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Abstract—We explore the privacy concerns arising from the
collection of power consumption data in current and future
demand-response systems. We claim that in a lax regulatory
environment, the detailed household consumption data gathered
by advanced metering projects can and will be repurposed by
interested parties to reveal personally identifying information
such as an individual’s activities, preferences, and even beliefs.
To develop this claim, we begin with an overview of demand-
response technologies and their deployment trends, mentioning
both the parties interested in the data and their motivations.
We proceed to formalize the notion of privacy and list the types
of personal information which can be estimated with current
and upcoming monitoring technologies. To support our list,
we conduct a small-scale monitoring experiment on a private
residence. Our results show that personal information can be
estimated with a high degree of accuracy, even with relatively
unsophisticated hardware and algorithms. We discuss the impli-
cations of our results for future demand-response projects. Our
paper concludes with guidelines for data-handling policies which
ensure the protection of privacy.

Index Terms—NG-SCADA, Protection, Privacy.

I. INTRODUCTION

The next decades will see a transformation of our nation’s
power distribution systems. Next generation Supervisory Con-
trol and Data Acquisition (NG-SCADA) architectures will
precipitate an exponential increase in both the data and control
available to consumers and utilities. Utilities are increasingly
adopting automated metering, advanced demand response ar-
chitectures, microgirds, and other systems which will provide
cost savings in power generation, increase grid reliability, and
create new modes of consumer-utility interaction.

This transformation is already well underway. Recent years
have seen several pilot microgrid projects [1], as well as
increased deployment of Advanced Metering Infrastructure
(AMI) systems by major utilities across the US. AMI systems
in particular have been deployed on a large scale by entities
such as California Public Utilities Commission [2]. According
to a 2006 Federal Energy Regulatory Commission staff report
[3], six percent of meters installed in the US are ‘smart’ meters
supporting some advanced metering project, and the number
continues to steadily increase.

Next generation SCADA projects will provide many advan-
tages to both the utilities and the consumer. For the power
companies, automated metering will reduce collection costs,
while the ability to capture detailed usage information will
allow for large-scale load research. The results of this research

will allow utilities to improve planning and test the effects of
various demand side management programs. For the consumer,
the projects will result in more information, more control over
power use, and the ability to actively participate in power
generation. However, increased availability of data, along with
emerging use cases, will inevitably create or exacerbate issues
of privacy and security.

This paper is part of a larger effort by the TRUST1 group
to explore the confluence of sensor networking, power dis-
tribution, privacy, and security issues that will emerge from
a substantial increase in power system monitoring at the
consumer level. We collaborate with researchers from the
Berkeley School of Law in choosing to focus on the privacy
risks arising from the collection of power consumption data
in current and future demand-response systems. Our joint
claim (we will refer to it as the main claim) is that in
the present regulatory and judicial environment, the detailed
household consumption data gathered by advanced metering
projects can and will be repurposed by interested parties to
reveal personally identifying information about the programs’
participants.

Although current projects implement measures to safeguard
individuals’ privacy and confidentiality, we believe that there
exist strong motivations for entities involved in law enforce-
ment, advertising, and criminal enterprises to collect and
repurpose power consumption data.

Consumption data in the hands of these entities raises
serious ethical concerns - without proper safeguards, these
data may be used to commit fraud, initiate unsolicited and
invasive advertising, and in the case of law enforcement, to
conduct warrantless searches and monitoring that may infringe
on individuals’ Fourth Amendment rights.

These concerns couple with a disconcerting history of
court cases relating to the issue. A recent case (Kyllo v. US
[5]) has affirmed the primacy of privacy within the home,
prohibiting in-home data-gathering for surveillance purposes
without a warrant. However, other landmark cases have treated
power consumption data as third-party business records, which
have historically not been constitutionally protected against
warrantless seizure [6]. Effectively, repurposing of data for
law enforcement purposes is currently legal, provided that
information is obtained from sources outside the home.

1TRUST is a multi-university collaboration focused on privacy & security.
You can find out more about it at the TRUST website [4].



IEEE PROCEEDINGS ON POWER SYSTEMS, VOL. 1, NO. 1, MARCH 2008 2

Due to these issues, there is a need for discussion between
industry, academia, and lawmaking bodies on the privacy
aspect of data collection. Both government and industry must
be made aware of this erosion of consumer privacy, then urged
to adopt attitudes and data-handling policies which will allow
demand response technology to evolve while keeping the spirit
of the Fourth Amendment intact.

