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Abstract

A set of replicas is diverse to the extent that all implement the same functionality
but differ in their implementation details. Diverse replicas are less prone to having
vulnerabilities in common, because attacks typically depend on memory layout and/or
instruction-sequence specifics. Recent work advocates using mechanical means, such
as program rewriting, to create such diversity. A correspondence between the specific
transformations being employed and the attacks they defend against is often provided,
but little has been said about the overall effectiveness of diversity per se in defending
against attacks. With this broader goal in mind, we here give a precise characterization
of attacks, applicable to viewing diversity as a defense, and also show how mechanically-
generated diversity compares to a well-understood defense, strong typing.

1 Introduction

Computers that execute the same program risk being vulnerable to the same attacks. This
explains why the Internet, whose machines typically have much software in common, is
so susceptible to viruses, worms, and other forms of malware. It is also a reason that
replication of servers does not necessarily enhance the availability of a service in the presence
of attacks—geographically-separated or not, server replicas, by definition, will all exhibit
the same vulnerabilities and thus are unlikely to exhibit the independence required for
obtaining enhanced availablity.

A set of replicas is diverse if all implement the same functionality (and likely even the
same interface) but differ in their implementation details. Diverse replicas are less prone
to having vulnerabilities in common, because attacks typically depend on memory layout
and/or instruction sequence specifics. But building multiple distinct versions of a program
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is expensive, so researchers have turned to mechanical means for creating diverse sets of
replicas.

Various approaches have been proposed, including relocation and/or padding the run-
time stack by random amounts [10, 6, 20], re-arranging basic blocks and code within basic
blocks [10], randomly changing the names of system calls [7] or instruction opcodes [13, 4, 3],
and randomizing the heap memory allocator [5]. Some of these approaches are more effective
than others. For example, Sacham et al. [17] derive experimental limits on the address
space randomization scheme proposed by Xu et al. [20], while Sovarel et al. [18] discuss the
effectiveness of instruction set randomization and outline some attacks against it.

For mechanically-generated diversity to work as a defense, not only must implementa-
tions differ (so they have few vulnerabilities in common), but the detailed differences must
be kept secret from attackers. For example, buffer-overflow attacks are generally written
relative to some specific run-time stack layout. Alter this layout by rearranging the rela-
tive locations of variables and the return address on the stack, and an input designed to
perpetrate an attack for the original stack layout is unlikely to succeed. But were the new
stack layout to become known by the adversary, then crafting an attack again becomes
straightforward.

The idea of transforming a program so that its internal logic is difficult to discern is
not new; programs to accomplish such transformations have been called obfuscators [8]. An
obfuscator 7 takes two inputs—a program P and a secret key K—and produces a morph
7(P, K), which is a program whose semantics is equivalent to P but whose implementation
differs. Secret key K prescribes which exact transformations are applied in producing
7(P, K). Note that since P and 7 is assumed to be public, knowledge of K would enable
an attacker to learn implementation details for morph 7(P, K') and perhaps even automate
the generation of attacks for different morphs.

Barak et al. [2] and Goldwasser and Kalai [11] give theoretical limitations on the effec-
tiveness of obfuscators as a way to keep secret the details of an algorithm or its embodiment
as a program. This work, however, says little about using obfuscators to create diversity.
For creating diversity, we are concerned with preventing an attacker from learning details
about the output of the obfuscator (since these details are presumed needed for designing
an attack), whereas Barak et al. and Goldwasser and Kalai are concerned with preventing
an attacker from learning the input to the obfuscator.

Different classes of transformations are more or less effective in defending against differ-
ent classes of attacks. Although knowing this correspondence is important when designing
a set of defenses for a given threat model, knowing the specific correspondences is not the
same as knowing the overall power of mechanically-generated diversity as a defense. This
paper explores that latter, broader, issue, by

e giving a semantics for proving results about the defensive power of obfuscation;
e giving a precise characterization of attacks, applicable to viewing diversity as a defense;

e developing the thesis that mechanically-generated diversity is comparable to type
systems, and deriving an admittedly unusual type system equivalent to obfuscation
in the presence of finitely many keys;



e exhibiting, for a C-like language and non-trivial obfuscator, an increasingly tighter
sequence of type systems for soundly approximating obfuscation under arbitrary finite
sets of keys. Surprisingly, the more accurate type systems are based on information
flow. We also show that no type system corresponds exactly to the obfuscator under
arbitrary finite sets of keys, and therefore approximations are the best we can achieve.

We proceed as follows. In §2, we outline a semantic framework for exploring obfuscation
and its limits as a defense. Subsequent sections then illustrate a use of that framework. In
particular, we show how the framework can be applied to C-like languages (§3), and use it
to obtain insights about a specific obfuscator for a programming notation (§4) and various
type systems (§5). Appendices A, B, and C give detailed semantics for the language and
type systems we describe in the main text. Appendix D contains a summary of notation.

2 Attacks and Obfuscators: A Semantic Framework

We assume that a program interacts with its environment through inputs and output ac-
tions. Inputs include initial arguments supplied to the program when it is invoked, addi-
tional data supplied to the program during execution through communication, and so on.
Output actions are presumably sensed by the environment, and they can include changes
to part of the state. A program’s behavior defines a sequence of inputs and output actions.

We define a semantics for program P and inputs inps to be a set of executions comprising
sequences of states that represent possible behaviors of the program with the given inputs.
An implementation semantics [-]r describes behaviors of programs at the level of machine
execution: for a program P and inputs inps, [P];(inps) is the set of executions of program P
on inputs inps. For high-level languages, an implementation semantics typically will include
an account of memory layout and other machine-level details about execution. Given a
program P and input inps, the executions given by two different implementation semantics
could well be different.

We associate an implementation semantics [[P]];’K with each morph 7(P, K). This ap-
proach is quite general and allows us to model various kind of obfuscations:

e If the original program is in a high-level language, then we can take obfuscators to be
source-to-source translators and take morphs to be programs in the same high-level
language;

e If the original program is object code, then we can take obfuscators to be binary
rewriters, and take morphs to be object code as well;

e If the original program is in some source language, then we can take obfuscators to be
compilers with different compilation choices, and take morphs to be compiled code.

Attacks are conveyed through inputs. An implementation attack is defined relative to
some program P, an obfuscator 7, and a finite set of keys Ki,..., K,. The definition of
an implementation attack on program P relative to obfuscator T and keys Ki,..., K, is
an input that produces a behavior in some morph 7(P, K;) and that cannot be produced
by some other morph 7(P, K;)—presumably because implementation details differ from



morph to morph.! When morphs are deterministic, the definition of an implementation
attack simplifies to being an input that produces different behaviors in some pair of morphs
7(P, K;) and 7(P, Kj).

Whether executions from two different morphs reading the same input encode different
behaviors is a bit subtle. On the one hand, their output actions must be identical for two
executions to encode the same behavior. On the other hand, different morphs might rep-
resent state components and sequence state changes in different ways. Therefore, whether
two executions encode the same behavior had better not be defined in terms of the states
of these executions being equal or even occurring in the same order. For example, different
morphs of a routine that returns a tree (where we consider returning a value from the rou-
tine an output action) might allocate that tree in different regions of memory. And even
though different addresses are returned by each morph, we would want these executions to
be considered equivalent if the trees at the different addresses are equivalent.

We formalize execution equivalence for obfuscator 7 using relations BJ(-), one for every
n > 0. It is tempting to define B (-) in terms of an equivalence relation on executions,
where executions o1 and o9 are put in the same equivalence class if and only if they encode
the same behavior. This, however, does not work, for reasons we detail below. So for a
tuple of executions (o1, ..., 0,) where each execution o; is produced by morph 7(P, K;) run
on an input inps (i.e., o; € [[P]]?Ki(inps) holds), we define

(61,...,0n) € B (P, K1, ..., K;)

to hold if and only if executions o1, ..., o, all encode the same behavior. When morphs
are deterministic programs, and thus o; is a unique execution of morph 7(P, K;) on in-
put inps, then by definition inps is an implementation attack whenever (o1,...,0,) &
Bl (P,Ki,...,K,). In the general case when morphs are nondeterministic programs, an

input inps is an implementation attack if there exists an execution o; € [[P]];’Kj (inps) for

some j € {1,...,n} such that for all choices of o; € [[P]];’Ki(mps) (forie{l,...,7—1,7+
1,...,n}) we have (01,...,0,) &€ Bl (P, K1,...,Ky).

B (-) cannot be an equivalence relation on executions because our notion of execu-
tion equivalence involves supposing an interpretation for states—an implicit existential
quantifier—rather than requiring strict equality of all state components (as we do require
for output actions). For example, consider executions o1, o2, and o3, each from a different
morph with the same input. Let o[i] denote the ith state of o, o[i].v the value of variable
v in state o[i], and suppose that for all i, o1[i].z = o3fi].x = 10, o3i].x = 22 and that
location 10 in o2 has the same value as location 22 in o3. Now, by interpreting x as an
integer variable, we conclude o1[i].z and o2[i].z are equivalent; by interpreting x as a pointer
variable, we conclude o3i].z and o3li].z are equivalent; but it would be wrong to conclude
the transitive consequence: o[i].x and os[i].x are equivalent. Since equivalence relations
are necessarily transitive, an equivalence relation is not well suited to our purpose.

! An attack that produces equivalent behavior in all morphs might be called an interface attack because it
exploits the intended (although apparently poorly chosen) semantics of the program’s interface [9]. Without
some independent specification, interface attacks are indistinguishable from ordinary program inputs; and
mechanically-generated diversity is useless against interface attacks.



3 Example: Execution Equivalence for C-like Languages

States. States in C-like languages model snapshots of memory. In the implementation
semantics for such a language, a state must not only associate a value with each variable
but the state must also capture details of memory layout so that, for example, pointer
arithmetic works. We therefore would model a state as a triple (L, V, M), where

e L is the set of memory locations;

e V is a wariable map, which associates relevant information with every variable. For
variables available to programs, V' associates the memory locations where the content
of the variable is stored; and for variables used to model program execution, V' asso-
ciates information such as sequences of output actions, inputs, or memory locations
holding the current stack location or next instruction to execute;

e M is a memory map, which gives the contents of every memory location; thus,
dom (M) = L holds.

The domain of variable map V includes program variables and hidden variables. Program
variables are manipulated by programmers explicitly, and each program variable is bound
to a finite not necessarily contiguous sequence (¢1,...,f;) of memory locations in L:

e If k =1, then the variable holds a single value, and ¢; is the memory location where
the value of the variable is stored;

e If £ > 1, then the variable holds multiple values (for instance, it may be an array
variable, or a C-like struct variable), and /1, ..., ¢ are the memory locations where
the values of the variable are stored;

e If kK = 0, the variable is not bound in that state.

Hidden variables are not directly accessible to the programmer, being artifacts of the lan-
guage implementation and execution environment. For our purposes, it suffices to assume
that the following hidden variables exist:

e pc records the memory location of the next instruction to execute; it is assumed always
bound to an element of L U {e}, where e indicates that the program has terminated;

e actions records the sequence of output actions that the program has performed. Given
a set Action of output actions that the program is capable of performing, actions is a
finite sequence of elements from Action;

e input holds a (possibly infinite) sequence of inputs still available for reading by the
program.

Memory map M assigns to every location in L a value representing the content stored
there. A memory location can contain either a data value (perhaps representing an in-
struction or integer) or another memory location (i.e., a pointer). Thus, what is stored in
a memory location is ambiguous, being capable of interpretation as a data value or as a
memory location. This ambiguity reflects an unfortunate reality of system implementation
languages, such as C, that do not distinguish between integers and pointers.



Executions. Let ¥ be the set of states. An execution o € [P];(inps) of program P in
a C-like language, when given input inps, can be represented as an infinite sequence o of
states from ¥ in which each state corresponds to execution of a single instruction in the
preceding state, and in which the following general requirements are also satisfied.

