

Deploying Distributed Real-time Healthcare Applications on Wireless Body Sensor Networks

Sameer lyengar Allen Yang

Cornell University STANFORD

UNIVERSITY

VANDERBILT UNIVERSITY

Body Sensor Networks

• Potential to revolutionize healthcare

- Reduce cost
- Reduce physical barriers
- Improve quality of care

- Enabling
 - Prevention
 - Detailed monitoring
 - Continuous, real-time reporting

- Health care expenditures rising
 - 15.9% of the US GDP (\$2.6 trillion) by 2010
 - Cost of health care is a national concern

System Requirements

- Deployable
 - Home
 - Hospital
- Reliable and Accurate
 - Research
 - Clinical
- Private
 - Legal Restrictions
 - Social Concerns

Applications

Assisted Living

- Fall Detection and Prevention
- Parkinson's Disease

Motion Analysis

- Gait Analysis
- Balance
- Muscular Dystrophy

Remote Patient Monitoring

- Rehabilitation
- Physical Therapy
- In-Hospital Surgery Recovery
- Metabolism

• Java-compatible base station

• 802.15.4 device running TinyOS

TRUST Conference

Hardware independent

Modular and extensible

Application development

Abstraction for developers

- Focus on signal processing

- Developed as open-source
 - http://spine.tilab.com

ACALABRIA

Cornell University

VANDERBILT

framework

The application makes service requests

- The NSM (Network Service Manager) coordinates the nodes and responds via events
- The **nodes** perform local sensing and processing

• Requests allow developer to specify:

- Sensors to query
- Sampling rate
- Latency constraints
- Local processing
- Local Functions:
 - Processing algorithms
 - Local data storage
 - Logic to control communication

Deployment

• CareNet

- On-body nodes
- 802.11 Wi-Fi network

Deployment

- Advantages
 - Fast deployment
 - Easily extensible
 - Standard 802.11 interfa
- Architecture provides
 - Automatic node hand-off
 - Packet routing
 - Built-in security

Deployment

Proof-of-Concept at Vanderbilt Homecare

12 2 April 2008

Introductio)
000	

Problem Formulation: Distributed Action Recognition

Architecture

- Eight sensors on human body.
- Locations are given and fixed.
- Each sensor carries triaxial accelerometer and biaxial gyroscope.
- Sampling frequency: 20Hz.

Conclusion

Figure: Readings from 8 x-axis accelerometers and x-axis gyroscopes for a stand-kneel-stand sequence.

ntroduction	Distributed Pattern Recognition	Conclusion
Challenges		

Simultaneous segmentation and classification.

- Isimultaneous segmentation and classification.
- **②** Individual sensors not sufficient to classify full-body motions.
 - Single sensors on the upper body can not recognize lower body motions.
 - Vice Versa.

- Isimultaneous segmentation and classification.
- **2** Individual sensors not sufficient to classify full-body motions.
 - Single sensors on the upper body can not recognize lower body motions.
 - Vice Versa.
- **()** Simulate sensor failure and network congestion by different subsets of active sensors.

- Simultaneous segmentation and classification.
- Individual sensors not sufficient to classify full-body motions.
 - Single sensors on the upper body can not recognize lower body motions.
 - Vice Versa.
- **③** Simulate sensor failure and network congestion by different subsets of active sensors.
- Identity independence:

Figure: Same actions performed by two subjects.

- O Simultaneous segmentation and classification.
- Individual sensors not sufficient to classify full-body motions.
 - Single sensors on the upper body can not recognize lower body motions.
 - Vice Versa.
- Simulate sensor failure and network congestion by different subsets of active sensors.
- Identity independence:

Figure: Same actions performed by two subjects.

Proposed solutions:

- **1**0-D LDA feature space suffices to express 12 action classes on individual motes.
- Individual sensor obtains limited classification ability. To save power, sensors become active only when certain events are locally detected.
- Global classifier adapts to change of active sensors in network.

Experiment Results

Precision vs Recall:

Sensors	2	7	2,7	1,2,7	1-3,7,8	1-8
Prec [%]	89.8	94.6	94.4	92.8	94.6	98.8
Rec [%]	65	61.5	82.5	80.6	89.5	94.2

Experiment Results

Precision vs Recall:

Sensors	2	7	2,7	1,2,7	1-3,7,8	1-8
Prec [%]	89.8	94.6	94.4	92.8	94.6	98.8
Rec [%]	65	61.5	82.5	80.6	89.5	94.2

Segmentation results using all 8 sensors:

Mixture Subspace Model for Distributed Action Recognition

• Training samples: manually segment and normalize to duration *h*.