Discussion and advocacy efforts are already underway. Our
colleagues from Berkeley have put out an article [6] in the
Stanford Technology Law Review chronicling the evolution
of court opinion toward energy data privacy and calling
for its constitutional protection. They have also collaborated
with the California Public Utilities Commission (CPUC) to
develop a set of draft guidelines [7] for a secure and privacy-
preserving demand response infrastructure. In this paper, we
contribute to the discussion by exploring both the legal and
the technological/technical aspects of the main claim. On the
legal side, we provide our own perspective on the definition
of privacy and its relationship to monitoring technology,
supporting our arguments with material from landmark court
cases as well as new anecdotal evidence. On the technical side,
we focus on the manner in which information can be collected
and repurposed. Our contributions include highlighting the
importance of certain algorithms for extrapolating activity, a
formal way of evaluating privacy risks, and a proof of concept
technical study.

The rest of this paper is concerned with systematically
developing and substantiating certain aspects of our claim.
In Section II we discuss the meaning of privacy and provide
our own perspective on the legal landscape. In Section III,
we familiarize the reader with the current state of advanced
metering technology. We also describe Non-Intrusive Load
Monitoring (NILM) systems and algorithms, singling them out
as a fundamental tool for extrapolating activity. In section IV,
we mention some of the parties interested in the data and
their motivations for obtaining and repurposing it. In Section
V, we aim to formalize these parties’ impact on individual
privacy by discussing a ‘privacy metric’ which encompasses
the ways that privacy can be infringed. In Section VI, we prove
that repurposing is feasible from a technical standpoint by
conducting a small-scale monitoring experiment on a private
residence. Our results show that personal information can
be estimated with a high degree of accuracy, even with
relatively unsophisticated hardware and algorithms. In Section
VII, we comment on the algorithm’s robustness and possible
technological solutions to the privacy problem. In Section VIII,
we discuss how our experimental methods can be extended
to large scales. Finally, in Section IX we summarize data-
handling guidelines suggested by our TRUST collaborators
and discuss how our findings fit into the ongoing discussion.

II. PRIVACY AND THE LAW

In 1890 the Harvard Law Review published an article by
Samuel Warren and Louis Brandeis entitled The Right to
Privacy. This article, often proclaimed the most influential
law review article ever written, identified a right to privacy in
existing law while decrying the impact of novel technologies;
in this case, the instantaneous photograph [8]:

Instantaneous photographs and newspaper enter-
prise have invaded the sacred precincts of private
and domestic life; and numerous mechanical devices
threaten to make good the prediction that what is
whispered in the closet shall be proclaimed from the
housetops.

In what follows we will consider the proposed use and
impact of yet another novel technology, power consumption
sensors. We maintain that residential power monitoring, while
a useful tool in the development of demand response systems,
may constitute a significant invasion of the sacred precincts of
private and domestic life in the current regulatory environment.

To understand the impact of monitoring, it is necessary
to have a working definition for privacy. Privacy has often
been characterized in terms of the right to be let alone; this
frequently cited reference is from Cooley on Torts, (1880) [9],
and is referenced, for example, in the Warren and Brandeis
article. Subsequent commentators have added further dimen-
sions and complexity to the definition by focusing on control
over the revelation of personal information. Erving Goffmans
The Presentation of Self in Everyday Life is a key reference
that focuses on the definition of self in terms of selective
disclosure [10]. Others further refine this definition by viewing
privacy in terms of personal dignity and liberty. Building on
the work of Bentham [11] and Foucault [12], scholars such as
Julie Cohen have recognized that questions of informational
privacy implicate self-definition, perceptions of public spaces,
and the foundation of a liberal democratic state [13]. It follows
from such work that when power consumption is monitored
at a level at which personally identifying information is
collected, issues of behavior modification and personal liberty
are implicated.

It is possible and perhaps likely that the utilities will use
collected information for purposes other than those stated.
Oscar Gandy, Daniel Solove and other have noted the alacrity
with which corporations will convert personal information that
is collected in the course of business into a commodity and
sell it, often without any acknowledgment of the rights of
the parties whose personal information is being sold [14]
[15]. State agencies are not immune from this tendency state
departments of motor vehicles have sold information from
driving records to commercial firms. Public outcry forced
Congress to legislate against the practice [16].

Assuming that the collection of power consumption data
implicates privacy, the question then arises as to whether
federal law provides some protection. In Katz v United States
(1967), the Supreme Court of the United States ruled that
fourth amendment protections against unreasonable search and
seizure covered conversations by individuals in a telephone
booth [17]. In a concurring opinion, Justice Harlan formulated
a two-part test in which it is determined that a search has
occurred when the individual (1) has exhibited an actual
(subjective) expectation of privacy, and (2) society is prepared
to recognize that this expectation is (objectively) reasonable.

The question of an expectation of privacy became the
deciding (and negating) element in subsequent decisions in-
volving data held by third parties. In Smith v. Maryland, the
U.S. Supreme Court held that the capturing and recording of
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dialed telephone numbers did not constitute a search, as any
user of a telephone must be aware that they are conveying
dialed numbers to a third party the telephone company
[18]. Similarly, in United States v Miller, the U. S. Supreme
Court held that cancelled checks were the business records
of the bank, and that the banks customers had no reasonable
expectation of privacy in the date reflected in those records
[19].

