel [8]. By block erasure channel we mean
that either the symbols in a given transmission are received
perfectly or they are not received at all. Letf denote the
symbol allocation vector, wherefi represents the number of
symbols allocated to pathi. We can compose a vectors of
length N , composed of0’s and 1’s, where a0 in spot i

represents failure of pathi to deliver its symbols, and a1
in spot i represents a successful transmission at pathi. The
message is extended fromk symbols ton symbols, and the

scenario thatk or more symbols are received means that the
message can be decoded without error. LetS be a matrix
of all possible vectorss. Then, the probability of successful
reception of the message at the destination can be written as,

Psuccess(f) =
X

s∈S

N
Y

i=1

p
si
i (1 − pi)

1−siu(s · f − k) (1)

whereu(·) is the unit step function.
It can be seen thatS is composed of2N vectors, and
hence, calculating the probability of success for a given
vectorf takes exponential time. For each path, the probability
that the symbols transmitted across the path are received
follows a Bernoulli distribution. Thus, in [4] they find an
approximation for the probability of success based on the
fact that a Bernoulli distribution can be approximated by
a Gaussian distribution. Since the paths are independent, if
we model them all using a Gaussian distribution, the joint
distribution of all the paths is also a Gaussian distribution,
∼ N

“

PN

i=1 fipi,
PN
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. The approximation of
the probability of success is,

Psuccess(f) ≈
1
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Given a target success probabilityp∗, the question that
needs to be answered is: what is the minimum redundancy,
and how do we optimally distribute symbols, to attain success
probability of at leastp∗? Naturally, the source node will use
knowledge of the security of each path to its advantage, most
likely sending more information down the most trustworthy
path. This implies thatf1 ≥ f2 ≥ . . . ≥ fN . Another
initial observation that we make is that sending more than
k symbols down any path is useless, since we only needk

symbols to decode the original message. Hence, forN paths,
the highest redundancy one can have isγ = N . Also, if
p∗ ≤ p1 then the optimal approach is to haveγ = 1 and
f1 = k, f2 = 0, . . . , fN = 0. For simplicity, we begin with
the case whereN = 3.

III. O PTIMAL SYMBOL ALLOCATION AND M INIMUM

REDUNDANCY FORN = 3

Initially we assume that there exist 3 active paths that are
ranked based on their “trustworthiness” level. The first step in
distributing symbols to the paths is to determine the ratioγ =
n
k

. For example, if we have3 active paths, andγ = 3, it is clear
that the optimal approach is to sendf1, f2, f3 = k symbols
along paths 1,2, and 3. Based onp∗ and the path success
probabilities, using brute force, we determine the minimum
redundancy and optimal symbol allocation as follows:

• If p1 + p2 − p1p2 < p∗ ≤ p1 + p2 + p3 − p1p2 − p2p3 −
p1p3 + p1p2p3

⇒ γmin = 3 andf1, f2, f3 = k

• If max{p1p2 + p2p3 + p1p3 − 2p1p2p3, p1} < p∗ ≤ p1 +
p2 − p1p2

⇒ γmin = 2 andf1, f2 = k, f3 = 0



• If p1 < p1p2 + p2p3 + p1p3 − 2p1p2p3 and p1 < p∗ ≤
p1p2 + p2p3 + p1p3 − 2p1p2p3

⇒ γmin = 3
2 andf1, f2, f3 = k

2
• If 0 < p∗ ≤ p1

⇒ γmin = 1 andf1 = k, f2, f3 = 0

Below in Fig. 1 we plot the minimum redundancy versus
the target success probability for the case wherep1 ≥ p1p2 +
p2p3 + p1p3 − 2p1p2p3.
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Fig. 1. Minimum Redundancy forN = 3 when p1 ≥ p1p2 + p2p3 +

p1p3 − 2p1p2p3

If p1 < p1p2 + p2p3 + p1p3 − 2p1p2p3 then we see that
there is an additional possibility for the redundancy,γ = 3