< 1 b

1 Training samples: manually segment and normalize to duration *h*.

On each sensor node i, stack training actions into vector form

 $\mathbf{v}_i = [x(1), \cdots, x(h), y(1), \cdots, y(h), z(1), \cdots, z(h), \theta(1), \cdots, \theta(h), \rho(1), \cdots, \rho(h)]^T \in \mathbb{R}^{5h}$

1 Training samples: manually segment and normalize to duration *h*.

On each sensor node i, stack training actions into vector form

 $\mathbf{v}_i = [x(1), \cdots, x(h), y(1), \cdots, y(h), z(1), \cdots, z(h), \theta(1), \cdots, \theta(h), \rho(1), \cdots, \rho(h)]^T \in \mathbb{R}^{5h}$

Full body motion

Training sample:
$$\mathbf{v} = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}$$
 Test sample: $\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} \in \mathbb{R}^{8 \cdot 5h}$

Conclusion

Mixture Subspace Model for Distributed Action Recognition

O Training samples: manually segment and normalize to duration *h*.

Conclusion

On each sensor node i, stack training actions into vector form

 $\mathbf{v}_i = [x(1), \cdots, x(h), y(1), \cdots, y(h), z(1), \cdots, z(h), \theta(1), \cdots, \theta(h), \rho(1), \cdots, \rho(h)]^T \in \mathbb{R}^{5h}$

Full body motion

Training sample:
$$\mathbf{v} = \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}$$
 Test sample: $\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} \in \mathbb{R}^{8 \cdot 5h}$

Action subspace: If y is from Class i,

$$\mathbf{y} = \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} = \alpha_{i,1} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}_1 + \dots + \alpha_{i,n_i} \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}_{n_i} = A_i \alpha_i.$$
Berkele

Introduction	Distributed Pattern Recognition	Conclusion
000	00000	00
Sparse Representation		

() Nevertheless, $label(\mathbf{y}) = i$ is the **unknown** membership function to solve:

Sparse Representation:
$$\mathbf{y} = \begin{bmatrix} A_1 & A_2 & \cdots & A_K \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{bmatrix} = A\mathbf{x} \in \mathbb{R}^{8 \cdot 5h}.$$

Introduction	Distributed Pattern Recognition	Conclusion
000	0000	00
Sparse Representation		

() Nevertheless, label(\mathbf{y}) = *i* is the **unknown** membership function to solve:

Sparse Representation:
$$\mathbf{y} = \begin{bmatrix} A_1 & A_2 & \cdots & A_K \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{bmatrix} = A\mathbf{x} \in \mathbb{R}^{8 \cdot 5h}.$$

2 One solution: $\mathbf{x} = [0, 0, \cdots, \alpha_i^T, 0, \cdots, 0]^T$.

Sparse representation encodes membership.

伺 ト イヨ ト イ

Introduction	Distributed Pattern Recognition	Conclusion
000	0000	00
Sparse Representation		

() Nevertheless, $label(\mathbf{y}) = i$ is the **unknown** membership function to solve:

Sparse Representation:
$$\mathbf{y} = \begin{bmatrix} A_1 & A_2 & \cdots & A_K \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_K \end{bmatrix} = A\mathbf{x} \in \mathbb{R}^{8 \cdot 5h}.$$

2 One solution: $\mathbf{x} = [0, 0, \cdots, \alpha_i^T, 0, \cdots, 0]^T$.

Sparse representation encodes membership.

O Two problems:

Int

- Directly solving the linear system is intractable.
- Seeking the sparsest solution.

n	Distributed Pattern Recognition	Conclusion
	00000	00

Dimensionality Reduction

Introductio

() Construct **Fisher/LDA** features $R_i \in \mathbb{R}^{10 \times 5h}$ on each node:

$$ilde{\mathbf{y}}_i = R_i \mathbf{y}_i = R_i A_i \mathbf{x} = ilde{A}_i \mathbf{x} \in \mathbb{R}^{10}$$

Introduction

Distributed Pattern Recognition

Conclusion

Dimensionality Reduction

() Construct **Fisher/LDA** features $R_i \in \mathbb{R}^{10 \times 5h}$ on each node:

$$ilde{\mathbf{y}}_i = R_i \mathbf{y}_i = R_i A_i \mathbf{x} = ilde{A}_i \mathbf{x} \in \mathbb{R}^{10}$$

Globally

$$\begin{pmatrix} \tilde{\mathbf{y}}_1 \\ \vdots \\ \tilde{\mathbf{y}}_8 \end{pmatrix} = \begin{pmatrix} R_1 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \hat{R}_8 \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} = RA\mathbf{x} = \tilde{A}\mathbf{x} \in \mathbb{R}^{8 \cdot 10}$$

	Distribu
	00000

Dimensionality Reduction

O Construct **Fisher/LDA** features $R_i \in \mathbb{R}^{10 \times 5h}$ on each node:

$$ilde{\mathbf{y}}_i = R_i \mathbf{y}_i = R_i A_i \mathbf{x} = ilde{A}_i \mathbf{x} \in \mathbb{R}^{10}$$

6 Globally

Introduction

$$\begin{pmatrix} \tilde{\mathbf{y}}_1 \\ \vdots \\ \tilde{\mathbf{y}}_8 \end{pmatrix} = \begin{pmatrix} R_1 \cdots 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & R_8 \end{pmatrix} \begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} = RA\mathbf{x} = \tilde{A}\mathbf{x} \in \mathbb{R}^{8 \cdot 10}$$

Ouring the transformation, the data matrix A and x remain unchanged.