Protections against actual physical intrusion into the home
are still in place, however, and it would seem that the use of
data collecting technologies that are somehow equivalent to
an intrusion are also forbidden without a warrant. In Kyllo v
United States, the U.S. Supreme Court held in a 5-4 ruling
that the thermal imaging of a suspects home from outside that
home constituted a search [5]. Justice Scalia, writing for the
majority compared the sensing to a physical intrusion:

Where, as here, the Government uses a device that
is not in general public use, to explore details of the
home that would previously have been unknowable
without physical intrusion, the surveillance is a
’search’ and is presumptively unreasonable without
a warrant.

The tenuous status of this understanding is reflected in
Justice Stevens dissent. He seems to revisit the same third
party, outside the home arguments seen in Smith, Miller,
and the earlier Olmstead majority opinion that sanctioned
wiretapping without warrants (with a notable dissent from
Justice Brandeis). Stevens focused on the primitive nature of
the technology in sanctioning its use without a warrant:

The Court has crafted a rule that purports to
deal with direct observations of the inside of the
home, but the case before us merely involves in-
direct deductions from ”off-the-wall” surveillance,
that is, observations of the exterior of the home.
Those observations were made with a fairly primitive
thermal imager that gathered data exposed on the
outside of petitioner’s home but did not invade any
constitutionally protected interest in privacy.

At least on its surface, it seems that power consumption
data falls into the same constitutional bin as dialed numbers
and checks information freely given to a third party. We
do not agree with this position, but it stands as the basis
for a law of information privacy which is the basis for the
research described in this paper if one wishes to regard
information as private, then one should not let it pass through
the walls of ones home. In this paper we will explore means
for quantifying and limiting the extent to which personally-
identifying information passes across the boundaries of the
home create a concern for individual privacy and autonomy.

III. TECHNOLOGY OVERVIEW

To familiarize the reader with the technical aspects of the
issue, we begin with a brief overview of demand response
technologies. We focus primarily on Advanced Metering In-
frastructure (AMI) systems. While discussing AMI, we high-
light the types of available raw data, as well as access points

Figure taken directly from [20]

Fig. 1. AMI Building Blocks

at which it can be collected by authorized and/or unauthorized
parties.

We also describe Nonintrusive Load Monitoring (NILM)
systems - a more powerful version of AMI capable of ex-
trapolating appliance usage patterns2. Our interest in NILM
algorithms stems from the fact that they are critical tools for
extrapolating activity within the home.

A. Advanced Metering

In a typical Advanced Metering setup, the customer is
equipped with solid state electronic meters that collect time-
based data at daily, hourly or sub-hourly intervals. The types
of available devices differ from project to project, but may
include electricity, gas, and water meters. These meters have
the ability to transmit the collected data through commonly
available fixed networks such as Broadband over Power Line
(BPL), Power Line Communications (PLC), and public net-
works (e.g., landline, cellular, paging). The meter data are
received by the AMI host system and sent to the Meter Data
Management System (MDMS) that manages data storage and
analysis, shaping the information into a form useful for the
utility [20]. The typical building blocks of an AMI system are
shown in Figure 1.

The data is required to be reasonably complete and accurate.
In [22], the specifications are that more than 98% of all meter
data make it to the intermediate node, and that the readings
have a precision of at least 10 Watt-hours (0.01 kWh).

As mentioned in the introduction, AMI systems have al-
ready been deployed on large scales. The reader is referred to
[3] for detailed statistics on deployment and system capabili-
ties.

B. Non-Intrusive Load Monitoring

A NILM system collects data like its AMI counterpart,
but goes a step further by processing the data to determine
the operating schedules of individual electrical loads. This
is typically done by disaggregating the collected data stream
into individual load signatures and matching each signature
with reference signatures stored in a database. For private

2For a more complete overview of AMI and NILM, we refer the reader to
[20] and [21], respectively.
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residences, these loads are usually appliances such as the
refrigerator, air conditioner, or water heater.

Several NILM systems of varying capabilities exist, includ-
ing a commercially available system which can distinguish
between major appliances [23], a system based on genetic
algorithm which does not need training data [24], and various
experimental high-capability systems developed at MIT which
identify complex loads and even pinpoint malfunctioning
appliances [21].

These systems are used for a wide variety of purposes,
including load research, evaluating impact of rate structure
changes, implementing incentive programs for particular ap-
pliance usage patterns, and handling of high-bill complaints
[23]. However, they are important to us because appliance
usage information can easily be used to extract user behavior
and demographic information.