(1) L is the same at all states of o; in other words, the set of memory locations does not
change during execution.

(2) If o[i].pc = e for some i, then o[j] = o[i] for all j > i; in other words, if the program
has terminated in state o[i], then the state remains unchanged in all subsequent states.

(3) There is either an index ¢ with o[i].pc = e or for every index i there is an index j > i
with o[j] # oli]; in other words, an execution either terminates with pc set to e or it
does not terminate and changes state infinitely many times.?

(4) o[1].actions = () and for all ¢, o[i+1].actions is either exactly oli].actions, or o[i].actions
with a single additional output action appended; in other words, the initial sequence
of output actions performed is empty, and it can increase by at most one at every
state.

(5) o[1].inputs = inps and for all i, o[i+ 1].inputs is either exactly o[i].inputs, or o[i].inputs
with the first input removed; in other words, input values only get consumed, and at
most one input is consumed at every execution step.

Equivalence of Executions. The formal definition of B] (P, K1,...,K,) for a C-like
language is based on relating the executions of morphs to executions in a suitably cho-
sen high-level semantics of the original program. A high-level semantics [-]z also asso-
ciates a sequence of states with an input but comes closer to capturing the intention of
a programmer—it may, for example, be expressed as execution steps of a virtual machine
that abstracts away how data is represented in memory, or it may distinguish the intended
use of values that have the same internal representation (e.g., integer values and pointer
values in C). Intuitively, executions from different morphs of P are deemed equivalent if
it is possible to rationalize each of those executions in terms of a single execution in the
high-level semantics of P.

To relate executions of morphs to executions in the high-level semantics, we assume a
deobfuscation relation §(P, K;) between executions o; of 7(P, K;) and executions ¢ in the
high-level semantics [P]g(-) of P, where (0;,0) € 0(P, K;) means that execution o; can
be rationalized to execution & in the high-level semantics of P. A necessary condition for
morphs to be equivalent is that they perform the same output actions and read the same
inputs; therefore, relation §( P, K;) must satisfy

For all (0;,0) € §(P, K;): Obs(o;) = Obs(a),

where Obs(o) extracts the sequence of output actions performed and inputs remaining to
be consumed by execution o. So Obs(o) is defined by projecting the bindings of the actions

2This rules out direct loops, such as statements of the form £ : goto ¢. This restriction does not funda-
mentally affect our results, but is technically convenient.



main(i : int) {
observable ret
var ret : int;
buf : int[3];
tmp : xint;
ret := 99;
tmp := &buf + 4;
xtmp = 42;

Figure 1: Typical Toy-C program

and the inputs hidden variables
(o[1].actions, o[1].inputs) (o [2].actions, o[2].inputs) ...

and removing repetitions in the resulting sequence. Such a relation for a family of obfusca-
tions and a C-like language is given in §4.

Given a tuple of executions (o1,...,0y,) for a given input inps where each o; is produced
by morph 7(P, K;), these executions are equivalent if they all correspond to the same
execution in the high-level semantics [P]g(-) of program P. This is formalized as follows.

(01,...,00) € Bl (P,K1,...,K,) if and only if
Exists o € [P]x(inps) (1)
Foralli: o;¢€ [[P]];’Ki(mps) A (04,0) € §(P, K;).

4 Concrete Example: The Toy-C Language

4.1 The Language

In order to give a concrete example of how to use our framework to reason about diversity
and attacks, we introduce a toy C-like language, Toy-C. This language is similar to languages
used in the literature to study C features (e.g., aliasing [19]). The syntax and operational
semantics of Toy-C programs should be self-explanatory. We only outline the language here,
giving complete details in Appendix A.

Figure 1 presents a typical Toy-C program. A program is a list of procedure decla-
rations, where each procedure declaration gives local variable declarations (introduced by
var) followed by a sequence of statements. Additionally, every procedure can optionally be
annotated with the variables that are observable—that is, variables that can be examined
by the environment. An update to an observable variable is an output action.> Observable
variables are specified on a per-procedure basis. Whether a variable is observable or not
does not affect the execution of a program; the annotation is used only for determining
equivalence of executions (see §4.4).

3 Although it is possible to model this behavior directly by defining suitable output actions corresponding
to updating these observable variables, the technical development turns out simpler when we track observable
variables separately from output actions.



Procedure main is the entry point of the program. Procedure parameters and local
variables are declared with types, which are used only to convey representations for values.
Types such as xint represent pointers to values (in this case, pointers to values of type int).
Types such as int[4] represent arrays (in this case, an array with four entries); arrays are
0-indexed and can appear only as the type of local variables.

Toy-C statements include standard statements of imperative programming languages,
such as conditionals, loops, and assignment. Additionally, we assume the following state-
ments are available:

e A statement corresponding to every output action in Action, such as printing and
sending to the network. For simplicity, we identify a statement with the output
action that it performs.

e The statement fail simply terminates execution with an error.

As in most imperative languages, we distinguish between expressions that evaluate to
values (value-denoting expressions, or VD-expressions for short), and expressions that eval-
uate to memory locations (address-denoting expressions, or AD-expressions for short). Ex-
pressions appearing on the left-hand side of an assignment statement are AD-expressions.
VD-expressions include constants, variables, pointer dereference, and address-of and arith-
metic operations, while AD-expressions include variables and pointer dereferences. Array
operations can be synthesized from existing expressions using pointer arithmetic, in the
usual way.

4.2 Reference Semantics

The execution of Toy-C programs is described by a reference semantics [[-]]}ef , which we
will use as a basis for other semantics defined in subsequent sections. Full details of the
reference semantics appear in Appendix A.2.

Reference semantics [-]}” captures the stack-based allocation found in standard imple-
mentations of C-like languages. Values manipulated by Toy-C programs are integers, which
are used as the representation both for integers and pointers—the set of memory locations
used by the semantics is just the set of integers. To model stack-based allocation, a hidden
variable stores a pointer to the top of the stack; when a procedure is called, the arguments
to the procedure are pushed on the stack, the return address is pushed on the stack, and
space for storing the local variables is allocated on the stack. Upon return from a procedure,
the stack is restored by popping off the allocated space, return address, and arguments of
the call. We assume that push increments the stack pointer, and pop decrements it.

4.3 Vulnerabilities

Reference semantics []} of Toy-C does not mandate safety checks when dereferencing a

pointer or when adding integers to pointers. Attackers can take advantage of this possibility
to execute programs in a way never intended by the programmer, causing undesirable
behavior through techniques such as:



e Stack smashing: overflowing a stack-allocated buffer to overwrite the return address of
a procedure with a pointer to attacker-supplied code (generally supplied in the buffer
itself);

e Arc injection: using a buffer overflow to change the control flow of the program and
jumping to an arbitrary location in memorys;

e Pointer subterfuge: modifying a pointer’s value (e.g., a function pointer) to point to
attacker-supplied code;

e Heap smashing: exploiting the implementation of the dynamic memory allocator, such
as overwriting the header information of allocated blocks so that an arbitrary memory
location is modified when the block is freed.

Pincus and Baker [16] gives an overview of these techniques. All involve updating a memory
location that the programmer thought could not be affected.

Let us consider a threat model in which attackers are allowed to invoke programs and
supply inputs to that invocation. These inputs are used as arguments to the main procedure
of the program. For example, consider the program of Figure 1. According to reference
semantics [- }“f , on input 0,1, or 2, the program terminates in a final state where ret is
bound to a memory location containing the integer 99. However, on input —1, the program
terminates in a final state where ret is bound to a memory location containing the integer
42; the input —1 makes the variable tmp point to the memory location bound to variable
ret, which (according to reference semantics [-]}/) precedes buf on the stack, so that the
assignment xtmp := 42 stores 42 in the location associated with ret. Presumably, this
behavior is undesirable, and input —1 ought to be considered an attack.

4.4 An Obfuscator

An obfuscator that relies on address obfuscation to protect against buffer overflows was
defined by Bhaktar et al. [6]. It attempts to ensure that memory outside an allocated
buffer cannot be reliably accessed using statements intended for accessing the buffer.

This obfuscator, which we will call 7,44, relies on the following transformations: varying
the starting location of the stack; adding padding around procedure arguments on the stack,
blocks of local variables on the stack, and the return location of a procedure call on the
stack; permuting the allocation order of variables and the order of procedure arguments on
the stack; and supplying a potential different initial memory map.*

Keys for 7,4, are tuples (¢s,d, 11, M,,,) describing which transformations to apply: ¢
is a starting location for the stack; d is a padding size; I = (71, 79,...) is a sequence
of permutations, with m, (for each n > 1) a permutation of the set {1,...,n}; and M,,,
represents the initial memory map in which to execute the morph. Morph 7,4, (P, K) is
program P compiled under the above transformations.

Implementation semantics [[P]];‘”“T’K specifying how to execute morph 7(P, K) is ob-
tained by modifying reference semantics [[P]]}ef to take into account the transformations

4This also lets us model the unpredictability of values stored in memory on different machines running
morphs.



prescribed by key K. These modifications affect procedure calls; more precisely, with im-
plementation semantics [[P}];“dd"’K for K = (¢s,d, 11, M,,;,), procedure calls now execute as
follows:

e d locations of padding are pushed on the stack;

e the arguments to the procedure are pushed on the stack, in the order given by per-
mutation m,, where n is the number of arguments—thus, if vy, ..., v, are arguments
to the procedure, then they are pushed in order vy (1), ..,z (n);

e d locations of padding are pushed on the stack;
e the return address of the procedure call is pushed on the stack;
e d locations of padding are pushed on the stack;

e memory for the local variables is allocated on the stack, in the order given by permu-
tation 7,, where n is the number of local variables;

e d locations of padding are pushed on the stack;
e the body of the procedure executes.

Full details of implementation semantics [[P]];‘“““K are given in Appendix B.

Notice, which input values cause undesirable behavior (e.g., input —1 causing ret to get
value 42 if supplied to the program of Figure 1) depends on which morph is executing—if
the morph uses a padding value d of 2 and an identity permutation, for instance, then —3
causes the undesirable behavior in the morph that —1 had caused.

To instantiate BJaddr (-) for Toy-C and 7,44, we need a description of the intended high-
level semantics and deobfuscation relations.

The high-level semantics [-] z that serves our purpose is a variant of reference semantics
[]]”f but where values are only used as the high-level language programmer expects. For
example, integers are not used as pointers. Our high-level semantics for Toy-C distinguishes
between direct values and pointers. Roughly speaking, a direct value is a value that is
intended to be interpreted literally—for instance, an integer representing some count. In
contrast, a pointer is intended to be interpreted as a stand-in for the value stored at the
memory location pointed to; the actual memory location given by a pointer is typically
irrelevant.’

Executions in high—level semantics [-]g are similar to executions described in §3, usmg
states of the form (E, 17, M), where the set of locations Lis N, V is the variable map, and M
is the memory map. To account for the intended use of values, the memory map associates
with every memory location a tagged value c(v), where tag c indicates whether the value
v is meant to be used as a direct value or as a pointer. Specifically, a memory map M
associates with every memory location {ela tagged value

®Other high-level semantics are possible, of course, and the framework we propose can accommodate
them. For instance, a high-level semantics could additionally model that arrays are never accessed beyond
their declared extent. Different high-level semantics generally lead to different notions of equivalence of
executions.
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e direct(v) with v € Value, indicating that M (@\) contains direct value v; or
e pointer(?') with ¢ € L, indicating that M\(Z) contains pointer /.

Deobfuscation relations 6(P, K) for 7,4, are based on the existence of relations between
individual states of executions, where these relations rationalize an implementation state
in terms of a high-level state. More precisely, an execution o € [[P]]T“dd“K(inps) in the
implementation semantics of 7,44, (P, K) and an execution o € [P] g (inps) in the high-level
semantics of P are related through §(P, K) if there exists a relation X on states (subject to
a property that we describe below) such that for some stuttered sequence &' of 7,5 we have

For all j: olj] 27[j].

