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Body Sensor Networks TR@ST

e Potential to revolutionize healthcare
-~ Reduce cost
- Reduce physical barriers
- Improve quality of care

e Enabling
- Prevention
— Detailed monitoring
- Continuous, real-time reporting
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Motivation

e Health care expenditures rising
—- 15.9% of the US GDP ($2.6 trillion) by 2010
— Cost of health care is a national concern

Annual expenditure on heaith care in the United States
as a percentage of gross domestic product, 1984-2010
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Source: Health Care Financing Administration,
Offlce of Actuary, Natlonal Health Statistics Group
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System Requirements

e Deployable
- Home
- Hospital
e Reliable and Accurate

— Research
— Clinical

e Private
- Legal Restrictions
-~ Social Concerns
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Applications

e Assisted Living
-~ Fall Detection and Prevention
— Parkinson’s Disease

e Motion Analysis
— Gait Analysis
- Balance
— Muscular Dystrophy

e Remote Patient Monitoring
- Rehabilitation
— Physical Therapy
- In-Hospital Surgery Recovery
- Metabolism

CMMG 2005
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Hardware

e Java-compatible base station

Inertial Bio-sensor
Sensor
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Software

e Application development Berke]e

framework .....................

e Abstraction for developers ﬂam

- Focus on signal processing UNIVERSITA
_ Hardware independent DELLACALABRIA

~ Modular and extensible Cornell University

e Developed as open-source m

- http://spine.tilab.com V| VANDERBILT
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Software

Application

Application Code + Event Handler

I Service _/ \_
Requests

Events

NSM
Requests Node Status Buffers
Control Status Daﬁ
— 7
Node
Functions
Node Network Buffers
Sensors
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Team for Research in Ubiquitous Secure Technology

e The application
makes service
requests

e The NSM (Network
Service Manager)
coordinates the nodes
and responds via
events

e The nodes perform
local sensing and
processing
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Software

e Requests allow developer to specify:

— Sensors to query

- Sampling rate
DAY . Node
— Latency constraints
- Functions
- Local processing
Buffers
e Local Functions: Sensors

- Processing algorithms
- Local data storage
- Logic to control communication
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Deployment

e CareNet

— On-body nodes
- 802.11 Wi-FI network

Body Network Routing Network Access
802.15.4 802.11

i N I ! f % T

Wearable
20 P )
. Home EMR DB Access
£ o Gateway Point
g Routing and
Fixed Sensing
(ex: Video)
e N PN A
Data Collection Transmission  Access
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Deployment

e Advantages
- Fast deployment

- Easily extensible
- Standard 802.11 interfa gg!

e Architecture provides
- Automatic node hand-off
- Packet routing
— Built-in security
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Deployment

Team for Research in Ubiquitous Secure Technology

e Proof-of-Concept at Vanderbilt Homecare
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Introduction
[ Jele}

Problem Formulation: Distributed Action Recognition

Architecture
o Eight sensors on human body.

o Locations are given and fixed.

o Each sensor carries triaxial accelerometer and biaxial gyroscope.

Sampling frequency: 20Hz.
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Q Identity independence:
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Figure: Same actions performed by two subjects.
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Figure: Same actions performed by two subjects.

ons:

feature space suffices to express 12 action classes on individual motes.

@ Individual sensor obtains limited classification ability.
To save power, sensors become active only when certain events are locally detected.

© Global classifier adapts to change of active sensors in network. erkeley
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Experiment Results

Precision vs Recall:

[ Sensors [ 2 [ 7 [ 2,7 [ 1,2,7 [ 1-3,7,8 [ 1- 8 ]
[ Prec[%] [ 89.8 ] 946 | 944 [ 928 [ 946 [ 9838 |
[ Rec[%] | 65 | 615 [ 825 | 806 | 895 | 94.2 |
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Segmentation results using all 8 sensors:
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Mixture Subspace Model for Distributed Action Recognition

@ Training samples: manually segment and normalize to duration h.
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Mixture Subspace Model for Distributed Action Recognition

@ Training samples: manually segment and normalize to duration h.

AT
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@ On each sensor node i/, stack training actions into vector form

Vi = [X(l): e ,X(h),y(l), e 7y(h)72(1)7 e ’Z(h)» 9(1)7 e ,e(h),p(l), e 7p(h)]T € RSh
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Mixture Subspace Model for Distributed Action Recognition

@ Training samples: manually segment and normalize to duration h.