Current NILM systems require data with a second/sub-
second resolution. Because of this, processing is usually done
locally, at the electricity meter. However, there are no tech-
nical constraints preventing NILM algorithms from running
remotely, and useful results may be obtained even with data
from an AMI system (i.e. performance degrades gracefully,
although hourly readings yield predictably worse results).
Therefore, when considering how power consumption data
can be repurposed and the kinds of information that can be
extracted from it, one should consider a NILM algorithm as
an essential building block. We will develop this thought in
Section V.

IV. PLAYERS, USE CASES AND MOTIVATIONS

Utilities typically have policies which provide a certain
amount of protection for utility records and personal informa-
tion. For example the California Energy Commission requires
the consumer’s written consent for the release of personal data
related to billing, credit, and power usage [25]. Utility records
may be released in certain circumstances if customer not
identified, though exceptions are made for law enforcement.

Given these policies, there exist agencies, organizations and
individuals who have natural motives to use power consump-
tion data for purposes other than load research and demand
response. These interested parties fall into two categories,
those likely to obtain some/all of the information in the current
regulatory environment, and those likely to seek it though
illegal means. In the former case, the utility may engage in
partnership in a for-profit venture or be required to cooperate
by the federal government. In the latter case, the expected pro-
liferation of access points may facilitate unauthorized access.
We proceed to list and describe some of these entities, citing
precedent where appropriate.

A. Law Enforcement Agencies

By far the most important entities to consider are law
enforcement agencies, both on the federal and state lev-
els. These agencies’ motivations might range from counter-
terrorism surveillance to anti-drug operations and routine law
enforcement. They are aided by loopholes contained in current

jurisprudence3, which allow easy access to public utility
records and provide legal precedent for their use in prosecuting
criminal cases.

There exist pilot programs in several cities where police
routinely use public utility records to seek out drug produc-
ers. KXAN Austin recently reported that the Austin Police
Department has an agreement that allows it to access Austin
Energy power usage records without a search warrant [26].
Investigators have used their access to screen consumers for
possible drug production, relying on the fact the heat lamps
and watering systems used to grow marijuana indoors can
vastly increase an average energy bill.

Police and utility representatives claim that such techniques
comply with all state and federal investigative laws. While this
claim is disputed and the Austin incident is an exceptional case
(since many utilities require a subpoena for releasing records),
the case sets a precedent for increasingly sophisticated future
use of consumption data for law enforcement purposes. Future
uses might involve real-time and ex-post-facto tracking for any
range of felonies and misdemeanors.

B. Employers

One parameter that can easily be estimated from power
usage data is presence - whether or not person(s) are present
within a residence (see Sections III, IV). An employer con-
cerned with productivity or false sick-day claims might use
presence information to monitor its employees. A 2006 article
in The Denver Post [27] details the use of GPS technology
embedded in phones to track employees during the work day.
In the article, the director of the Electronic Privacy Information
Center expresses concern that the technology may be used
for off-work tracking, emphasizing the fact that no clear-cut
privacy legislation exists to protect workers from potential
abuse.

C. Marketing Partners

Behavoir and appliance usage information may potentially
be used for directed advertisements. For example, some
NILM systems are powerful enough identify specific appliance
brands, and may even identify malfunctioning appliances
[21]. A marketing company partnering with a utility may
use this data to send customers targeted advertisements for
repair/upgrade, or more generally derive demographic data
for broader advertising claims. While not as invasive as the
above use cases, targeted advertising of this sort may meet
with consumers’ disapproval and must be considered.

D. Criminals

In their article [6], our Trust colleagues give an excellent
scenario for criminal abuse of power consumption data: crim-
inals could tap into a Meter Data Management System or
simply monitor the unencrypted traffic between it and the
individual meters. From the information, they could process
the data to obtain occupancy patterns of houses in the entire

3The reader is referred to both Section II of our paper and the Stanford
Law article[6] for a more in-depth discussion.
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neighborhood. Knowledge of these patterns would facilitate
burglary or some other property crime.

V. FORMALIZING PRIVACY

The previous section showed by way of examples that
the evolution of monitoring technology creates real threats
to individual privacy. However, it is not apparent just how
these threats can be quantified, especially as a function of
available data. There is a need for a ’privacy metric’, which
takes associates the degree of data availability (accuracy of
readings, time resolution, types of readings, etc) with potential
privacy risks, providing a robust and reliable indicator of
overall privacy.

In this section, we briefly show how to approach the
construction of such a metric. Although the actual construction
is the subject of future work, the insights we gain while
thinking about it can be applied to our ’proof of concept’
demonstration.

To construct a privacy metric, we need to better understand
the nature of the information which can be extracted from
available sensor data. Thus, we will start by suggesting a
formal framework for extrapolating activity.