The properties we require of relation = capture how we are allowed to interpret the
states of morph 7,44, (P, K). There is generally a lot of flexibility in this interpretation. For
our purposes, it suffices that =< allows morphs to allocate variables at different locations in
memory, and captures the intended use of values. Generally, relation = might also need to
relate states in which values have different representations; there is no need for this with
obfuscator 7,44, since 7,4, does not change how values are represented.

The required property of relation = is that there exists a map h (indexed by implemen-
tation states in o) that, for any given j, maps memory locations in o[j] to memory locations
in ¢’[j], such that h determines <. The map is parameterized by implementation states so
that it may be different at every state of an execution, since a morph might reuse the same
memory location for different variables at different points in time.

A map h determines = when, roughly speaking, = relates implementation states and
high-level states that are equal in all components, except that data in memory location ¢
in the implementation state s is found at memory location h(s,¢) in the high-level state.
Formally, h determines = when the relation satisfies the following property: (L,V, M) 3
(E, v, ]\7) holds if and only if

(1) Either V(pc) = e and V(pc) = e, or h((L,V, M),V (pc)) = V(pc);

(2) V(actions) = V(actions);
(3) V(inputs) = V (inputs);
(4)

4) For every observable program variable z, there exists k& > 0 such that V(z) =
(01,..., ), V(z) = <€1, . Ek) and for all i < k we have ¢; < ;,

where ¢ = 7 relates implementation locations ¢ € L and high-level locations { e L and
captures when these locations hold similar structures. It is the smallest relation such that
¢ = ¢ holds if whenever h(o[j],¢) = ¢ holds then so does one of the following conditions:

e M(¢)=wv and ]\/4\(2) = direct(v);
o« M(¥)=1/, M\(Z) = pointer(?') and ¢ < 0.

Given this definition of deobfuscation relations, it is now immediate to define equivalence
of executions for morphs using definition (1).

55" is a stuttered sequence of & if 6’ can be obtained from & by replacing individual states by a finite

number of copies of that state.
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5 Obfuscation and Type Systems

Obfuscation does not eliminate vulnerabilities—it just makes exploiting them more difficult.
Systematic methods for eliminating vulnerabilities not only form an alternative defense
but arguably define standards against which obfuscation could be compared. The obvious
candidate is type systems, which can prevent attackers from abusing knowledge of low-level
implementation details and performing unexpected operations. For example, strong typing
as found in Java would prevent overflowing a buffer (in order to alter a return address on
the stack) because it is a type violation to store more data into a variable than that variable
was declared to accommodate.

Type systems for system programming languages, and strong typing in particular, are
generally concerned with ruling out two kinds of behaviors:

(1) Assigning an inappropriate value to some variable.
(2) Accessing memory past the end of a buffer under the pretense of accessing the buffer.

In a language with values of different sizes, we might want to defend against (1), but there
is no need to worry about this with Toy-C because every value fits in a single memory
location. Thus, our focus here is on (2).

Eliminating vulnerabilities is clearly preferable to having them be difficult to exploit. So
why bother with obfuscation? The answer is that there are settings where type systems are
not an option—legacy code. The relative success of recent work [12, 14] in adding strong
typing to languages like C not withstanding, obfuscation is applicable to any object code,
independent of what language was originally used. There are also settings where type sys-
tems are not desirable because of cost. For example, most strongly-typed languages involve
checking that every access to an array is within bounds. Such checks can be expensive.
A careful comparison between obfuscation and type systems then helps understand the
trade-offs between the two approaches.

To compare obfuscation with type systems, we can profitably regard obfuscation as a
form of probabilistic type checking, whereby type-incorrect operations cause the program to
halt with some probability p but with probability 1 —p a type-incorrect operation is allowed
to proceed. With a sufficiently good obfuscator, an attempt to overwrite a variable will,
with high probability, trigger an illegal operation and cause the program to halt (because the
attacker will not have known enough about storage layout), which is exactly the behavior
expected from probabilistic type checking.

We start our comparison by discussing how the kind of strong typing being advocated
with programming languages, such as Java, compares to what can be achieved with ob-
fuscation, and by obfuscator 7,4, in particular. Specifically, we show that strong typing
does eliminate all vulnerabilities targeted by 7,44, but strong typing also signals type errors
for programs and inputs that are not considered attacks relative to 7,4, This discrepancy
prompts us to investigate how to weaken strong typing to capture more accurately what
T.aqr accomplishes.

All of the type systems we study are dynamic type systems—extra information is as-
sociated with values, and this information is checked during execution. When the check
detects a type error, execution is halted. Admittedly, this is a very general notion of type
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main() { main() {

observable x observable pa
var a : int[5]; var a : int[5];
X :int; pa : *int;
x := *(&a + 10); pa := &a + 10;
} xpa := 0;

}
(a) (b)

Figure 2: Accessing memory outside a buffer

system. It encompasses all type systems in the literature, but also includes approaches that
are not typically viewed as type systems.

5.1 Strong Typing for Toy-C

Obfuscator 7,4, is intended to defend against attacks that involve accessing memory outside
the extent of a buffer. Thus, to eliminate the vulnerabilities targeted by 7,4, a type system
only has to check that a memory read or write through a pointer into a buffer allocated to
a variable does not access memory outside that buffer.

In Toy-C, there are only two ways in which this memory access can happen. First, the
program can read a value using a pointer that has been moved past the extent of a buffer,
as in Figure 2(a).” Second, the program can write through a pointer that has been moved
past either end of a buffer, as in Figure 2(b). Our type system must abort executions of
these programs.

To put strong typing into Toy-C, we associate information with values manipulated by
programs. More precisely, values will be represented as pairs (i, int)—an integer value i—
and (i, ptr(start, end))—a pointer value i pointing to a buffer starting at address start and
ending at address end [12, 14]. Our type system 7" enforces the following invariant: when-
ever a pointer value (i, ptr(start, end)) is dereferenced, it must satisfy start < i < end.®
Information associated with values is tracked and checked during expression evaluation, as
follows.

S1. The representation of a constant i is (i, int).

"While reading a value is not by itself generally considered an attack, allowing an attacker to read an
arbitrary memory location can be used to mount attacks.

8 An alternate form of strong typing is to enforce the following, stronger, invariant: every pointer value
(i, ptr(start, end)) satisfies start < i < end. This alternate form has the advantage of being enforceable
whenever a pointer value is constructed, rather than when a pointer value is used. Compare the two
programs in Figure 3. According to this alternate form of strong typing, both programs signal a type error
when evaluating expression &a + 10: it evaluates to a pointer value outside its allowed range (viz., extent of
a). But although signalling a type error seems reasonable for program (a) in Figure 3, it seems inappropriate
with program (b) because this problematic pointer value is never actually used. Note that morphs created
by Tuae will not differ in behavior when executing program (b).
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main() { main() {

observable x observable x
var a : int[5]; var a : int[5];
pa : xint; pa : *int;
X :int; X :int;
pa := &a + 10; pa := &a + 10;
X 1= *pa; x = 10;

} }
(a) (b)

Figure 3: Signalling type errors at pointer value construction versus use

S2. Dereferencing an integer value results in a type error. The result of dereferencing a
pointer value (i, ptr(start, end)) returns the content of memory location i; however,
if 7 is not in the range delimited by start and end, then a type error is signalled.

S3. Taking the address of an AD-expression [v denoting an address 7 returns a pointer
value (i, ptr(start, end)), where start and end are the start and end of the buffer in
which address ¢ is located.

S4. An addition operation signals a type error if both summands are pointer values; if both
summands are integer values, the result is an integer value; if one of the summands is a
pointer value (i, ptr(start, end)) and the other an integer value (i’, int), the operation
returns (i + ¢, ptr(start, end)).

S5. An equality test signals a type error if the operands are not both integer values or
both pointer values.

To illustrate type system 77 consider the program of Figure 2(a). Assume that
variable a is allocated at memory location ¢,. To execute x := x(&a + 10), the expression
*(&a + 10) is evaluated. The expression &a evaluates to

<‘€aa ptr(gaa fa + 4)>7
by S3. The constant 10 evaluates to
(10, int),

by S1. The sum &a + 10 is type correct (see S4), because no more than one summand is a
pointer, and yields
(€3 + 10, ptr (s, £y +4)).

However, the subsequent dereference (¢, + 10, ptr(¢a, {5 + 4)) signals a type error because
location ¢, + 10 is out the range delimited by ¢, and #, + 4.

The same thing happens in the program of Figure 2(b). Assume that variable a is
allocated at memory location /,, and that variable pa is allocated at memory location £p;.
The first statement executes by evaluating &a + 10 to a value

(2 + 10, ptr(la, 05 + 4)),
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as before. The left-hand side of the assignment statement, pa is evaluated to the value
representing the memory location allocated to variable pa, namely

<€pav ptr(fpa, epa»?

the assignment stores value (¢, + 10, ptr(¢,, ¢, + 4)) in location fp,. Note that values are
not checked when they are stored. The next assignment statement, however, signals a type
error. The right-hand side evaluates to the value

(0, int),

but the left-hand side attempts a dereference of the value stored in pa, that is, attempts the
dereference * (¢, + 10, ptr(f,, ¢5 + 4)), which signals a type error because location ¢, + 10 is
not in the range delimited by ¢, and ¢, + 4.

To formalize how Toy-C programs execute under type system 7°"?, we extend reference
semantics [-]77 to track the types of values. The resulting implementation semantics [-]5"
appears in Appendix C.1. One modification to [-]7' is that [-]}" uses values of the form
(i,t), where i is an integer and ¢ is a type, as described above.

Attacks disrupted by obfuscator 7,4, lead to type errors in Toy-C equipped with 17,

The following theorem makes this precise.

Theorem 5.1. Let K1,..., K, be arbitrary keys for T,4e.. For any program P and inputs
inps, if inps is an attack on P relative to T, and Ki,...,K,, then o € [P]}"(inps)

signals a type error. Equivalently, if o € [P]}7"(inps) does not signal a type error, then
mps is not an attack on P relative to 7,4, and K1,..., K,
Proof. See Appendix C.1. |

Thus, T° is a sound approximation of 7,4, in the sense that it signals type errors for all
inputs that are attacks relative to 7,4, and a finite set of keys K1,..., K,. This confirms
our thesis that there is a connection between type systems and obfuscation. Moreover,
any type system that is more restrictive than 7% and therefore causes more executions to
signal a type error will also have the property given in Theorem 5.1.

Notice that 7,4, and T%" do not impose equivalent restrictions. Not every input for
which T*" signals a type error corresponds to what we consider to be an attack. When
executing the program of Figure 4(a), for instance, 7" signals a type error because &a+ 10
yields a pointer that cannot be dereferenced. But there is no an attack relative to 7,44,
because morphs created by 7,4 do not differ in their behavior, since output action print(0)
is always going to be executed.

Figure 4(a) is a program for which strong typing is stronger than necessary—at least
if one accepts our definition of an attack as input that leads to differences in observable
behavior. So in the remainder of this section, we examine weakenings of T*"¢ with the intent
of more tightly characterizing the attacks 7,4, targets.

5.2 A Tighter Type System for Obfuscator 7,,,

One way to understand the difference between 7,,,,. and T°" is to think about integrity of
values. Intuitively, if a program accesses a memory location through a corrupted pointer,
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main() { main() { main() {

var a : int[5]; var a : int[5]; var a : int[5];
X :int; X :int; X :int;
x := *(&a + 10); x = x(&a + 10); x := *(&a + 10);
print(0); if (z=0) then { if (z =) then {
} print(1); print(1);
} else { } else {
print(2); print(2);

(a) (b) ()

Figure 4: Sample programs

then the value computed from that memory access has low integrity. This is enforced with
T.aar Dy having different morphs compute different values. We thus distinguish between
values having low integrity, which are obtained by somehow abusing pointers, and values
having high integrity, which are not. This suggests equating integrity with variability under
T.aar; & value has low integrity if and only if it differs across morphs.