2 .
We show this in Fig 2.
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Fig. 2. Minimum Redundancy forN = 3 when p1 < p1p2 + p2p3 +

p1p3 − 2p1p2p3

This is obtained by considering all possible logical symbol
distributions among the paths. We know that

∑3
i=1 fi ≥ k,

and the probability of success is dependent on how many of
the paths have symbol allocations that sum tok. Since we are
assuming that as the path number increases the probability
of success decreases, this greatly diminishes the number of
possible symbol allocations. So for example, forγmin = 1 we
have three choices for the allocation which are:f1 = f2 =
f3 = k

3 , f1 = f2 = k
2 , f3 = 0 or f1 = k, f2 = f3 = 0.

These choices are associated with the success probabilities

p1p2p3, p1p2, p1 respectively, and clearlyp1 is the greatest.
We proceed like this for all scenarios, and obtain the results.

IV. A LGORITHM FOR ARBITRARY NUMBER OF PATHS

Generally, the size of the active path set is known prior
to transmission, though it is dynamic in the sense that the
cardinality of this set changes every time the security of each
path is assessed. Due to the structure of the success probability
function, it is difficult to obtain a closed form expression
for the redundancy and symbol allocation. We take another
approach, and develop heuristic algorithms Minimum Redun-
dancy Algorithm Exponential Time (MRAET) and Polynomial
Time (MRAPT) which determine these mentioned parameters
to achieve the desired probability of success. The algorithms
are composed of two parts, where the first part is primarily
to reduce the dimensionality of the search space and to give
us a starting point. We assume that the table of the setS is
computed offline, and is not considered in the running time
analysis.

The first part of the algorithm considers the simple case
where either we assign0 or k symbols to pathi, i ∈
{1, . . . , N}. It finds the first pathj such that if all the paths
i ∈ {1, . . . , j} are assignedk symbols, and the rest of the paths
have0 symbols, then the probability of success is at leastp∗.
It is clear that if only the firstj − 1 paths are assignedk
symbols, and the rest0, then the success probability is strictly
less than the target probability of success.

In the simple case of three paths it can be seen that the only
way we can diminish the redundancy of the code is by starting
at the point where the firstj − 2 paths havek symbols and
the rest having0 symbols. We will first define some notation
in the algorithm for simplicity:

PA
success =

∑

s∈A

N
∏

i=1

psi

i (1 − pi)
1−si

WhereA is some subset ofS. Let,

Z(i,s) = {z ∈ {1, . . . , 2N−(j−2)} |

j−2+i
∑

l=j−1

Sz,l ≥ s}

for some integerss, i. WhereSz,l represents the element ofS

in the zth row andlth column.

Minimum Redundancy Algorithm in Exponential Time
Part 1:

Step 1: Assignj = 1 and go to step 2.
Step 2: Let A = S((2j+1,...,2N ),(1,...,N)) and go to step 3.

Step 3: CalculateP A
success.

If P A
success(f) ≥ p∗ then savej, let

f1, . . . , fj = k, fj+1, . . . , fN = 0

andγmin = j, Ptemp = P A
success.

Then go to part 2 of the algorithm.

Otherwise letj = j + 1 and if j > N move on to Part 2,
else if j ≤ N return to Step 2.



If j < 2 then we have an optimal allocation and we are
done. Otherwise:

Part 2:
Let i = 2

Step 1:Let i = i+1 and if eitheri > N or j−2+ i > N
then terminate Part 2, otherwise go to step 2.

Step 2: Let s = 2

Step 3: If j − 2 + i
s
≤ γmin then

let A denote the subset of matrixS composed of rows
whose indices are inZ(i,s) and go to step 4. Otherwise,
go to step 6.

Step 4: CalculateP A
success

If P A
success ≥ p∗ with j − 2 + i

s
< γmin

or
j − 2 + i

s
= γmin andPtemp < P A

success

then go to step 5, otherwise go to step 6.