Introduction		Distributed Pattern Recognition	Conclusio
000		00000	
~	a a i i i i		

Seeking Sparsest Solution: ℓ^1 -Minimization

() Ideal solution: ℓ^0 -minimization

$$(P_0)$$
 $\mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0$ s.t. $\tilde{\mathbf{y}} = \tilde{A}\mathbf{x}$.

where $\|\cdot\|_0$ simply counts the number of nonzero terms. However, such solution is generally NP-hard.

Introd	uction

Seeking Sparsest Solution: ℓ^1 -Minimization

() Ideal solution: ℓ^0 -minimization

$$(P_0) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$$

where $\|\cdot\|_0$ simply counts the number of nonzero terms. However, such solution is generally NP-hard.

Ompressed sensing: under mild condition, equivalence relation

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$$

Introd	luction

Seeking Sparsest Solution: ℓ^1 -Minimization

() Ideal solution: ℓ^0 -minimization

$$(P_0) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_0 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$$

where $\|\cdot\|_0$ simply counts the number of nonzero terms. However, such solution is generally NP-hard.

Ompressed sensing: under mild condition, equivalence relation

$$(P_1) \quad \mathbf{x}^* = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_1 \text{ s.t. } \tilde{\mathbf{y}} = \tilde{A}\mathbf{x}.$$

 $0 \ell^1$ -Ball

A Distributed Recognition Framework

O Distributed Sparse Representation

$$\begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} = \left(\begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}_1, \cdots, \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}_n \right) \mathbf{x} \Leftrightarrow \begin{cases} \mathbf{y}_1 = (\mathbf{v}_{1,1}, \cdots, \mathbf{v}_{1,n}) \mathbf{x} \\ \vdots \\ \mathbf{y}_8 = (\mathbf{v}_{8,1}, \cdots, \mathbf{v}_{8,n}) \mathbf{x} \end{cases}$$

Introduction

A Distributed Recognition Framework

1 Distributed Sparse Representation

$$\begin{pmatrix} \mathbf{y}_1 \\ \vdots \\ \mathbf{y}_8 \end{pmatrix} = \left(\begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}_1, \cdots, \begin{pmatrix} \mathbf{v}_1 \\ \vdots \\ \mathbf{v}_8 \end{pmatrix}_n \right) \mathbf{x} \Leftrightarrow \begin{cases} \mathbf{y}_1 = (\mathbf{v}_{1,1}, \cdots, \mathbf{v}_{1,n}) \mathbf{x} \\ \vdots \\ \mathbf{y}_8 = (\mathbf{v}_{8,1}, \cdots, \mathbf{v}_{8,n}) \mathbf{x} \end{cases}$$

O The representation x and training matrix A remain invariant.

References: Distributed segmentation and classification of human actions using a wearable motion sensor network. Berkeley Tech Report 2007.

Introduction 000	Distributed Pattern Recognition	Conclusion ●○
Conclusion		

O Mixture subspace model: 10-D action spaces suffice for data communication.

- **O** Mixture subspace model: 10-D action spaces suffice for data communication.
- State-of-the-art recognition via sparse representation
 - Full-body network: 99% accuracy with 95% recall.
 - Keep one on upper body and one on lower body: 94% accuracy and 82% recall.
 - Reduce to single sensors: 90% accuracy.

- **O** Mixture subspace model: 10-D action spaces suffice for data communication.
- State-of-the-art recognition via sparse representation
 - Full-body network: 99% accuracy with 95% recall.
 - Keep one on upper body and one on lower body: 94% accuracy and 82% recall.
 - Reduce to single sensors: 90% accuracy.
- Applications
 - Beyond Wii controllers and iPhones.

- **O** Mixture subspace model: 10-D action spaces suffice for data communication.
- State-of-the-art recognition via sparse representation
 - Full-body network: 99% accuracy with 95% recall.
 - Keep one on upper body and one on lower body: 94% accuracy and 82% recall.
 - Reduce to single sensors: 90% accuracy.
- Applications
 - Beyond Wii controllers and iPhones.

• Eldertech: falling detection, mobility monitoring.

A (10) N (10) N (10)

- **O** Mixture subspace model: 10-D action spaces suffice for data communication.
- State-of-the-art recognition via sparse representation
 - Full-body network: 99% accuracy with 95% recall.
 - Keep one on upper body and one on lower body: 94% accuracy and 82% recall.
 - Reduce to single sensors: 90% accuracy.
- Applications
 - Beyond Wii controllers and iPhones.

• Eldertech: falling detection, mobility monitoring.

• Energy Expenditure: lifestyle-related chronic diseases.

Acknowledgments

Collaborators

- Berkeley: Ruzena Bajcsy, Shankar Sastry
- Cornell: Philip Kuryloski
- Vanderbilt: Yuan Xue
- UT-Dallas: Roozbeh Jafari

Funding Support

- TRUST Center
- ARO MURI: Heterogeneous Sensor Networks (HSN)