If we require that output actions cannot depend on values with low integrity, then
execution should be permitted to continue after reading a value with low integrity. This is
the key insight for a defense, and it will be exploited for the type system in this section.

Tracking whether high-integrity values depend on low-integrity values can be accom-
plished using information flow analyses, and type systems have been developed for this,
both statically [1] and dynamically [15].

We adapt T and design a new type system T/ that takes integrity into account.
Roughly speaking, a new type low is associated with any value having low integrity. Rather
than signalling a type error when dereferencing a pointer to a memory location that lies
outside its range, the type of the value extracted from the memory location is set to low.
The resulting implementation semantics [P]7” appears in Appendix C.2.

T™° will signal a type error whenever an output action is attempted and that output
action depends on a value with type low. In other words, if control reaches an output action
due to a value with type low, then a type error is signalled. So, for example, if a conditional
statement branches based on a guard that depends on values with type low, and one of the
branches performs an output action, then a type error is signalled. To implement T, we
track when control flow depends on values with type low. This is achieved by associating a
type not only with values stored in program variables, but with the content of the program
counter itself, in such a way that the program counter has type low if and only if control
flow somehow depended on values with type low.

Consider Figure 4(a). When executing x := *(&a + 10) in that program, the expression
&a + 10 evaluates to (/5 + 10, ptr(fa, £2 + 4)) (using a similar reasoning as for 7%), and
therefore, because location ¢, + 10 is outside its range, *(&a + 10) evaluates to (i,low) for
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some integer i—the actual integer is unimportant, since it having type low will prevent the
integer from having an observable effect. The value (i,low) is never used in the rest of the
program, so execution proceeds without signalling a type error (in contrast to 7", which
does signal a type error).

By way of contrast, consider Figure 4(b). When executing the if statement in that
program, *(&a + 10) evaluates to (i,low) (for some integer i), and 0 evaluates to (0, int).
Comparing these two values yields a value with type low, since one of the values in the
guard had type low. (Computing using a value of low integrity yields a result of low
integrity.) Because the guard’s value affects the control flow of the program, the program
counter receives type low as well. When execution reaches output action print(1), a type
error is signalled because the program counter has type low.

Theorem 5.2. Let K1,...,K, be arbitrary keys for T,.,. For any program P and inputs
inps, if inps is an attack on P relative to T,y and Ki,...,K,, then o € [P]7"(inps)
signals a type error.

Proof. See Appendix C.2. |

Thus, just like 7%, T™"° is a sound approximation of 7.,.,,. And as illustrated by the
programs of Figure 4, T™° corresponds more closely to 7., than does T°". Somewhat
surprisingly, information flow therefore captures our definition of attack relative to 7,44,
more closely than strong typing. But, as we shall see below, T still aborts executions on
inputs that are not attacks relative to 7,44, s0 T is still stronger than 7,44, .

5.3 Exact Type Systems for Obfuscator 7,,,,

Consider the program of Figure 4(c). Here, the value read from location &a + 10 has type
low, and it is being used in a conditional test that can potentially select between different
output actions. However, because equality is reflexive, the fact that we are comparing to a
value with type low is completely irrelevant, as the guard always yields true. We believe
that it would be quite difficult to develop a type system that can identify guards that are
validities, because doing so requires a way to decide when two expressions have the same
value in all executions. Yet, if we had a more precise way to establish the integrity of the
program counter (for instance, by being able to establish that two expressions affecting
control flow have the same value in all executions), then we would have a type system that
more closely correspond to 7,44

A type system, admittedly unusual, that signals a type error for exactly those executions
corresponding to inputs that are attacks relative to 7., and some fixed and finite set
Ki,..., K, of keys is the trivial type system, Tl’g”h K, instantiated by an implementation
system essentially runs all morphs in parallel, taking unanimous consensus before performing
an observable action.

Execute program P up to the next output action (including updates to observ-
able program variables), and also execute morphs 7,44, (P, K1), ..., Togar (P, Kp)
up to their next output action:
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e If the same output action is next about to be performed by all morphs,
then the type system allows P to perform its output action, and repeats
the procedure;

e If not, then the type system signals a type error and aborts execution.

Theorem 5.3. Let Ki,...,K, be arbitrary keys for T,.u.. For any program P and in-
puts inps, inps is an attack on P relative to T,., and Ki,...,K, if and only if o €

,,,,,

Proof. Immediate from the description of the procedure and the definition of an attack
relative to 7,4, and K, ..., K,. |

This theorem then establishes that type systems are in fact equivalent to obfuscation under
a fixed finite set of keys. As we shall see below, this correspondence can be used to construct
a probabilistic type system.

As defined in §4.4, obfuscator 7., admits infinitely many keys. Although for many
applications we care only about a finite set of keys at any given time (e.g., when using
morphs to implement server replicas, of which there are only finitely many), the exact set of
keys might not be known in advance or may change during the lifetime of the application.
Therefore, it is sensible to try to identify inputs that are attacks relative to 7,,, and any
finite subset of the possible keys, or equivalently, to recognize inputs that are not attacks
relative to 7,4, and every finite subset of the possible keys.

If we are interested in a type system that signals a type error for exactly executions
corresponding to inputs that are attacks relative to 7,4, and any finite set of keys, then a
type system such as T%p h K, 1s no longer feasible. This is because there are infinitely many
possible finite sets of keys available for 7,4,,. Therefore, a type system like TI’?Z’ hy K, would
need to execute infinitely many morphs.

Type systems like T;’l"”h K, can be viewed as approximating a type system that aborts
exactly those executions corresponding to inputs that are attacks relative to 7,4, and some
finite set of keys. Adding more keys, that is, considering type system T;’l"ph K K improves
the approximation because there are fewer programs and inputs for which Tl’g"h Ky K will
fail to signal a type error even though the inputs are attacks. This is because every attack
relative to 7,4, and Ki,..., K, is an attack relative to 7,,, and Ki,..., K,, K’, but not
vice versa.

The approximation embodied by type system T;gf"h K, can become a probabilistic ap-
proximation of the type system that aborts exactly those executions corresponding to inputs
that are attacks relative to 7,4, and some finite set of keys. Consider a type system 77"
that works as follows: before executing a program, keys K, ..., K, are chosen at random,
and then the type system acts as T}g?’" K, For any fixed finite set Kj,..., K, of keys,
T;:ph K, Will identify inputs that are attacks relative to 7,44, and K1, ..., K,, but may miss
inputs that are attacks relative to 7,,, and some other finite set of keys. By choosing the
set of keys at random, type system 77" has some probability of identifying any input that
is an attack relative to some finite set of keys.

Note that TI’Z’: h7 K, (similarly, 77") is a fundamentally different kind of approximation
than we have with type systems T and T"/°, which are sound approximations: if T and
T™° do not signal a type error for a program P and input inps, then inps is not an attack
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relative to 7,44, and every finite set of keys. In fact, as we now show, it is impossible to
design a type system that aborts executions for exactly those inputs for which there exists
a finite set K, ..., K, of keys and the input is an attack relative to 7,4, and K1, ..., K.

To simplify the exposition, we focus on type systems that restrict [[~]]}€f : if an execution
of program P does not signal a type error, then that execution can be viewed as an execution
of [P]}’. Assume a function val on the extended values of implementation semantics [}
that extracts the integer being represented by the extended value, stripped of all typing
information. For example, the val function for [-];" is defined by val((i,t)) = i. Given an
execution o in an implementation semantics [-]7, define the execution "o to be the execution
obtained by replacing every value v in every state of o by wal(i). An implementation
semantics [-]; is a restriction of [-]77 if for every program P and input inps, whenever

o € [P];(inps) does not signal a type error, then ¢ € [P]}” (inps) satisfies, for all i > 0:

(i) To'i].actions = o[i].actions;
(ii) To'[é].inputs = o [i].inputs;
(iii) For every observable program variable z, "o '[i].x = o[i].x.

It is straightforward to check that the implementation semantics corresponding to type

systems T and T are restrictions of [-]}.

Lemma 5.4. []¥ and []7* are restrictions of []}.

Proof. See Appendix C.2. |

Theorem 5.5. Let [-]; be an implementation semantics for Toy-C such that:
(i) For every P and inps, [P]r(inps) is computable;
(i) [-1r is a restriction of []7;

(iii) o € [P];(inps) signals a type error whenever inps is an attack relative to T, and
some finite set of keys.

Then, there exists a program P and input inps such that o € [P]r(inps) signals a type

error, but for all finite sets of keys K1,..., Ky, inps is not an attack relative to T, and
Kq,...,K,.
Proof. See Appendix C.2. |

This shows that it is impossible, in general, to devise a type system that signals a type error
exactly when an input is an attack relative to 7,4, and an arbitrary finite set of keys. Any
type system must therefore approximate this.

This result relies on obfuscator 7,,4,. admitting infinitely many keys. In reality, machines
have a bounded amount of memory, and memory locations can only store a bounded number
of bits, so program size is bounded. Therefore, it is likely that only finitely many keys are
needed to describe all morphs that can be executed on a given machine. This means that
there is a possibility of devising a type system that exactly corresponds to 7,4, on a finite
machine. One possibility might be T%ph K, although that type system requires a factor
of n additional memory to execute programs. We leave the question of devising such exact
type systems for finite machines open.
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6 Concluding Remarks

This paper gives a reduction from defenses created by mechanically-generated diversity to
probabilistic dynamic type checking. We have ignored the probabilities, but for practical
application, these values really do matter, because if the dynamic type checking is performed
with low probability, then checks are frequently skipped and attacks are likely to succeed.
The probabilities, then, are the measure of interest when trying to decide in practice whether
mechanically-generated diversity actually adds value. And unfortunately, obtaining these
probabilities appears to be a difficult problem. They depend on how much diversity is
introduced and how robust attacks are to the resulting diverse semantics. Our framework is
thus best seen as a first step in trying to characterize the effectiveness of program obfuscation
and other means of mechanically introducing diversity.

A reduction to non-probabilistic type checking—although clearly a stronger result—
would not help in characterizing the effectiveness of mechanically-generated diversity, either.
This is because there is (to our knowledge) no non-trivial and complete characterization of
the attacks that strong typing blunts. Various specific attacks (such as buffer overflows)
are known to be blocked. But enumerating which attacks are blocked and which are not
constitutes an unsatisfying basis for defining the effectiveness of a defense in a world where
new attacks are constantly being perpetrated. We should strive for characterizations that
are more abstract—a threat model based on the resources or information available to the
attacker, for example. And in the absence of suitable abstract threat models, reductions
from one defense to another, like what is being introduced in this paper, might well be
the only way to get insight into the relative powers of defenses. Moreover, such reductions
remain valuable even after suitable threat models have been developed.

We treat in this paper a specific language, a single obfuscator, and a few simple type
systems. Our primary goal, however, was not to analyze these particular artifacts, although
the analysis does shed light on how the obfuscators and type systems defend against attacks
(and some of the results for these artifacts are surprising). Rather, our goal has been to
create a framework that allows such an analysis to be performed for any language, obfus-
cator, or type system. The hard part, then, was finding a suitable, albeit unconventional,
definition of attack and appreciating that probabilistic variants of type systems constitute
a useful vocabulary for describing the power of mechanically-generated diversity.
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A A Semantics for Toy-C

A.1 Syntax

Let Var be a set of variables, Proc be a set of procedure names, and Action be a set of
output actions.