Step 5: Let Ptemp = P A
success , γmin = j − 2 + i

s
, and

f1, . . . , fj−2 = k,

fj−1, . . . fj−2+i = k
s

,
fj−1+i, . . . , fN = 0.
Go to step 6.

Step 6: Let s = s + 1. If s > i then go to step 1, else go
to step 3.

This algorithm is optimal for several of cases. One case is
when we haveN = 3 paths.

Theorem 2:MRAET is optimal when N = 3
Proof: After Part 1 of the algorithm, we have 3 options forj,
j = 1, 2, 3.
If j = 1, then the algorithm terminates after part 1 sincej < 2.
We are left withγmin = 1 ⇒ n = k

Thusf1 = k, f2 = f3 = 0 which is optimal.
If j = 2, then

A =

















0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

















andPtemp = p1 + p2 − p1p2

The algorithm then steps into part 2. It starts and ends with
the scenarioi = 3, s = 2 since N = 3. It first checks is
j − 2 + i

s
≤ γmin = j. If so, then it searches through

S =

























0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

























rows (1, . . . , 2N−(j−2)) = (1, . . . , 8) such that the columns
(j − 1, . . . , j − 2 + i) = (1, . . . , 3) sum to greater than or
equal tos = 2. Then

A =









0 1 1
1 0 1
1 1 0
1 1 1









.

Then sincej − 2 + i
s

= 3
2 < j = 2, MRAET checks if

Psuccess =
P

s∈A

Q3
l=1 p

si
i (1 − pi)

1−si = p1p2 + p2p1 + p1p3 −

2p1p2p3 ≥ p∗. If so, thenγmin = 3
2 and f1, f2, f3 = k

s
= k

2 ,
otherwiseγmin = 2 andf1 = f2 = k, f3 = 0.

Lastly, if j = 3 the algorithm stops before part 2 because
j − 2 + 3 > 3. Thus,f1 = f2 = f3 = k, which is the same
allocation as we had above.2

Next, we prove a theorem to help us show another optimal
case.

Theorem 3:Suppose we havek symbols allocated to
paths 1, . . . , i−1 and 0 symbols allocated to the remaining
of the N paths, resulting with probability of successp̂i−1.
Then, if we let path i have k symbols, the probability of
success is

p̂i = p̂i−1 + pi − p̂i−1pi (3)

Proof: By induction on the integeri.

Base Case:i = 2
We have p̂i−1 = p̂1 = p1, since we only have success if
path 1 succeeds. If we let path 2 havek symbols, then we
have a success solely if path 1 succeeds, if path 2 is the only
successful one, or if they both succeed. This is equivalent to:

p̂2 = p̂1p2 + p̂1(1 − p2) + (1 − p̂1)p2 = p̂1 + p2 − p̂1p2

Inductive Hypothesis:Suppose Eq. 3 holds∀i ≤ m − 1

Inductive Step:Let i = m . Then by inductive hypothesis we
know thatp̂m−1 is the probability of success for the firstm−1
paths havingk symbols and the rest having0. We can think of
p̂m−1 as being the probability of success for one super path.
Thus, if we let themth path havek symbols, then we have
success if only the super path is successful, themth path is
the only successful one, or if they are both successful. Thatis:

p̂m = p̂m−1pm + p̂m−1(1 − pm) + (1 − p̂m−1)pm

= p̂m−1 + pm − p̂m−1pm

Hence the result holds∀i ∈ 2, . . . N . 2

Theorem 4:MRAET is optimal when j = N

Proof: If j=N, then we know thatA is equal toS, excluding
the all zero first row,PA

success ≥ p∗.
By Thm. 3 we know that the probability of success for the
first N − 2 paths havingk symbols and the rest having0 is:

p̂N−2 = p̂N−3 + pN−2 − p̂N−3pN−2 < p∗

Thus, if we treat the firstN − 2 paths as one super path
with probabilitypsuper = p̂N−2, then the current problem can



be mapped to the case whereN = j = 3 since super path is
path 1,N − 1 is path 2, andN is our third path.2

Corollary 1: MRAET is optimal when j = N − 1
This results follows from the theorem above, sincej = N −1
can be mapped to the case whereN = 3 and j = 2.