A. Extrapolating Activity

Extrapolating activity may be thought of in two stages -
during the first ’intermediate’ stage, NILM in combination
with data from other sensors is used to extract appliance usage,
track an individual’s position, and match particular individuals
to particular observed events. During the second stage, the
intermediate data is combined with contextual data (such as the
number/age/sex of individuals in the residence, tax and income
records, models of typical human behavior). Together, these
data are used to identify activities, behaviors, preferences,
beliefs, and so on. The two stages are not cleanly separated
- raw data may be used directly to estimate a parameter of
interest, and determination of some intermediate parameters
may rely on contextual information. However, many parame-
ters in the second stage rely on the same intermediate data (e.g.
sleeping habits and eating habits may both be extrapolated
from tracking data.)

Note that the nature of the sensors will necessarily lead
to ‘sample impoverishment’ - the data collected will almost
certainly be insufficient for accurate tracking and event assign-
ment. For example, if several individuals arrive at the house
at once, one can’t assign the event ’living room light turns
on’ to a particular individual with any degree of certainty.
Also, a person moving through a residence without triggering
any appliances or temperature/humidity sensors is invisible to
the system. This limitation has to be taken into account when
defining second-stage parameters .

There is a clear upper limit for first stage - at most, the
gathered information will reveal everything that’s happening in
the house, yielding precise information about all movements,
activities, and even the condition of appliances (though it
may not be possible to achieve this limit with current or
future in-home sensing systems). However, it’s more difficult
to define an absolute performance metric for the second

stage - the number of specific preferences and beliefs that
can be estimated is virtually limitless. In order to develop a
comprehensive privacy metric, one needs to carefully define a
list of ‘important’ parameters, basing importance both on how
fundamental a parameter is (how many other parameters may
be derived from it) and on home/business owners’ expectations
of privacy. Expectations of privacy, in turn, are partially based
on previous abuse incidents (such as the one in Section IV-A).
The list of second stage parameters may be hierarchical, with
more specific parameters being used to evaluate more general
ones. Once an appropriate list is defined and ’importance’
values assigned, it is possible to determine the sufficiency of
available data based on requirements of current and future
NILM, tracking, and other relevant algorithms.

The list of important second-stage parameters form the
evaluation criteria. Algorithms for estimating the parameters,
along with the corresponding data requirements, provide a
method for evaluating the sufficiency of the available data.
Together, these provide a metric for how much information
may potentially be disclosed by a particular monitoring sys-
tem. Developing a comprehensive privacy metric is the subject
future work for the TRUST Center.

VI. EXPERIMENT

Although it is known that first-stage parameters such as
appliance usage may be accurately estimated (see performance
chart in [23]), to our knowledge no one has tried to extrapolate
activity from power consumption data. In this paper we want to
prove that activity extrapolation is feasible, thus lending cred-
ibility to our thesis and providing an experimental precedent
which others can cite in future efforts. To do this, we conduct
a small-scale monitoring experiment on a private residence.

A. Experimental Setup

We conducted our experiment in a typical student residence
(Figure 2a). For data gathering, we used the Brultech EML
energy usage monitor. Figure 2b shows the data gathering
setup. The energy monitor was attached to the residence’s
breaker panel and sent real-time power usage information
to a workstation responsible for data collection. The station
recorded power usage at intervals of 1 or 15 second(s) and
with a resolution of 1 Watt. The same workstation then ran
the NILM and behavior extraction algorithms . To evaluate
the system’s performance, we placed a network of cameras
around the residence. We elected to use the Axis 206 network
camera (position shown in Figure 2a), which we connected
to a workstation using an Ethernet switch. The workstation
ran the AXIS Camera Station software and recorded motion
events for later processing. The camera control setup is shown
in Figure 2b.

B. Experimental Protocols

The experiment was run semi-continuously over a period of
two weeks. This time frame allowed us to obtain repeat data
for pattern matching while accounting for time constraints.
Power and camera data collection software was shut down
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(a) (b)

Fig. 2. Experimental Setup: (a) shows the floorplan of the residence; (b) shows the camera and electrical data gathering setups

on a semi-daily basis for archiving, maintenance, and manual
video data processing.

Electrical data was collected from the house breaker panel
and stored as a text file with a time resolution of 15 seconds
and power resolution of 1 Watt. The data was kept in its raw
form for the duration of the experiment and analyzed after its
conclusion.

Camera data was collected by the Axis Camera Station
software and stored in mpeg format at a resolution of 320x240
at 4 fps. At regular intervals, video data was manually analyzed
and processed into activity logs. Upon completion of the logs,
the original video data was deleted. Activity logs had the
following format:

Date/Time Subject Activity

The subject could be any of the house’s three residents
or a guest. While residents were identified by name, guests
were identified only as Guest x. Possible activities included
turning any of the household appliances on or off (ex:
kitchen lamp 1 on), entering or leaving the residence, sleep-
ing, preparing meals, taking a bath, or having a party. Note
that because the cameras were not put in individual rooms,
the resulting activity logs were not fully complete. However,
this arrangement respected the residents’ privacy and lead to
more natural behavior, while the collected data were sufficient
to estimate parameters of interest (see Section VI-D for the
parameters).

