
1

Flicker:Flicker:
An Execution InfrastructureAn Execution Infrastructure

for TCB Minimizationfor TCB Minimization

April 3, 2008

Jonathan McCune1, Bryan Parno1, Adrian Perrig1,
Michael Reiter2, and Hiroshi Isozaki1,3

1 Carnegie Mellon University
2 University of North Carolina

3 Toshiba Corporation

2

CPU, RAM
TPM, Chipset

CPU, RAM
TPM, Chipset

Trusted Computing Base (TCB)

DMA Devices
(Network, Disk,

 USB, etc.)

OS

App
S

App
1 …

DMA Devices
(Network, Disk,

 USB, etc.)

OS

AppApp
1 …

S

Shim

3

Flicker’s Properties
• Isolate security-sensitive code execution

from all other code and devices
• Attest to security-sensitive code and its

arguments and nothing else
• Convince a remote party that security-

sensitive code was protected
• Add < 250 LoC to the software TCB

Shim

SSoftware
TCB < 250 LoC

4

Outline
• Introduction
• Background

– Trusted Platform Module (TPM)
– Late Launch

• Flicker Architecture and Extensions
• Flicker Applications
• Performance Evaluation
• Related Work and Conclusions

5

TPM Background
• The Trusted Platform Module (TPM) is a dedicated

security chip
• Can provide an attestation to remote parties

– Platform Configuration Registers (PCRs) summarize the
computer’s software state

• PCR_Extend(N, V): PCRN = SHA-1(PCRN | V)

– TPM provides a signature over PCR values
– A subset of dynamic PCRs can be reset without a reboot

6

Late Launch Background
• Supported by new commodity CPUs

– SVM for AMD
– TXT (formerly LaGrande) for Intel

• Designed to launch a VMM without a reboot
– Hardware-based protections ensure launch integrity

• New CPU instruction (SKINIT/SENTER) accepts a
memory region as input and atomically:
– Resets dynamic PCRs
– Disables interrupts
– Extends a measurement of the region into PCR 17
– Begins executing at the start of the memory region

7

Architecture Overview
• Core technique

– Pause current execution environment (untrusted OS)
– Execute security-sensitive code with hardware-

enforced isolation
– Resume previous execution

• Extensions
– Attest only to code execution and protection
– Preserve state securely across invocations
– Establish secure communication with remote parties

8

Execution Flow

TPM

PCRs:

K-1

927 …000
CPU

OS

App

Shim

SModule

RAM

OS

App

Module

SKINIT
Reset

InputsOutputsModule

0h0 0H0 0

Shim

S 00 0

9TPM

PCRs: 0

K-1

…

TPM

PCRs:

K-1

…

000

Shim
S Inputs

Outputs

Attestation

10

TPM

PCRs:

K-1

…

000

Shim
S Inputs

Outputs

Attestation
What code are
you running?

Shim

S Inputs
OutputsSign(), K-1

Sign), K-1

…

OS

App
S

App
5

App
4

App
3

App
2

App
1

(

Versus

11

Shim

S
Shim

S

Shim

S

Context Switch with Sealed Storage

PCRs:
000

…
PCRs:

000

…

Time

Shim

S

Data

OS

Shim

S

• Seal data under combination of code, inputs, outputs
• Data unavailable to other code

Shim

S
Shim

S

12

Outline
• Introduction
• Background
• Flicker Architecture and Extensions
• Flicker Applications

– Developer’s Perspective
– Example Applications

• Performance Evaluation
• Related Work and Conclusions

13

Developing With Flicker
• Sensitive code linked against the Flicker

library
• Customized linker script lays out binary
• Application interacts with Flicker via a

Flicker kernel module

#include “flicker.h”

void flicker_main(void *inputs) {

}

const char* msg = “Hello, world”;

for(int i=0;i<13;i++)
OUTPUT[i] = msg[i];

