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Body Sensor Networks

� Potential to revolutionize healthcare
– Reduce cost
– Reduce physical barriers
– Improve quality of care

TRUST, Berkeley Meetings, March 19-21, 2007

� Enabling
– Prevention
– Detailed monitoring
– Continuous, real-time reporting
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Motivation

� Health care expenditures rising
– 15.9% of the US GDP ($2.6 trillion) by 2010
– Cost of health care is a national concern
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System Requirements

� Deployable
– Home
– Hospital

� Reliable and Accurate
– Research

TRUST, Berkeley Meetings, March 19-21, 2007

– Research
– Clinical

� Private
– Legal Restrictions
– Social Concerns
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Applications

� Assisted Living
– Fall Detection and Prevention
– Parkinson’s Disease

� Motion Analysis
– Gait Analysis

Balance

TRUST, Berkeley Meetings, March 19-21, 2007

– Balance
– Muscular Dystrophy

� Remote Patient Monitoring
– Rehabilitation
– Physical Therapy
– In-Hospital Surgery Recovery
– Metabolism
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Hardware

� Java-compatible base station

TRUST, Berkeley Meetings, March 19-21, 2007

� 802.15.4 device running TinyOS

Inertial 
Sensor

Bio-sensor
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Software 

� Application development 
framework

� Abstraction for developers
– Focus on signal processing

TRUST, Berkeley Meetings, March 19-21, 2007

– Focus on signal processing
– Hardware independent
– Modular and extensible

� Developed as open-source
– http://spine.tilab.com
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Software

� The application
makes service 
requests

� The NSM (Network 
Service Manager) 
coordinates the nodes 

TRUST, Berkeley Meetings, March 19-21, 2007

coordinates the nodes 
and responds via 
events

� The nodes perform 
local sensing and 
processing
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Software

� Requests allow developer to specify:
– Sensors to query
– Sampling rate
– Latency constraints
– Local processing

TRUST, Berkeley Meetings, March 19-21, 20072 April 2008 TRUST Conference
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– Local processing

� Local Functions:
– Processing algorithms
– Local data storage
– Logic to control communication



Deployment

� CareNet
– On-body nodes
– 802.11 Wi-Fi network

Body Network
802.15.4

Routing Network
802.11

Access
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Wearable 
Sensing

Routing and
Fixed Sensing

(ex: Video)

Home 
Gateway

EMR DB Access 
Point

Data Collection Transmission Access



Deployment

� Advantages
– Fast deployment
– Easily extensible
– Standard 802.11 interface

TRUST, Berkeley Meetings, March 19-21, 2007

� Architecture provides
– Automatic node hand-off
– Packet routing
– Built-in security
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Deployment

� Proof-of-Concept at Vanderbilt Homecare
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Introduction Distributed Pattern Recognition Conclusion

Problem Formulation: Distributed Action Recognition

Architecture
Eight sensors on human body.

Locations are given and fixed.

Each sensor carries triaxial accelerometer and biaxial gyroscope.

Sampling frequency: 20Hz.

Figure: Readings from 8 x-axis accelerometers and x-axis gyroscopes for a stand-kneel-stand sequence.
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Challenges

1 Simultaneous segmentation and classification.

2 Individual sensors not sufficient to classify full-body motions.
Single sensors on the upper body can not recognize lower body motions.
Vice Versa.

3 Simulate sensor failure and network congestion by different subsets of active sensors.

4 Identity independence:

Figure: Same actions performed by two subjects.

Proposed solutions:

1 10-D LDA feature space suffices to express 12 action classes on individual motes.

2 Individual sensor obtains limited classification ability.
To save power, sensors become active only when certain events are locally detected.

3 Global classifier adapts to change of active sensors in network.
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Experiment Results

Precision vs Recall:

Sensors 2 7 2,7 1,2,7 1- 3, 7,8 1- 8

Prec [%] 89.8 94.6 94.4 92.8 94.6 98.8
Rec [%] 65 61.5 82.5 80.6 89.5 94.2

Segmentation results using all 8 sensors:

(a) Stand-Sit-Stand (b) Sit-Lie-Sit

(c) Rotate-Left (d) Go-Downstairs
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Mixture Subspace Model for Distributed Action Recognition

1 Training samples: manually segment and normalize to duration h.

2 On each sensor node i , stack training actions into vector form

vi = [x(1), · · · , x(h), y(1), · · · , y(h), z(1), · · · , z(h), θ(1), · · · , θ(h), ρ(1), · · · , ρ(h)]T ∈ R5h

3 Full body motion

Training sample: v =

( v1

...
v8

)
Test sample: y =

 y1

...
y8

 ∈ R8·5h

4 Action subspace: If y is from Class i ,

y =

 y1

...
y8

 = αi,1

( v1

...
v8

)
1

+ · · ·+ αi,ni

( v1

...
v8

)
ni

= Aiαi .
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Sparse Representation

1 Nevertheless, label(y) = i is the unknown membership function to solve:

Sparse Representation: y =
[
A1 A2 · · · AK

]

α1

α2

...
αK

 = Ax ∈ R8·5h.

2 One solution: x = [0, 0, · · · , αT
i , 0, · · · , 0]T .

Sparse representation encodes membership.

3 Two problems:
Directly solving the linear system is intractable.
Seeking the sparsest solution.
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Dimensionality Reduction

1 Construct Fisher/LDA features Ri ∈ R10×5h on each node:

ỹi = Riyi = Ri Aix = Ãix ∈ R10

2 Globally  ỹ1

...
ỹ8

 =

 R1 ··· 0

...
. . .

...
0 ··· R8

 y1

...
y8

 = RAx = Ãx ∈ R8·10

3 During the transformation, the data matrix A and x remain unchanged.
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Seeking Sparsest Solution: `1-Minimization

1 Ideal solution: `0-minimization

(P0) x∗ = arg min
x
‖x‖0 s.t. ỹ = Ãx.

where ‖ · ‖0 simply counts the number of nonzero terms.
However, such solution is generally NP-hard.

2 Compressed sensing: under mild condition, equivalence relation

(P1) x∗ = arg min
x
‖x‖1 s.t. ỹ = Ãx.

3 `1-Ball

`1-Minimization is convex.

Solution equal to `0-minimization.
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A Distributed Recognition Framework

1 Distributed Sparse Representation y1

...
y8

 =

( v1

...
v8

)
1

, · · · ,
( v1

...
v8

)
n

 x⇔


y1=(v1,1,··· ,v1,n)x

...
y8=(v8,1,··· ,v8,n)x

2 The representation x and training matrix A remain invariant.

References: Distributed segmentation and classification of human actions using a wearable motion sensor

network. Berkeley Tech Report 2007.
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Conclusion

1 Mixture subspace model: 10-D action spaces suffice for data communication.

2 State-of-the-art recognition via sparse representation
Full-body network: 99% accuracy with 95% recall.
Keep one on upper body and one on lower body: 94% accuracy and 82% recall.
Reduce to single sensors: 90% accuracy.

3 Applications
Beyond Wii controllers and iPhones.

Eldertech: falling detection, mobility monitoring.

Energy Expenditure: lifestyle-related chronic diseases.
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