The experiment’s participants interacted with the system
simply by going about their daily routines. No specific action
was required of them, other than notifying house guests about
the experiment.

C. Privacy Protections

The experiment involved potentially serious intrusions into
the participants’ private lives. Therefore, when designing the
experiment we took steps to maximize the participants’ com-
fort, minimize potential for embarrassment, and protect their
confidentiality.

First, each participant was given a consent form explaining
the experiment, detailing their rights, urging them to ask
questions, and highlighting the completely voluntary nature
of their participation. Participants were free to withdraw from
the experiment at any time without penalty. They were also
given contact information which they could use to reach us if
they had any questions or concerns.

Secondly, video logs were processed by one of the house-
hold’s residents, which eased the participants’ anxiety at being
videotaped.

Thirdly, all electrical and video data was kept secure and
confidential. Collected data was stored in a password-protected
folder, able to be accessed only by individuals directly in-
volved in the project. Also, all publicly available results were
stripped of any potentially identifying information.

Finally, the experiment was specifically designed to comply
with Cornell Human Subjects Testing guidelines. It has been
reviewed and approved by the Cornell Institutional Review
Board. The approval request form, consent form, and Exper-
imental Setup & Protocol documents are available from the
authors upon request.

D. Parameters to be Estimated

We chose several parameters which were both revealing and
possible to estimate using our data gathering equipment and
processing algorithms. They are:

• Presence/Absence - whether or not someone is present at
the house

• Number of Individuals - if presence is detected, we
estimate the number of individuals present.

• Appliance Use - microwave, stove, water heater, TV, misc
appliances etc.

• Sleep/wake cycle - when, on average, each individual
wakes up and falls asleep.

• Miscellaneous Events - Breakfast, Dinner, Shower, Party,
etc.
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(a) (b)

(c) (d)

Fig. 3. Behavoir Extraction Algorithm: (a) shows the aggregate power consumption data; (b) shows the derived switch events; (c) presents several identified
load events; (d) compares reference and estimated intervals.

More formally, we begin by combining all data into a single
timeline. For each parameter, we partition this timeline into
segments, with each segment assigned some value. For most
parameters, the value is binary, indicating whether a person
present or absent, asleep or awake, etc. The sole exception
is the ‘Number of Individuals’ parameter, which is assigned
a set value from the partition {0, 1, 2, 3, > 3}. For a specific
parameter, the ith ‘on’ interval is defined by T on

i and T off
i .

An example partition for the Presence/Absence event is shown
below:

E. Performance Metrics and Evaluation

Once energy use data is gathered and processed with
behavior extraction algorithms, we wish to compare the results
against reference results obtained from camera data. To do this,
we employ two classes of metrics. The first class is event-
based and consists of the Failure-to-Detect/ Misdetection per-

centages for each parameter. These percentages are computed
by using the following procedure:

1) Define the cutoff threshold Tthresh, choosing it based
on experimentation with training data

2) For each parameter, examine the sequence of turn-
on/turn-off events on both the reference and estimated
intervals.

3) If a camera event occurs but a corresponding electrical
event does not occur within Tthresh seconds, declare a
Failure to Detect.

4) If an electrical event occurs but a corresponding camera
event does not occur within Tthresh seconds, declare a
Misdetection.

The second class of metrics takes a broader perspective
by computing the percentage of the reference interval which
is correctly classified. This may in some cases be a better
indicator of long-term performance, since the algorithm may
miss several short-duration events while classifying the vast
majority of the interval correctly.

Together these metrics help one get a well-rounded picture
of the algorithm’s performance, providing both detail and
global perspective.
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TABLE I
ALGORITHM PERFORMANCE

Ref. Events Detected % Misdetects % Interval Correctly Classified

Training Data
Presence 100% 0% 97.3%

Sleep Cycle 100% 0% 93.4%
Shower/Bathroom 35% 38.4% 62%
Microwave Use 33% 76.9% -

Misc. Events Unreliable - -
Experimental Data

Presence 80% 20% 97.4%
Sleep Cycle 83% 0% 92.3%

Shower/Bathroom 59% 21.1% 81.8%
Microwave Use 20% 68.7% -

Misc. Events Unreliable - -

F. Behavior Extraction Algorithms

Our behavior extraction system is implemented in MatLab
and consists of two major components: a NILM algorithm and
a suite of functions which estimate the high-level parameters
mentioned in the previous section. The NILM algorithm we
implemented is based on an early MIT prototype [28]. It
analyzes the electrical data (Fig. 3a) gathered by the load
monitor, performing edge detection, cluster matching, and
anomaly resolution.