Syntax of Toy-C:

P = program
pdy ... pdy
pd = procedure declaration
m(T1:PYLy -y T i DYy,) { Ud; sts } m € Proc,z1,...,xm € Var
ty 1= type
Py pointer type
pyli] array
pY = pointer type
int integer
*ty pointer
ld ::= local declaration list
var £1:1y ;... T ty, T1,...,Tn € Var
st = statement
lv:=ex assignment
m(exy,...,exy,) procedure call, m € Proc
if ex then { sts; } else { stso } conditional
while ex do { sts } loop
ac output action, ac € Action
fail exception
sts 1= statement sequence
€ empty sequence
st; sts sequencing
ct = constant
) integer
null null pointer
ex = value-denoting expression
ct constant
*xer pointer dereference
x variable, x € Var
&l address
eri1 + exo arithmetic
er] = ers comparison
v = address-denoting expression
x variable, x € Var
*ly pointer dereference
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A program is a set of procedure declarations, where each procedure declaration consists of
some local variable declarations followed by a sequence of statements. Every well-formed
program defines a procedure main, which is the entry point of the program; the inputs to
the programs are just inputs to the procedure main.

Procedure parameters and local variable are declared with types, which are used only
to indicate the representation of values. We distinguish between general types ty (local
variables can be of general types) and pointer types py (procedure parameters must be of
pointer type). Pointer types represent constants and memory locations (i.e., pointers); we
assume that pointer types fit in a single location in memory—that is, constants and pointers
fit in a single memory location. In contrast, general types include array types, which can
span multiple memory locations. The following function, which computes the size of values
of a type, formalizes this.

Size of Types: size(ty)

size(py) = 1
sizelpyl]) £ i

Statements include standard statements of imperative programming languages: assign-
ment, procedure call, conditional, and iteration. Output actions are identified with state-
ments that perform those output actions; thus, we have a statement ac for every output
action in the set Action. Statement fail terminates an execution with an error. Execution
of a sequence of statements is terminated with an empty sequence statement e, which we
generally omit.

As pointed out in §4.1, we distinguish VD-expressions, which evaluate to values, from
AD-expressions, which denote memory locations. For simplicity, we take only integers and
the null pointer as constants. Notation xex (and *lv) is used to dereference a pointer, while
&lv is used to return the address of a variable (or, more generally, of an AD-expression).
Toy-C does not contain an array dereferencing operator, since it can be synthesized from
other operations. For instance, array dereference x[5] in a VD-expression can be written:

*(&x + 5)

(recall that all values fit in a single memory location), and similarly, assignment x[5] := 10
can be written using a temporary variable:

var y:xint;
y := (&x + 5);
*#x 1= 10.

(To reduce the number of rules we need to consider in the semantics, the more direct
*(&x + 5) := 10 is not allowed by our syntax.) The only operations we include in our
semantics are + and =. It is, of course, completely straightforward to add new operations.

A.2 Reference Semantics

In order to define the reference semantics for Toy-C, we need to describe the states; in
particular, we need to describe what we take as location structures, variable maps (including
all hidden variables), and memory maps.
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For simplicity, we take N as set of memory locations, where the stack and variables
live. We assume that first locations of N are locations that store program code, and that
those locations are not readable or writable. Let £, be the first readable/writable memory
location. We assume a map loc that returns the location loc(sts) in the first K locations
of N where the statement sequence sts is stored. Conversely, we assume a map code that
extracts code from memory: code(?) returns a sequence of statements sts. Clearly, the
functions loc and code are inverse to each other: code(loc(sts)) = sts.

Variable maps are standard. We assume the hidden variables required by our semantic
framework. The hidden variables pc, actions, and inputs are as before. We also have
additional hidden variables: sp holds the current stack pointer, the current memory location
at the top of the stack (initially ¢s), return holds the location on the stack where the return
address of the current procedure invocation lives, and status records whether an evaluation
terminated successfully (value Success) or failed (value Fail). We shall need the empty
variable map Vp, which maps every variable to the empty sequence () of locations.

Memory maps are also standard. We shall need the empty memory map My, which
maps every location to the value 0: My(¢) = 0 for all £ € N. Our semantics will ensure that
programs cannot access memory locations below £ ; any read/write to a memory location
below £y, will be interpreted as a read /write to memory location £zy,. (An alternative would
be to signal a failure when a read/write to a memory location below £y, is attempted.)

Before presenting the semantics, we give functions to evaluate AD-expressions in the
language to locations, and VD-expressions to values. The evaluation function A[lw](V, M)
is used to evaluate an AD-expression [v in variable map V and memory map M, and
Efez](V, M) is used to evaluate an VD-expression ez in variable map V' and memory map
M.

Evaluation Functions: A[l](V, M), Elex][(V, M)
Alz](V,M) 2 ¢; when V(z) = ({1,...,0)

M (£rw) if A[](V, M) < Ly

Alx](V, M) £ {]\4(14[[11}]](‘/7 M)) otherwise

M (Lgw) if EJex](V,M) < lpw
M(E[ex](V,M)) otherwise

Elxex](V, M) £ {
E[)(v,M) =i
E[null}(V,M) 20
E[z](V,M) = M(¢;) when V(z) = (f1,...,4)
E[&W](V, M) = Alw](V, M)

Elex + exs](V, M) = Elex1](V. M) + E[ex2](V, M)

1 if Elex1](V, M) = E[ex2](V, M)

Elex; = exs](V, M) = {0 otherwise

23



Executions making up semantics [P]}(-) are constructed using standard reduction rules

between operational states of the form (sts,V, M, Vs), where V is a variable map, Vs =
(V1,..., Vi) is a stack of variable maps, M is a memory map, and sts is a sequence of
statements to execute. A reduction rule of the form (sts,V, M, Vs) — (sts’,V, M’ V5'),
describes one step of the execution of sts. To simplify the description of the semantics,
we extend the set of statement sequences with special token e to represent termination, in

analogy with the values of pc. In the rules below, we use the notation V{z — (¢1,...,0;)}
to represent the map V updated to map variable z to ({1, ..., {x), and similarly for memory
map M.

Reduction Rules:

(o, V,M,V5) — (o, V, M, V5) (R1)

(65 V) Ma VS) — (°7V{PC'_’ .}7Ma VS) (R‘Z)
if V(return) = o

(e, V,M,(V1,..., Vi) — (sts, Vi{pcr €}, M, (Va,... V})) (R3)
if V(return) = ¢/, M(¢') = ¢, and code({) = sts

(lv := ex; sts,V, M, V5) — (sts, V{pc — loc(sts)}, M{l — v}, 5) (R4)
if EJex](V,M) =v and A[lw](V,M) =1¢

(if ex then { sts; } else { stsa };sts,V,M,(Vi,..., Vi) — (R5)
(sts1, V', M{V (sp) — loc(sts)},(V,Vi,..., Vi)
if Efex](V,M) #0
where V' £ V{pc ~ loc(sts1),
sp— V(sp) + 1,
return — V(sp)}

(if ex then { stsy } else { stso };sts,V,M,(Vi,...,Vk)) — (R6)
(stso, V', M{V (sp) — loc(sts)},(V',Vi,..., Vk))
if Efex](V,M) =0
where V' £ V{pc  loc(stss),
sp— V(sp) + 1,
return — V(sp)}

(while ez do { stsy };sts,V, M, (Vq,..., Vi) — (R7)
(sts1, V', M{V (sp) — loc(while ex do { stsy };sts)}, (V,Vi,..., Vi)
if Efex](V,M) #0
where V' £ V{pc s loc(sts1),
sp— V(sp) + 1,
return — V(sp)}

(while ez do { stsy };sts,V, M, Vs) — (sts, V{pc + loc(sts)}, M, Vs) (R8)
if Efex](V,M) =10
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(fail; sts, V, M, V5) — (e, V{pc — e, status — Fail}, M, Vs) (R9)
(ac; sts, V, M, Vs) — (sts, V', M, Vs) (R10)

A

where V' = V{pc — loc(sts),
actions — V' (actions) +(ac)}

(m(exy,...,exy);sts, V.M, (V1,..., Vi) — (8tsm, V', M' (V. V1,..., Vi) (R11)
if Efex;](V,M) = ct; for all i
where V' £ V{pc + loc(stsm),
sp — V(sp) +n+ S0, size(ty;) + 1,
return — V(sp) + n,
z1 = (V(sp)),

Ty = (V(sp) +n — 1),
y1 — (V(sp)+n+1,...,V(sp) + n+ 1+ size(ty,) — 1)

g — (V(sp) +n+ 1+ 35 size(ty,),

Visp) +n+1+ Zf:ll size(ty;) + size(ty,) — 1)}
M' & M{V(sp) — ct1,

V(sp) +n— 1+ ctp,
V(sp) + n — loc(sts)
V(sp) +n+1+—0,

V(sp) +n+ 1+ Y17 size(ty,) — 0}
for m(x1:pyq, ..., Tn:py,) { var y1:ty ;... yk: tyy; stsy } a procedure

The reference semantics [[P]]}“f (-) proper is defined by extracting a sequence of states
from a sequence of reductions starting from an initial operational state that corresponds to
invoking the procedure main with the arguments supplied to the semantic function.

Reference Semantics []}:

HPﬂ;cf«Ctl, ceey Ctk>) é {<81782,83, .. ) ‘ (Stsl,vl,Ml,Vsl) — (StSQ,VQ,MQ,VSQ) — .y
si = (N, V;, M;) for all i > 1}
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where V51 £ ()
= VO{SP = Lrw,
return — e,
pc — loc(main(cty, ..., cty);),
inputs — (),
status — Success,
actions — ()}

M, & M,

sts1 = main(cty, ..., cty);

Some remarks on the above definition: the stack pointer sp is initially set to the first
readable/writable location in memory, the program counter pc is set to a code location
corresponding to invoking the procedure main with the supplied inputs before returning
immediately; all the inputs are consumed in the first step of execution, and therefore the
inputs variable remains empty for the whole execution.

To simplify the presentation of the reduction rules, some information in operational
states is somewhat redundant—the statement being executed in an operational state not
only appears in the operational state, but is also given by the code at the location in the
program counter. As the following lemma shows, this redundancy is consistent.

Lemma A.1. Let (sts,V, M, Vs) be an operational state reachable from (sts1, Vi, My, V51).
The following properties hold:

(1) V(pc)=e if and only if sts is e;
(2) If sts is not e, then code(V (pc)) = sts.

Proof. This is a straightforward induction on the length of executions. Every reduction of
the form (sts,V, M, Vs) — (sts’, V', M’ , V&') satisfies V'(pc) = loc(sts’). |

Finally, we verify that the resulting traces are in fact executions as we defined them in
3.

Lemma A.2. The infinite trace [P]} ({ct1,..., cty)) is an execution.

Proof. let o be the infinite trace in [P}’ ({ct1,..., cty)), generated by the sequence of
reductions (stsy, Vy, My, V81) — (stsa, Vo, Mo, V59) — .... We check the five conditions
defining an execution:

(1) By definition, every state in o uses N as its set of locations.

(2) By Lemma A.1, if o[i].pc = e, then sts; = o. Only rule (R1) can apply from
operational state ¢ on, and thus sts; = e for all j > i, that is, o[j].pc = e for all j > i.

(3) If there exists an @ > 1 with o[i].pc = e, we are done. If there is no i > 1 with
oli].pc = e, then by Lemma A.1, there is no i > 1 such that sts; = e. Therefore, for every
i > 1, the reduction rule applied at step ¢ must be one of (R3), (R4), (R5), (R6), (R7),
(R8), (R10), or (R11). Each of these rules changes the state (if only because they change
pc). Thus, we cannot have o[i] = o[i + 1].
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(4) By definition, o[1].actions = (). The only rule that adds output actions to actions is
(R10), which adds a single output action.

(5) By definition, o[1].inputs = (), and examination of the rules shows that inputs is
unchanged throughout execution. |
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B Detailed Account of Obfuscator 7,,,,

The implementation semantics [[P]];K is obtained by modifying that [P]}” so that it is
parameterized by:

(1) A memory location ¢4 > £, representing the start of the stack;
(2) A positive integer d, which is a padding size for data on the stack;

(3) A sequence of permutations II = {7, | n > 0}, where 7, is a permutation of {1,...,n},
which is used to permute the allocation of parameters and local variables on the stack;

(4) An initial memory map M,,;,.