AT
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@ On each sensor node i/, stack training actions into vector form
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© Full body motion

V1 Y1
Training sample: v = ( : ) Test sample: y = | € R8>

vg ¥g
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Mixture Subspace Model for Distributed Action Recognition

@ Training samples: manually segment and normalize to duration h.

AT
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@ On each sensor node i/, stack training actions into vector form

Vi = [X(l): e ,X(h),y(l), e 7y(h)72(1)7 e ’Z(h)» 9(1)7 e ,e(h),p(l), e 7p(h)]T € RSh
© Full body motion

V1 Y1
Training sample: v = ( : ) Test sample: y = | € R8>

vg ¥g

@ Action subspace: If y is from Class i,

y1 V1 Vi
y = : =aqj . +"‘+ai,n,-( I> = Ajq;.
e <v'8 ) ) i/ o Berkeley
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Sparse Representation

O Nevertheless, label(y) = i is the unknown membership function to solve:

a2
Sparse Representation: y=1[A; Ay --- Ag]| .| =Axe RE3h,

K
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Sparse Representation

O Nevertheless, label(y) = i is the unknown membership function to solve:

a1
a2
Sparse Representation: y=1[A; Ay --- Ag]| .| =Axe RE3h,
ag
@ One solution: x =[0,0,--- ,a],0,---,0]T.
04
03 -
02 -
01 4
0
- 10 5b 160 1‘50 260 2‘50 360 35‘0 460
Sparse representation encodes membership. J
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© Two problems:

o Directly solving the linear system is intractable.
o Seeking the sparsest solution. Berkeley
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Dimensionality Reduction

@ Construct Fisher/LDA features R; € R19%5" on each node:

9,— = Ryy; = RiAix = /Z\,'X (S R0
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Dimensionality Reduction

@ Construct Fisher/LDA features R; € R19%5" on each node:

9,— = Ryy; = RiAix = /Z\,'X (S R0

@ Globally

= - - | = RAx = Ax ¢ R&10
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Dimensionality Reduction

@ Construct Fisher/LDA features R; € R19%5" on each node:
§i = Riy; = RiAix = Aix € R™

@ Globally
y1 Ry -~ O Y1

=1 - | = RAx = Ax ¢ R&10
5'.3 0 - Rls )’.8

© During the transformation, the data matrix A and x remain unchanged.
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Seeking Sparsest Solution: #!-Minimization

O Ideal solution: £°-minimization

(Po) x* =argmin||x|jg s.t. § = Ax.
X

where || - ||o simply counts the number of nonzero terms.
However, such solution is generally NP-hard.
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Seeking Sparsest Solution: #!-Minimization

O Ideal solution: £°-minimization

(Po) x* =argmin||x|jg s.t. § = Ax.
X

where || - ||o simply counts the number of nonzero terms.
However, such solution is generally NP-hard.

@ Compressed sensing: under mild condition, equivalence relation

(P1) x* =argmin||x||; s.t. § = Ax.
X

@ /-Ball
y = Ax
o ¢*-Minimization is convex.
o Solution equal to £°-minimization. ‘h 10 ball

i' g -1 ball
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A Distributed Recognition Framework

O Distributed Sparse Representation

y1 V1 Vi Y1:(V1,1w-' 7V1,n)x
. = ( . > Yttt ( : ) X & :
\Z vg/ 1 vg )

n Y8:(V8,17"’ 7V8,n)x
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A Distributed Recognition Framework

O Distributed Sparse Representation
y1 V1 Vi Y1:(V1,1w-wv1,n)x
Y8 ve/ 1 V8’ n Y8:(V8,17."’7V8,n)x

@ The representation x and training matrix A remain invariant.

References: Distributed segmentation and classification of human actions using a wearable motion sensor
network. Berkeley Tech Report 2007.
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Conclusion

@ Mixture subspace model: 10-D action spaces suffice for data communication.
@ State-of-the-art recognition via sparse representation

o Full-body network: 99% accuracy with 95% recall.

o Keep one on upper body and one on lower body: 94% accuracy and 82% recall.

o Reduce to single sensors: 90% accuracy.
© Applications

o Beyond Wii controllers and iPhones.

o Eldertech: falling detection, mobility monitoring.

o Energy Expenditure: lifestyle-related chronic diseases.
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