During edge detection, the algorithm computes a difference
series Δ(t) = P (t) − P (t − 1) from the electrical data P (t).
Adjacent Δ(t)’s of the same sign and greater than a certain
threshold are merged into switch events (Fig. 3b).

During cluster matching, switch events are matched against
a database of load signatures and classified as either ‘on’ or
‘off’ events. A load signature may be a switch event of a
certain magnitude (a 40-watt light bulb has a step turn-on
signature of Δ(t) = 40 Watts) or a series of such events
(a refrigerator has a turn-on signature of Δ(t) = 1100 W,
Δ(t+1) = −960 W). Unclassified events are either discarded
as noise or labeled with a catchall ‘misc. event’ classifier. A
sample of classified events is shown in Fig. 3c.

During anomaly resolution, the algorithm tries to classify
the miscellaneous events as a combination of different turn-
on/turn-off events. This allows for classification of events that
occur close to each other.

Once the load events are classified, behavior extraction
routines use them to determine presence schedules, sleeping
cycles, shower & bahtroom use, mealtimes, and other activi-
ties. We briefly describe the most important routines:

• Presence - Because the refrigerator is the only load in
the residence with automated turn-on/turn-off events, we
assume that any non-refrigerator event indicates presence.
On the other hand, absence is defined by low power
usage and lack of events. An extended interval with low
power usage during which no events occur implies that
all subjects have left the residence.

• Sleep Cycle - Intervals of inactivity which occur between
late evening and early morning are likely to imply that all
people are sleeping (as opposed to absent). Therefore, all
such absence intervals are reclassified as sleep intervals.

• Number of People Present - Estimated based on both
frequency of events and the number of lights/appliances

simultaneously in use.
• Bath/Lunch/Dinner - Derived from both load events

(bathroom lights, microwave, stove fan) and timing in-
formation.

• Other appliances - Derived from load events.
The final major component of our system is the analysis

suite. Reference data derived from camera logs is automati-
cally processed into reference intervals, which are then com-
pared against estimated intervals using metrics described in
Section VI-E. Sample output, showing reference and estimated
intervals for both presence and sleep cycles, is shown in Fig.
3d.

G. Results

Our algorithms were run on two sets of data: a smaller three
day ‘training’ set and a larger seven day ‘experimental’ set.
While we actively modified the algorithms to increase perfor-
mance on the training set, we kept it completely unchanged
on the experimental set. The results are shown in Table I.
For each estimated quantity, the table’s second column gives
the percentage of successfully detected reference events, the
third column gives the misdetection percentage, and the fourth
column states the percentage of reference interval correctly
classified.

One important appliance left out of Table I is the refrig-
erator, which autonomously cycles between high and low
states. Unfortunately, we did not directly observe these state
transitions directly (this would have required a separate en-
ergy monitor exclusively for the refrigerator). However, we
can comment on the algorithm’s performance by manually
examining the electrical data readout. For the training data
set, 101 of approximately 104 refrigerator events (more than
97%) were correctly classified. Sucess rate was similarly high
for the experimental data set.

Generally, the algorithm performed quite well in deter-
mining presence and sleep cycles. In both cases, over 90%
of the total interval length was correctly classified, for both
training and experimental data. We beleive this is due to our
sucess in identifying the refrigerator load, the small number of
autonomous appliances in the residence, and the consequent
simplicity of presence / sleep-wake heuristics.

Unfortunately, due to time constraints we were not able to
implement a routine to determine the number of individuals
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present. Shower and bathroom use was detected with moderate
success, at least for the experimental data. There was less
reliability in classifying other appliances. (Say why this is so)

We note the possible sources of error. They include the
limited capabilities of our data gathering system (which can
detect only real power, and only at 15 sec intervals), as
well as unoptimized decision heuristics. They also include
possible errors in the camera logs, since our camera was not
in a position to observe all loads directly and turn-on/turn-off
events were sometimes missed during manual processing.

To provide perspective on the effectiveness of our algorithm,
we compared it to a reference NILM algorithm [29] developed
by M. Baranski and J. Voss. The results were reassuring - our
algorithm, which was customized for a small residence and
preloaded with a load signature library, performed just as well
(and in some cases better) than the reference algorithm. Both
algorithms identified microwave, refrigerator, and bathroom
light events consistently. However, we were able to identify
more specific appliances, while a hardwired bias gave us
an edge in performance when classifying refrigerator events.
Our algorithm identified 97% refrigerator events, while the
reference algorithm identified 65%.

VII. ALGORITHM ROBUSTNESS AND PRIVACY SOLUTIONS

We would like to comment on the algorithm’s robustness,
and by extension on the informational content contained within
the data. We do this by measuring the effect of increased data
granularity on the estimation of presence intervals.

Although what follows is a comment rather than a complete
analysis, the parameter’s tolerance to data scarcity gives an up-
per bound on the dataset’s informational content and provides
sufficient ground for us to discuss the relationship between
data granularity and privacy solutions.