The implementation semantics [[P]];“dd"’K corresponding to the morph 7., (P, K) is ob-
tained by modifying the reference semantics [P]}?(-) in a rather simple way. To account for
(1), we initially set sp to ¢5 instead of £zy,. To account for (4), we initially set M to M,,.
To account for (2) and (3), we replace the reduction rule (R11) for procedure calls by the
following rule (R11%).

Implementation Semantics [[P]];“dd“K with K = ({,d, 11, M,,,,):
(m(exy,...,exy);sts, V.M, (Vi,..., Vi) — (8tspm, V', M' (V. V1,... . Vi) (R11%)
if Efex;](V,M) = ct; for all i

A

where V' = V{pc — loc(stsm),
sp— V(sp) +n+ Zle size(ty;) + 1+ 4d,
xﬂn(l) — <V(Sp) + d),

Lrn(n) T <V(Sp) +d+n— 1>7
Yro1) = (V(sp) +3d +n+1,...,V(sp) + 3d + n + 1 + size(ty,, 1)) — 1)

Y (k) = (V(sP) +3d +n+ 1+ Y0 size(ty,, i),

V(sp) +3d+n+1+ Ef:_ll size(ty,rk(i)) + size(tyﬂk(k)) -1}
M' & M{V(sp) +d +~ cty,

V(sp) +d+n—1 cty,
V(sp) + 2d + n +— loc(sts)
V(sp) +3d+n+1~0,

V(sp) +3d +n+ 1+ Y1) size(ty,, ;) — 0}
for m(z1:pyq, ... xnipy,) { var yr:ty;. .. Yk tyy; Stsm } a procedure
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C Type Systems for 7,,,

The type systems for 7,44, described in §5 are folded into implementation semantics obtained

by modifying reference semantics [P]}”.

strg

C.1 Implementation Semantics [-];

As described in §5.1, values in the semantics are of the form (i,¢), where i is an integer,
and t is the type of the value, either integer or pointer.

Type checking for 7% occurs when operations *, +, and = are evaluated (rules S2, S4,
and S5 in §5.1). Recall, Toy-C supports two kinds of expressions: VD- and AD-expressions,
which denote values (integer or pointer) and memory locations, respectively. VD-expressions
ex include constants (for simplicity, only integers i, as well as the null pointer null), variables,
pointer dereference (xex), operations such as ex1+exg and ex) = exy, and taking the address
of an AD-expression (&v). AD-expressions [v include variables and pointer dereferences
(xlv). Reference semantics [-]7/ (see Appendix A.2) uses evaluation function A[w](V, M)
to evaluate an AD-expression [v in variable map V' and memory map M to a location, and
evaluation function Efez](V, M) to evaluate a VD-expression ez in variable map V and
memory map M to a value. To implement type checking for 1%, it suffices to replace these
evaluation functions by the type-checking evaluation functions AT and ET given below,
which check suitable conditions on extended values.

strg

Type—Checking Evaluation Functions for [.];":
AT[[x]](V M) = (61, ptr(f1,£0)) when V(z) = (1,...,0;)

M (3) it AT[lw](V, M) = (i, ptr(start, end)), i > lpw,
AT [*W](V, M) = and start < i < end
TypeErr otherwise

M (@) if ET[ex](V, M) = (i, ptr(start, end)), i > lpy,
ET[xex](V, M) = and start < i < end
TypeErr otherwise

ET[i](V, M) £ (i,int)

[
ET[null](V, M) = (0, ptr(0,0))
ET[z](V,M) = M(¢1) when V(z) = (f1,...,4)
ET[&W](V, M) = AT[W](V, M)

<’i1 + 19, int) if t1 =t9 = int
(i1 + o, ptr(start, end)) if t; = ptr(start, end) and ty = int,

ET|ex + exs|(V, M £
[[ 1 2]]( ) or t1 = int and t9 = ptr(start, end)

TypeErr otherwise
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where ET[ex1|(V, M) = (i1, t1)
ET[exs](V, M) = (ia, t2)
((1,int) i iy =ig and t; =ty = int
(1,int) if i1 = ig, t1 = ptr(—, —) and to = ptr(—, —)
ET[ez1 = exs](V, M) £ < (0, int) if i1 # 19 and t; = t5 = int
(0, int) if i1 # i9, t; = ptr(—, —), and t2 = ptr(—, —)
| TypeErr otherwise
where ET[ex1|(V, M) = (i1, t1)
ET[exs](V, M) = (ia, t2)

Functions AT and ET return either a value v or TypeErr (indicating a type error).

The semantics proper is again obtained from reduction rules. The rules (T4’), (T6’),
(T8’), and (T11’) are concerned specifically with reporting type errors.
Type-Checking Reduction Rules:

(o, V,M,V5) — (o, V, M, V5) (T1)

(67 V) M7 VS) — ('aV{PC'_’ .}7M7 VS) (T2)
if V(return) = o

(e, V,M,(V1,..., Vi) — (sts, Vi{pcr €}, M, (Va, ..., Vi)) (T3)
if V(return) =0, M(¢') = ¢, and code () = sts

(lv := ex;sts,V, M, V5) — (sts, V{pc — loc(sts)}, M{l — v}, 5) (T4)
if ET[ex](V,M) = v and AT[Ww](V,M) = (¢, )

(lv = ex; sts,V, M, Vs) — (o, V{pc > e, status — TypeErr}, M, Vs) (T4)
if ET[ex](V,M) = TypeErr or AT[lw](V, M) = TypeErr

(if ex then { sts; } else { stsy };sts,V,M,(Vi,..., Vi) — (T5)
(sts1, V', M{V (sp) — loc(sts)},(V,Vi,..., Vi)
if ET[ex](V, M) # (0, int)
where V' £ V{pc + loc(sts1),
b Vi(sp)+ 1,
return — V(sp)}

(if ex then { stsy } else { stso };sts,V,M,(Vi,...,Vk)) — (T6)
(stso, V', M{V (sp) — loc(sts)},(V',Vi,..., Vk))
if ET[ex](V, M) = (0, int)
where V! £ V{pc  loc(stss),
sp— V(sp) + 1,
return — V(sp)}

(if ex then { sts; } else { stsay };sts,V, M, Vs) — (T6’)
(o, V{pc — e, status — TypeErr}, M, 5)
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if ET[ex](V, M) = TypeErr

(while ez do { stsy };sts,V, M, (Vq,..., Vi) — (T7)
(sts1, V', M{V (sp) — loc(while ex do { stsy };sts)}, (V,V1,..., Vi)
if BT[ex](V, M) # (0, -)
where V' £ V{pc + loc(sts1),
sp— V(sp) + 1,
return — V(sp)}

(while ez do { stsy };sts, V, M, Vs) — (sts, V{pc — loc(sts)}, M, Vs) (T8)
it ET[ex](V, M) = (0, —)

(while ez do { stsy };sts,V, M,Vs) — (e, V{pc — e, status — TypeErr}, M,V5) (T8)
if ET[ex](V, M) = TypeErr

(fail; sts, V, M, V5) — (o, V{pc — e, status — Fail}, M, Vs) (T9)

(ac; sts, V, M, Vs) — (sts, V', M, Vs) (T10)
where V' 2 V{pc +— loc(sts),
actions — V' (actions) +(ac)}

(m(exy,...,exy);sts, V..M, (Vi,..., Vi) — (8tsm, V', M' (V. V1, ..., Vi) (T11)
if ET[ex;](V,M) = v; for all i
where V' £ V{pc — loc(stsmy,),
spr— V(sp) +n+ Zle size(ty;) + 1,
return — V(sp) + n,
z1 = (V(sp)),

an — (V(sp) +n—1),
y1— (V(sp)+n+1,...,V(sp) + n+ 1+ size(ty;) — 1)

yi = (V(sp) +n+ 1+ 3207 size(ty;),
Vi(sp) +n+ 1+ 35 size(ty;) + size(ty) — 1)}

M’ & M{V (sp) — v1,

Visp) +n— 1+ vy,
V(sp) + n — loc(sts)
Visp)+n+1+—0,

V(sp) +n+ 1+ 317 size(ty;) — 0}
for m(z1:pyq,- .., Tn:py,) { var y1:ty ;... yk:tyy; stsm } a procedure

(m(exy,...,exy);sts,V, M, Vs) — (o, V{pc — e, status — TypeErr}, M, Vs) (T11)
if ET[ex;](V, M) = TypeErr for some i
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Note that the hidden variable status is set to Success if termination is successful, Fail if
termination is due to a failure, and TypeErr if termination is due to a type error. We say
an execution trace signals a type error if it terminates with status equal to TypeErr.

strg

Type-Checking Implementation Semantics [-];

[[Pﬂ;wg«ctl, ey Ctk>)T = {<81, $92,83,.. > | (stsl, Vl, Ml, Vsl) — (StSQ, VQ,MQ, VSQ) — ...,
si=(N,V;, M;) for all i > 1}
where V51 2 ()
7 Vo{sp — Law,
return — e,
pc — loc(main(cty, ..., clg);),
inputs — (),
status — Success,
actions — ()}
My = M

sts1 2 main(cty,. .., cty);
L 1

Lemma C.1. For all V, M, lv, and ex:

(1) If AT[Ww](V,M) = (i, —), then A[W](V,"M") =i;

(2) If ET[ex](V,M) = (i,—), then Elex](V,"M") = i;

where "M is defined by "M(¢) = i when M(¢) = (i, —).

Proof. A straightforward proof by induction on the structure of lv and ex. |

Lemma C.2. [-]}™ is a restriction of []}.

strg

Proof. Let P be a program, and inps an input. Let o € [P];"(inps) be generated by
the sequence of reductions (stsi, Vi, M1, Vs1) — (stsa, Vo, M2, Vs2) — .... Assume that
o does not signal a type error. Thus, the reduction sequence never uses rules (T4’),
(T6), (T8’), or (T11%). Let o € [P]} (inps) be generated by the sequence of reductions
(%,f/{, J\Afl, 1731) — (%, ,1‘/;, j%, 129;) — .... We show by induction on the length of the
reduction sequences that for all ¢ > 0, "o'[i].actions = &[i].actions, "o '[i].inputs = &[i].inputs,
and for every observable program variable x, "o'[i].z = &[i].x.

Without loss of generality, we assume that programs live in the same locations in both
semantics. (Otherwise, we need to ensure that we map program locations in one semantics
to the appropriate program locations in the other semantics.)

The result holds trivially for the base case, since the initial operational states are the
same. The inductive step is based on the following observation. Since no type error is
signalled, by Lemma C.1, every evaluation of AT and ET returns the same result as the
corresponding evaluation of A and E. It follows by examination of the rules that the result
of applying rule (T1)—(T11) is the same as the result of applying the corresponding rule
(R1)—(R11). |
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Theorem 5.1. Let K1,..., K, be arbitrary keys for T,qa.. For any program P and inputs
inps, if inps is an attack on P relative to T, and Ki,...,K,, then o € [P]}"(inps)
signals a type error. Equivalently, if o € [P]}"(inps) does not signal a type error, then

mps is not an attack on P relative to T,y and Kq,..., K,

Proof. Assume that o € [P];"™(inps)T does not signal a type error. We want to show that
inps is not an attack relative to P and Kj,...,K,. In other words, if o; is the execution
in [[P]]}“dd’"’Ki(mps), we want (o1,...,0,) € Bleidr (P, Ky,...,K,). This requires finding an
appropriate o € [P]g(inps).

We derive the required ¢ from o as follows. When o[j] = (N, V, M), we take 7[j] to be
(N,V, ]\/Z), with M given by:

o) = {dz’rect(i) if M(0) = (i, int)
pointer(i) if M(¢) = (i, ptr(—, —))

It remains to show that for every i we have (0y,0) € 6(P, K;). Fix i. We exhibit a
relation 3 determined by a map h such that o;[j] = a[j] for all j. The map h maps memory
locations in the states of execution o; to corresponding memory locations in the states of the
high-level execution . Roughly speaking, for any £ € L, if £ in the range of any observable
program variable z in V, then we put h(s,f) in the corresponding range of that same z in
V.