Made available at:
/proc/flicker/output

s

14

Default Functionality
• Shim can execute arbitrary x86 code but

provides very limited functionality
• Fortunately, many security-sensitive functions

do not require much
– E.g., key generation, encryption/decryption, FFT

• Functionality can be added to support a
particular security-sensitive operation

• We have partially automated the extraction of
support code for security-sensitive code

15

Existing Flicker Modules
• OS Protection Memory protection, ring 3 execution
• Crypto Crypto ops (RSA, SHA-1, etc.)
• Memory Alloc. Malloc/free/realloc
• Secure Channel Secure remote communication
• TPM Driver Communicate with TPM
• TPM Utilities Perform TPM ops

16

Outline
• Introduction
• Background
• Flicker Architecture and Extensions
• Flicker Applications

– Developer’s Perspective
– Example Applications

• Performance Evaluation
• Related Work and Conclusions

17

Application: Rootkit Detector

Hardware

OS

App
1

…

Shim

D

App
n

Run detector OS

OS

• Administrator can check the integrity of
remote hosts
– E.g., only allow uncompromised laptops to

connect to the corporate VPN

18

Application: SSH Passwords

nonce Start

Gen {K, K-1}

K

EncryptK(passwd)

EncryptK(passwd)

OK!

Shim

S

K Shim

S K-1
Shim

S

K-1
Shim

S

EncryptK(passwd)passwd

19

Other Applications Implemented
• Enhanced Certificate Authority (CA)

– Private signing key isolated from entire
system

• Verifiable distributed computing
– Verifiably perform a computational task on

a remote computer
– Ex: SETI@Home, Folding@Home, distcc

20

Outline
• Introduction
• Background
• Flicker Architecture and Extensions
• Flicker Applications
• Performance Evaluation
• Related Work and Conclusions

21

Generic Context-Switch Overhead

• Each Flicker context switch requires:
– SKINIT
– TPM-based protection of application state

939 msTotal
 20 msReseal application state
905 msUnseal application state
 14 msSKINIT

Results

22

Rootkit Detection Performance

 1 msPCR Extend Result
973 msTPM Quote

1023 msTotal

 22 msHash of Kernel
 14 msSKINIT

37 ms
Disruption

Non-Disruptive

Running detector every 30 seconds has
negligible impact on system throughput

23

SSH Performance

• Setup time (217 ms) dominated by key
generation (185 ms)

• Password verification (937 ms)
dominated by TPM Unseal (905 ms)

Adds < 2 seconds of delay to client login

24

Optimizing Flicker’s Performance

• Non-volatile storage
– Access control based on PCRs
– Read in 20ms, Write in 200 ms
– Store a symmetric key for “sealing” and

“unsealing” state

Reduces context-switch overhead by an
order of magnitude

25

Hardware Performance
Improvements

• Late launch cost only incurred when
Flicker session launches

• TPM (Un)Seal only used for long-term
storage

• Multicore systems remain interactive
• Context switch overheads (common case)

resemble VM switches today (~0.5 µs)

[ASPLOS 2008]

26

Ongoing Work
• Creating a trusted path to the user
• Porting implementation to Intel
• Improving automatic privilege separation

27

Related Work
• Secure coprocessors

– Dyad [Yee 1994], IBM 4758 [JiSmiMi 2001]
• System-wide attestation

– Secure Boot [ArFaSm 1997], IMA [SaZhJaDo 2004],
Enforcer [MaSmWiStBa 2004]

• VMM-based isolation
– BIND [ShPeDo2005], AppCores [SiPuHaHe 2006],

Proxos [TaLiLi 2006]
• “Traditional” uses of late launch

– Trustworthy Kiosks [GaCáBeSaDoZh 2006],
OSLO [Kauer 2007],

28

Conclusions
• Flicker greatly reduces an application’s TCB
• Isolate security-sensitive code execution
• Provide fine-grained attestations
• Allow application writers to focus on the

security of their own code