We believe that privacy protection ultimately lies in policy
(see Section IX). However, it’s worthwhile to examine tech-
nological solutions. Privacy can be preserved through tech-
nological means by decreasing the data’s information content
through signal processing. Such processing may form a useful
part of a policy solution - interested parties may be given lower
resolution data (resolution depending on its intended use) as a
way of ensuring their compliance with stated privacy policies.
Additionally, consumers may choose to control the amount
of information content leaving their home (in this case, the
signal processing is performed in-residence by the meters),
exchanging quality of service for privacy protection.

There are several ways to increase the granularity of data.
The original dataset can be passed through a filter, down-
sampled, or corrupted by noise. In particular, a lowpass filter
may be applied to remove events of high frequency, masking
events which rapidly trigger between‘on’ and ‘off’ states . No
matter what is done to the high-resolution data, it is important
to retain weekly/monthly electricity usage numbers, since the
data’s analysts will want true averages and totals for billing
and research purposes.

We test the algorithm’s robustness by performing down-
sampling with interpolation (averaging over intervals of r
datapoints). The results are given in Fig. VII. Our algorithm’s

Fig. 4. Algorithm Performance During Downsampling

performance degrades quite gracefully - meaningful estimates
are obtained through values as high as r = 80 (averaging over
20 minute intervals). This is due to the fact that refrigerator
cycles (an integral part of determining presence, see Section
VI-F) last for approximately 21 minutes, and are identified as
such for lower values of r. In general, it seems that extensive
averaging is needed to mask specific events, as the intervals
between ‘on’ and ‘off’ events is often measured in dozens of
minutes.

We note that presence was experimentally proved to be
the most robust parameter, as the algorithm’s performance
for other parameters (especially detecting specific appliances)
dropped much quicker. We also note that our algorithm is
far from the best when handling low-resolution data, since
other decision heuristics (involving power consumption levels
as well as switch events) can be implemented to improve
performance.

VIII. DISCUSSION

Our experiment shows that presence events and sleep cycles
can be estimated with high confidence, at least for a household
with few appliances and relatively infrequent switch on/off
events.

However, we believe there is potential for vast performance
improvements. First, we note that the residence did not have
an electric stove or a water boiler - two readily identifiable
loads whose ‘on’ intervals directly correspond to mealtimes,
laundry, and showers. Second, we’ve used only electrical data
- a behavior extraction algorithm can combine data streams
from electric, water, gas, humidity, and any other available
sensors. Third our data resolution (15 seconds in most cases)
was relatively low and our behavior extraction algorithms were
relatively unsophisticated, as our aim was showcasing feasi-
bility and not optimizing performance. NILM and behavior
extraction systems of the near future will surely surpass our
effort in performance, enabling person-to-event assignments
and perhaps even limited tracking.

On the other hand, we believe that useful data can be
extracted by less potent technology. Hourly power averages
such as the ones produced by California’s AMI system may
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also be used to determine presence and sleep cycles (although
to a coarser degree). Major appliances a large steady state
power consumption (e.g. heat lamps) can also be identified

Note that future concerns are not limited to the performance
of these systems the level of on an individual household.
Because the algorithms are fully automated, analysis may
be done on a extremely large scales, involving hundreds or
thousands of residences. Easy access to such personal and
demographic information will inevitably generate a market for
it.

IX. GUIDELINES

A report to the California Energy Commission [7], written
in part by our Berkeley colleagues, makes several recommen-
dations for power-data handling. They recommend:

1) Multiple tiers of control and oversight, both by the
utilities themselves and the state/federal government.

2) Explicit guidelines regulating access to data for customer
service, load research, and other functions

3) Strong user control over information leaving the resi-
dence.

4) Protocols which do most of the data processing at
stations located inside the residence, as well hard pro-
hibitions against relaying certain types of data

One of the authors’ main points is that data mining of hourly
usage data by utilities be carefully monitored and regulated.
The authors advise that utilities should become subject to
more stringent rules on the release and re-use of personal
data as data mining practices develop and new information
in which consumers have a reasonable expectation of privacy
is exposed.

In effect, our paper fleshes out the details of this recommen-
dation. Our discussion of interested entities and motivations
shows that repurposing of consumption data creates very
real privacy concerns for the consumer, and by extension
highlights the reasonable expectations of privacy that he or she
should develop. Our technical discussion and proof of concept
demonstration shows what data mining may be capable of,
illustrating the extent to which consumer privacy can be vio-
lated. Finally, our privacy metric framework, in combination
with the technical discussions, allows one to more precisely
define the permitted and prohibited uses of data mining.

We hope that this paper helps those campaigning for pri-
vacy and sways those responsible for creating NG-SCADA
technologies toward making decisions which both respect and
safeguard consumer privacy.
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