The relevant portions of the map h are defined inductively over the sequence of reduc-
tions (sts1, Vi, My, Vs1) — (stsa, Va, Mo, Vsy) — ... generating o;. Let (sts1, Vi, My, Vs1) —
(stsa, Vo, My, Vsa) — ... be the sequence of reductions generating o. As in the proof of
Lemma C.2, we assume without loss of generality that programs live in the same locations
in both semantics; thus, we take h(s,¢) = ¢ for every state s and every location ¢ < {gy .
We specify h(s,¢) only for states s of the form (N, V;, M;), for every j > 1. For j =1, we
can take h((N, Vq, My), ) to be arbitrary, since there are no observable program variables in
the initial state of the execution. Inductively, assume that we have h((N, V;, M;), ). If the
reduction rule applied at step j is any reduction but (R11*), then take h((N, Vi1, Mj+1), )
to be the same as h((N,V;, M;),-). If the reduction rule applied at step j is (R11*), then
take h((N, Vi1, M;+1),) to be h((N,V;, M;),-), updated to map

Viti(sp) +3d+n+1 to
mp (1)-1
Vipi+n+1+ Z size(ty;)

i=1
Vi1(sp) + 3d +n + 1 + size(ty,, (1)) to
m  (1)-1

Vigi+n+1+ Z size(ty;) + size(tngl(l))
i=1
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k—1
Vit1(sp) +3d+n+1+ Z size (Y, (i) to
i=1
mp H(k)—-1
Vipi+n+1+ Z size(ty;)

i=1

k—1
Viti(sp) +3d+n+1+ Z size(Wyr, (i) + s12e(tYr, (1)) tO
i=1
(k)1
Vilm+n+1+ Z size(ty;) + size(ty 1))

=1

Let = be a relation determined by h satisfying the above. We use induction to show
that for all j > 1:

(i) sts; = sts;;
(ii) for all ex,

o if ET[ex](Vj, My) = (¢,int), then E[ez](V;, M;) = i';
o if ET[ex](V;, M;) = (i', ptr(—, -)), then E[ex](V;, M) = i" and h((N, V;, 3;), ") =

i’

and similarly for all [v;

(iii) If reduction (Rn), for some n < 11, applies at step j to produce o;[j + 1], then
reduction (Tn) applies at step j to produce o[j + 1]; if reduction (R11*) applies at
step j to produce o;[j + 1], then reduction (T11) applies at step j to produce o[j + 1];

(iv) ails] S aljl;

The base case, j = 1, is immediate, since the initial states o[1] and o;[1] are the same,
up to the types associated with the values in memory, meaning that the states o[1] and
o;[1] are also the same, up to the tagging of the values required by the high-level semantics
[]a-

For the inductive case, assume that we have the result for j; we show it for j + 1.
Establishing (i), (ii), and (iii) is straightforward. To establish (iv), we need to show:
(1) cither Vii(pc) = o and Vipi(pc) = o, or h(ailj + 1, Vi1 (pc) = Via(pc); (2)
Vijt1(actions) = Vji(actions); (3) Vj41(inputs) = V1 (inputs); (4) for every observable pro-
gram variable x, there exists k > 0 such that Vji1(z) = (€1,...,4), Vit1(z) = (01, ..., 03,
and for all j < k we have ¢; 3 lz

The proof proceeds by case analysis on the reduction rule that applies at step j. (By
(iii), we know that corresponding reduction rules apply to produce o;[j + 1] and o[j + 1].)
Most of the cases are trivial using (i)—(iii). The only case of interest is when the rules
that apply at step j are (R11*) and (T11). Thus, sts; = sts; = m(ez1,..., exy); sts, and
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ET[exy](Vj, M;) = (iy, tg) for all k. By (i), E[ex)](V;, M;) = i), for all k, where i, = i), if
tr, = int, and h(o;[j], 1)) = iy if ¢, = ptr(—, —). (1), ( ), and (3) follow immediately. For
(4), note that if Vj41(z) = (¢1,...,4x) for an observable program variable z, then either x
was not newly allocated with the current reduction rule, in which case we already have (4)
by the induction hypothesis, or x is newly allocated, in which case by observation of the
rules and by the construction of h, (4) holds. Thus, we have o;[j + 1] 3 a[j + 1]. |

info

C.2 Implementation Semantics [-];

As described in §5.2, this implementation semantics extends [-];™ by adding a new type,
low.

To implement type checking for 7", we again replace [-]7’ evaluation functions A and
FE by the type-checking evaluation functlons AT and ET given below, which check suitable
conditions on extended values.

info

Type—Checking Evaluation Functions for [-]}
AT[[w]](V M) £ (¢1,ptr(f1,£0)) when V(z) = (1,...,0;)

M (3) if AT[lw](V, M) = (i, ptr(start, end)), i > Lpw,
AT [*l](V, M) £ and start < i < end
(i’,low) otherwise, where AT[lw](V, M) = (i,—) and M (i) = (i',—)

M (i) if ET[ex](V, M) = (i, ptr(start, end)), i > Lpw,
ET[xex](V, M) £ and start <1 < end
(i',low) otherwise, where ET[ex](V,M) = (i,—) and M (i) = (i, —)

ET[i}(V, M) £ (i, int)

ET[null](V, M) £ (0, ptr(0,0))

ET[z](V,M) 2 M(#;) when V(z) = ({1,...,0)
ET[&W](V, M) & AT[Ww](V, M)

<’i1 + 19, il’lt) if t1 =t9 = int
] o, ptr(start, end if t1 = ptr(start, end d ty = int
or t; = int and ¢y = ptr(start, end)

(11 + i2,low) otherwise
where ET[ex1|(V, M) = (i1, t1)
ET[[G%Q]](‘/, M) = <’i2,t2>
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> ifilzig and tl :tQZint

1,int) if i3 =19, t; = ptr(—, —) and t2 = ptr(—, —)
) if iy # i and t; =t = int

0,int) if iy # i, t; = ptr(—, —), and t3 = ptr(—, —)
1,low) otherwise, where i; = iy

ET[ex; = exs](V, M) =

0,low) otherwise, where i1 # iy

Functions AT and ET return either an extended value v or TypeErr (indicating a type
error).

The main difference from the reduction rules in §C.1 is that type checking is only
performed in rules (T4’) and (T10’), when the integrity of a value can influence a variable
or control flow. (The values associated pc and the return hidden variables are colored, to
track the fact that a value can influence the control flow of programs.) To simplify the
presentation of the semantics, we define the following operation on types:

" lt N tl iftg#low
tee low if t5 = low.

Thus, t1 | t2 is low if and only if one of ¢ or to is low.

Type-Checking Reduction Rules:
(o, V, M, V5) — (o, V, M, V5) (T1)

(67 V7 M7 VS) B <.,V{pC'—> .}7M7 VS) (T2)
if V(return) = o

(e, V,M,(V1,..., Vi) — (sts, Vi{pcr (L, t [ t')}, M, (Va, ..., Vi) (T3)
if V(return) =0, V(pc) = (—,t'), M(¢') = ({,t), and code(f) = sts

(lv = ex; sts, V, M, Vs) — (sts, V{pc > (loc(sts),t')}, M{l — v}, V5) (T4)
it ET[ex](V, M) = v, AT[I0](V, M) = (6,8), V(pc) = (¢, ¢),
and t,t' # low

(lv := ex;sts,V,M,V5) — (o, V{pc +— e, status — TypeErr}, M, Vs) (T4)
if V(pc) = (¢,low) or AT[w](V, M) = (i,low)

(if ex then { sts; } else { stsa };sts,V,M,(Vi,..., V) — (T5)
(sts1, V!, M{V (sp) — (loc(sts), ")}, (V,Vi,..., Vi)
if ET[ex](V, M) = (i,t) and i # 0
where V(pc) = (—, )
V' & V{pc+ (loc(stsy),t|t),
spr— V(sp) +1,
return — V(sp)}
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(if ex then { sts; } else { stsy };sts, V, M, (V1,..., Vi) —
(stso, V', M{V (sp) — <loc(st5) NHVI Vo V)
if ET[ex](V, M) = (0,t)
where V(pc) = (—,t')
V' & V{pc (loc(stss),t | 1),
sp— V(sp) + 1,
return — V(sp)}

(while ez do { stsy }; sts, V M, (Vi,..., Vi) —

(sts1,V/, M{V( — (loc(while ex do { stsy };sts),t')}, (V. V,...

if ET[ex](V,M) = (i, > and i # 0
where V(pc) (—,t)
V' & V{pc+ {(loc(sts1),t|t),
sp— V(sp) + 1,
return — V(sp)}

(while ex do { stsy }; sts, V, M, Vs) — (sts, V{pc — (loc(sts),t|t')}, M, V5)

if ET[ex](V,M) = (0,t) and V(pc) = (—,t)
(fail; sts, V, M, V5) — (o, V{pc — e, status — Fail}, M, Vs)

(ac; sts, V, M, Vs) — (sts, V', M, Vs)
if V(pc) = (¢,t) and t # low
where V' £ V{pc — (loc(sts), 1),
actions — V (actions) ++(ac)}

(ac; sts,V, M, Vs) — (o, V{pc + e, status — TypeErr}, M, Vs)
it V(pc) = (¢,1ow)

(m(exy,...,exy);sts, V,M,(Vi,..., Vi) — (stsm, V', M' (V. V1,...

if ET[ex;|(V, M) = v; for all ¢
where V(pc) = (—,t)
V' £ V{pc s (loc(stsm),t),
sp — V(sp) +n -+ S0, size(ty;) + 1,
return — V(sp) + n,
z1 = (V(sp)),

.xn — (V(sp) + nl),

Vi)

y1 — (V(sp)+n+1,...,V(sp) + n+ 1+ size(ty,) — 1)

yp — (V(sp) +n+1+ ZZ 1 szze(tyz)

.y
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.V(sp) +n+1+ ZZ i ! size(ty;) + size(ty,) — 1)}

(T6)

(T7)

(T8)

(T9)

(T10)

(T10°)

(T11)



M' & M{V (sp) +— v1,

V(sp) +n— 1+ vy,
V(sp) + n — (loc(sts), t),
V(sp) +n+1—0,

V(sp) +n+1+ 0= size(ty;) — 0}
for m(z1:pyq, ..., xn:py,) { var yr:tyy;. .. Yk tyy; Stsm } a procedure

Note that the hidden variable status is set to Success if termination is successful, Fail if
termination is due to a failure, and TypeErr if termination is due to a type error. We say
an execution trace signals a type error if it terminates with status equal to TypeErr.

info ,
.

Type-Checking Implementation Semantics [-];

[[Pﬂlinfo(<ct1, ey Ctk>)T = {<81, 592,83, .. ) ‘ (stsl, Vl, Ml, Vsl) —_— (StSQ, VQ, Mg, ‘/:92) — ...y
si = (N, Vi, M;) for all i > 1}
where V51 £ ()

Vi = VO{SP = Lpw,
return — e,
pc — (loc(main(cty, ..., ctg); ), int),
inputs — (),
status — Success,
actions — ()}

M, £ M,

sts1 = main(cty, . .., cty);
L 1

Lemma C.3. For all V, M, lv, and ezx:

(1) If AT[Ww](V,M) = (i, —), then A[W](V,"M") =i;

(2) If ET[ex](V,M) = (i, —), then Elex](V,"M") = i;

where "M is defined by "M(¢) = i when M(¢) = (i, —).