Minimum Redundancy Algorithm in Polynomial Time
(MRAPT)

Proceed with Part 1 as in MRAET, though using the
approximation for probability of success found in Eq. 2. Then
proceed similarly as in Part 2 though we do not have to
search through the matrixS, and do not need to go through
the exponential time calculation of the probability of success.
After part 2, we are done since we already have the symbol
allocation vectorf .

A. Running Time Analysis

We use a logarithmic time search algorithm such as binary
search, [7], for the search through S , so the search takes
O(log2(2

N )) = O(N) time (since we search at most all
rows of S). The calculation of the probability of success
requiresO(2N ) steps worse case, ifA = S. So the inner
portion of part 1 for MRAET takesO(N + 2N ) time and
the inner time is performed at mostN times, thus part 1
has worst time complexityO(N(N + 2N )). Part 2 is similar
though there are two loops, and hence the worst case running
time is O(N2(N + 2N )). Hence it is clear that MRAET has
exponential running time. It can be seen that if the search
inside theS matrix is not included, as well as calculating
the true probability of success, the running time is reduced
drastically.

In MRAPT, since we are using approximation Eq.2, we
first calculate the mean and variance of the Gaussian distri-
bution which takesO(2N), O(4N) respectively. If we save
pi(1 − pi) ∀i prior to proceeding with MRAPT then the
variance will only takeO(2N) time. Thus, part 1 has worst
case running time ofO(N(4N)) = O(N2). Similarly, part 2
has a worst case running timeO(N3). It can be seen that this
is polynomial inN , the number of paths in the APS.

V. SIMULATIONS

We run both the algorithms over numerous Monte
Carlo runs in MATLAB, and compare their true
probability of success versus the approximated
probability of success and the target success probability
in Fig.3. We let N = 7, k = 4, and p =
[0.8000, 0.5901, 0.5338, 0.5261, 0.5203, 0.5107, 0.5000]T .
It can be seen that in Fig. 3 that the probability of success
for MRAPT is very close to the desired success probability,
and is below it for a very short time. The exponential time
algorithm, MRAET, always achieves greater than or equal
to the target probability. Also, the approximation for the
probability of success, 2 seems to be an overestimate for
the simulated success probability for smaller desired success

probabilities, but as they get larger, the approximation of
success seems to be a better estimate.
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Fig. 3. Probability of Success of MRAPT and MRAET

Next in Fig. 4, we compare the minimum redundancy ratio
picked by the two algorithms versus the target success prob-
ability. MRAET has a lower redundancy for all the success
probabilities, though the polynomial algorithm is fairly close
for lower success probabilities. When the success probability
becomes large, the polynomial algorithms’ redundancy gets
much larger than that of the exponential time algorithm.
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Fig. 4. Redundancy Ratio for MRAPT and MRAET

Lastly in Figures 5 and 6, we compare the actual symbol
allocation in the two algorithms versus the desired success
probability. MRAET gives more packets to the lower indexed
paths, while MRAPT seems to allocate them more evenly. It
seems that for the high probability of success, the MRAPT
overshoots and gives the paths many more symbols then
necessary.

VI. CONCLUSION

We considered the problem of information dispersal in a
multipath mobile ad hoc network. There are a set of paths
between the source and destination nodes, with each path
assigned a certain trustworthiness level. We use maximum-
distance separable error-correction codes for channel coding to
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correct for possible link failure. Based on the measure of trust-
worthiness and the desired minimum success probability, we
have determined the minimum redundancy and optimal path
symbol allocation for the3-path case. Due to the complexity
of the probability of success function, we developed two
algorithms (MRAET, MRAPT) for finding these parameters
in the case of arbitrary number of paths. MRAET is an
exponential time algorithm and it has been shown to be
optimal for several cases. Using an approximation for the
probability of success, we have also developed a polynomial
time algorithm, MRAPT, which performs closely to the target
success probability .
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