Proof. A straightforward proof by induction on the structure of lv and ex. |

Lemma C.4. [[~]]}”f° is a restriction of [[]];ff

strg

Proof. Let P be a program, and inps an input. Let o € [P];"(inps) be generated by
the sequence of reductions (sts1, Vi, My, Vs1) — (stsa, Vo, Mo, Vo) — ... Assume that o
does not signal a type error. Thus, the reduction sequence never uses rules (T4’) and (T107).
Let & € [P]}(inps) be generated by the sequence of reductions (%,ﬁ,ﬂz,@) —
(gts\/g, /172, ]\72, ‘gz) — .... We show by induction on the length of the reduction sequences
that for all ¢ > 0, To'[i].actions = &[i].actions, "o '[i].inputs = &[i].inputs, and for every
observable program variable x, "o '[i].x = ¢[i].z.
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We assume that programs live in the same locations in both semantics. (Otherwise, we
need to ensure that we map locations to locations, and that just complicates everything.)

The inductive step is based on the following observation. By Lemma C.3, every eval-
uation of AT and ET returns the same result as the corresponding evaluation of A and
E, except tagged with a type. By examination of the rules, the result of applying rule
(T1)-(T11) is the same as the result of applying the corresponding rule (R1)-(R11). |

Lemma C.5. Let (stsl, Vi, My, Vs1) — (stsa, Vo, Mo, V53) — ... be a reduction sequence.
If Vi(pc) = (—,low) for some i, then for all j > i, Vj(pc) = (—, low).

Proof. A straightforward induction on the length of the reduction sequence. |

Theorem 5.2. Let K,..., K, be arbitrary keys for T,.,. For any program P and inputs
inps, if inps is an attack on P relative to T, and Ki,...,K,, then o € [P]7"(inps)
signals a type error.

Proof. This proof is essentially the same as that of Theorem 5.1.

Assume that o € [P];™(inps)T does not signal a type error. We want to show that
inps is not an attack relative to P and Ki,...,K,. In other words, if o; is the execution
in [[P]];“dd“Ki(z'nps), we want (o1, ...,0,) € Bleddr (P, Ky,...,K,). This requires finding an
appropriate o € [P] g (inps).

We derive the required & from o as follows. When o[j] = (N, V, M), we take o[j] to be
(N, V, ]\//.7), with M given by:

) = {dir'ect(i)- ?f M(E):(z:,int>
pointer(i) if M(¢) = (i, ptr(—,—))

It remains to show that for every i we have (0;,0) € 0(P, K;). Fix i. We exhibit a
relation 3 determined by a map h such that o;[j] = a[j] for all j. The map h maps memory
locations in the states of execution o; to corresponding memory locations in the states of the
high-level execution . Roughly speaking, for any ¢ € L, if £ in the range of any observable
program variable z in V', then we put h(s,?) in the corresponding range of that same z in
V.

The relevant portions of the map h are defined inductively over the sequence of reduc-
tions (sts1, Vi, My, Vs1) — (stsa, Vo, Ma, Veg) — ... generating o;. Let (stsq, V4, My, V51) —
(stsa, Vo, My, Vsa) — ... be the sequence of reductions generating o. As in the proof of
Lemma C.2, we assume without loss of generality that programs live in the same locations
in both semantics; thus, we take h(s,?) = ¢ for every state s and every location ¢ < lpy.
We specify h(s,£) only for states s of the form (N, V;, M;), for every j > 1. For j =1, we
can take h((N, Vq, My), ) to be arbitrary, since there are no observable program variables in
the initial state of the execution. Inductively, assume that we have h((N,V;, M), ). If the
reduction rule applied at step j is any reduction but (R11*), then take h((N, Vi1, Mj+1), )
to be the same as h((N,V;, M;),-). If the reduction rule applied at step j is (R11¥), then
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take h((N, Vi1, M;+1),) to be h((N,V;, M;),-), updated to map

Vi1(sp) +3d+n+1 to
o H(1)-1

Vigi+n+1+ Z size(ty;)
i=1

Vit1(sp) + 3d +n + 1 + size(ty,, (1)) to
N (1)-1

Vigi+n+1+ Z size(ty;) + size(tng1(1))
i=1

k—1
Viti(sp) +3d+n+1+ Z size(tyYr, (i)
=1

H

ik )
Vigi+n+1+ Z size(ty;)
i=1

k—1
Vigi(sp) +3d+n+1+ Z size(Wr, (i) + size(tyr, () to
i=1
7rk_1(k)—1
Vipi+n+1+ Z size(ty;) + size(ty 1 (1))
i=1

Let = be a relation determined by h satisfying the above. We use induction to show
that for all j > 1 such that Vj(pc) = (—,t) and t # low:

(i) sts; = sts;;
(ii) for all ex,

o if ET[ex](V;, M;) = (i, int), then E[ex](V;, M;)
e it Do) (V) My) = (1 (s )} thon Eoa](F5, 35) = £ and (8, 5, TE), ) =

i’

and similarly for all lv;

(iii) If reduction (Rn), for some n < 11, applies at step j to produce o;[j + 1], then
reduction (Tn) applies at step j to produce o[j + 1J; if reduction (R11*) applies at
step j to produce o;[j + 1], then reduction (T11) applies at step j to produce o[j + 1];

and for all j > 1:
(iv) oils] < olil;
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The base case, j = 1, is immediate, since the initial states o[1] and o;[1] are the same,
up to the types associated with the values in memory, meaning that the states o[1] and
oi[1] are also the same, up to the tagging of the values required by the high-level semantics
[]a-

For the inductive case, assume that we have the result for j; we show it for j+ 1. Estab-
lishing (i), (ii), and (iii) is straightforward. (This is only needed as long as Vj(pc) = (—,t)
with t # low, by Lemma C.5.) To establish (iv), we consider two cases. If Vj(pc) =
(—,low), then because execution does not signal a type error, Vjii(actions) = Vj(actions),
and Vjii(xz) = Vj(x) for every observable program variable z. The result then follows
easily by choice of h, and stuttering. If Vj(pc) = (—,t) with ¢ # low, then we need to
show: (1) either V;11(pc) = » and Vi41(pc) = o, or Aoyl + 1], Vy1(pc)) = Vi (pc); (2)
Vjt1(actions) = Vj1(actions); (3) Vj41(inputs) = V1 (inputs); (4) for every observable pro-
gram variable x, there exists k > 0 such that Vji1(z) = (€1,...,4g), Vit1(z) = <€A1, . ,EC),
and for all j < k we have ¢; 3 @

The proof proceeds by case analysis on the reduction rule that applies at step j. (By
(iii), we know that corresponding reduction rules apply to produce o;[j + 1] and o[j + 1].)
Most of the cases are trivial using (i)—(iii). The only case of interest is when the rules
that apply at step j are (R11*) and (T11). Thus, sts; = sts; = m(ez1,..., exy); sts, and
ET[exi](Vj, M;) = (ig, ty) for all k. By (ii), E[ex](V}, M;) = @, for all k, where i), = i}, if
tr, = int, and h(o;[j],4),) = i if t, = ptr(—, —). (1), (2), and (3) follow immediately. For
(4), note that if Vji1(x) = (¢1,..., ) for an observable program variable z, then either x
was not newly allocated with the current reduction rule, in which case we already have (4)
by the induction hypothesis, or = is newly allocated, in which case by observation of the
rules and by the construction of h, (4) holds. Thus, we have o;[j + 1] 2 a[j + 1]. |

Lemma 5.4. []7 and []7* are restrictions of [}
Proof. See Lemmas C.2 and C.4. |
Theorem 5.5. Let [-]; be an implementation semantics for Toy-C such that:

(i) For every P and inps, [P]r(inps) is computable;

(i) [-1r is a restriction of []};
(iii) o € [P]i(inps) signals a type error whenever inps is an attack relative to T, and
some finite set of keys.

Then, there exists a program P and input inps such that o € [P](inps) signals a type
error, but for all finite sets of keys K1,..., Ky, inps is not an attack relative to T, and
Kq,...,K,.

Proof. Assume by way of contradiction that implementation semantics [-]; signals a type
error on program P and input inps if and only if there exists a finite set K1, ..., K, of keys
such that inps is an attack relative to 7,4, and Ki,..., K,. We derive a contradiction by
showing that such an implementation semantics, which is computable by assumption (i),
gives us an algorithm for an undecidable problem.
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Let acg be an arbitrary but fixed output action. Let PR be the class of Toy-C procedures
with a single integer parameter that do not create or dereference pointers and that either
do not perform any output action, or perform a single output action acg. The problem of
deciding whether a procedure in PR performs output action acq for all positive inputs is
an undecidable problem, since Toy-C has arithmetic and iteration primitives.

We use implementation semantics [-]; to decide whether a procedure proc in PR performs
output action aco for all positive inputs. Consider the following program Fproc,

main(i : int) {
var a : int[5];
X :int;
x = *x(&a — 2);
if (x=0){
aco;
} else {
proc(x);
}

2

parameterized by procedure proc in PR. The intuition is that a morph of Py will invoke
procedure proc with some arbitrary value (viz., the result of dereferencing &a —2). Observe
that for every possible integer value v, there is a morph of Fpoc that invokes procedure proc
with argument v. Consider the infinite set of keys K = {K7, Ko, ...}, where K; = ({zy +
1,0,1IIy, M;) with IIp the sequence of identity permutations and M; a memory map that
assigns value (i—1, int) to the location ¢5;,. According to semantics [[-]];add“K (Appendix B),
when passed any input value, any morph of the program with respect to a key K; € K
will execute procedure proc, passing it the content of memory location £y (viz., i — 1).)
Furthermore, morph 7,4, (P, K1) performs output action acy (since x gets value (0, int)
stored in location ¢y ). Based on these observations, it is easy to see that procedure proc
performs output action acg for all positive inputs if and only if any input to Fproc is not an
attack relative to 7,4, and any finite subset of keys.

This gives an algorithm for deciding whether a procedure proc in PR performs output
action acq for all positive arguments to proc: execute Fproc under implementation semantics
[-]1, with an arbitrary input; if a type error is signalled, then return “no”, otherwise, return
“yes”. We claim that this algorithm is correct, that is, it returns “yes” if and only if
procedure proc performs output action acq for all positive arguments to proc. Specifically,
we show that for any input i, 0 € [Pyoc]r(i) does not signal a type error if and only if
procedure proc performs output action acq for all positive arguments to proc.

e Assume that proc performs output action acy for all positive arguments. It is easy
to see that the only difference between the morphs of the program is the value of
the argument passed to proc. Thus, every morph of Py, under every possible key,
will perform output action acg, because proc performs output action acg when passed
any argument. In other words, for every finite set of keys, an input ¢ is not an
attack relative to 7., and Ki,...,K,. And therefore, by assumption, execution
0 € [Pproc]1(7) does not signal a type error.
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e Assume execution o € [Pyoc]r(i), for an arbitrary input i, does not signal a type
error. Then, by assumption, input ¢ is not an attack relative to 7,,, and any finite
set of keys. Thus, every morph of the program will perform output action acg, and
therefore proc will perform output action acy under every possible argument, since for
every possible integer value v there is a morph that invokes proc with argument v.

Thus, we have an algorithm for deciding an undecidable problem, a contradiction. |
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D Summary of Notation

P
inps

#(P.K)
[P1(inps)
[PI7" (inps)

(P, Ky,...,Ky)

(%]

5(P,K)
[P] & (inps)

[P} (inps)
Tstrg

[P17" (inps)
Tmfo

[P]7” (inps)
Tmrph

Kl:---vKn

T'rund

Program
Inputs
Morph of program P with key K under obfuscator 7
Implementation semantics of P with input inps (generic)
Implementation semantics of morph 7(P, K) with input inps
Equivalence of execution for morphs 7(P, K1),...,7(P, K},)
Memory location

Variable map

Memory map

Set of states

sequence of states in X

ith state of sequence o

value of variable v in ith state of o

Deobfuscation relation for program P and key K

High-level semantics of program P on input inps

Reference semantics of program P on input inps

Type system for strong typing

Implementation semantics for 7"

Type system for integrity-based typing

Implementation semantics for T/

Exact type system corresponding to K1,..., K,
Implementation semantics for T;:ph K

yAAn

Randomized exact type system
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