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Flicker’s Properties
• Isolate security-sensitive code execution

from all other code and devices
• Attest to security-sensitive code and its

arguments and nothing else
• Convince a remote party that security-

sensitive code was protected
• Add < 250 LoC to the software TCB

Shim

SSoftware
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Outline
• Introduction
• Background

– Trusted Platform Module (TPM)
– Late Launch

• Flicker Architecture and Extensions
• Flicker Applications
• Performance Evaluation
• Related Work and Conclusions
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TPM Background
• The Trusted Platform Module (TPM) is a dedicated

security chip
• Can provide an attestation to remote parties

– Platform Configuration Registers (PCRs) summarize the
computer’s software state

• PCR_Extend(N, V):  PCRN = SHA-1(PCRN | V)

– TPM provides a signature over PCR values
– A subset of dynamic PCRs can be reset without a reboot
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Late Launch Background
• Supported by new commodity CPUs

– SVM for AMD
– TXT (formerly LaGrande) for Intel

• Designed to launch a VMM without a reboot
– Hardware-based protections ensure launch integrity

• New CPU instruction (SKINIT/SENTER) accepts a
memory region as input and atomically:
– Resets dynamic PCRs
– Disables interrupts
– Extends a measurement of the region into PCR 17
– Begins executing at the start of the memory region
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Architecture Overview
• Core technique

– Pause current execution environment (untrusted OS)
– Execute security-sensitive code with hardware-

enforced isolation
– Resume previous execution

• Extensions
– Attest only to code execution and protection
– Preserve state securely across invocations
– Establish secure communication with remote parties
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Execution Flow
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Outline
• Introduction
• Background
• Flicker Architecture and Extensions
• Flicker Applications

– Developer’s Perspective
– Example Applications

• Performance Evaluation
• Related Work and Conclusions
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Developing With Flicker
• Sensitive code linked against the Flicker

library
• Customized linker script lays out binary
• Application interacts with Flicker via a

Flicker kernel module

#include “flicker.h”

void flicker_main(void *inputs) {

}

const char* msg = “Hello, world”;

for(int i=0;i<13;i++)
OUTPUT[i] = msg[i];

Made available at:
/proc/flicker/output

s
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Default Functionality
• Shim can execute arbitrary x86 code but

provides very limited functionality
• Fortunately, many security-sensitive functions

do not require much
– E.g., key generation, encryption/decryption, FFT

• Functionality can be added to support a
particular security-sensitive operation

• We have partially automated the extraction of
support code for security-sensitive code
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Existing Flicker Modules
• OS Protection    Memory protection, ring 3 execution
• Crypto    Crypto ops (RSA, SHA-1, etc.)
• Memory Alloc.    Malloc/free/realloc
• Secure Channel    Secure remote communication
• TPM Driver    Communicate with TPM
• TPM Utilities    Perform TPM ops
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Outline
• Introduction
• Background
• Flicker Architecture and Extensions
• Flicker Applications

– Developer’s Perspective
– Example Applications

• Performance Evaluation
• Related Work and Conclusions
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Application: Rootkit Detector
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remote hosts
– E.g., only allow uncompromised laptops to

connect to the corporate VPN
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Application: SSH Passwords
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Other Applications Implemented
• Enhanced Certificate Authority (CA)

– Private signing key isolated from entire
system

• Verifiable distributed computing
– Verifiably perform a computational task on

a remote computer
– Ex: SETI@Home, Folding@Home, distcc
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Outline
• Introduction
• Background
• Flicker Architecture and Extensions
• Flicker Applications
• Performance Evaluation
• Related Work and Conclusions
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Generic Context-Switch Overhead

• Each Flicker context switch requires:
– SKINIT
– TPM-based protection of application state

939 msTotal
  20 msReseal application state
905 msUnseal application state
  14 msSKINIT

Results
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Rootkit Detection Performance

    1 msPCR Extend Result
973 msTPM Quote

1023 msTotal

  22 msHash of Kernel
  14 msSKINIT

37 ms
Disruption

Non-Disruptive

Running detector every 30 seconds has
negligible impact on system throughput



23

SSH Performance

• Setup time (217 ms) dominated by key
generation (185 ms)

• Password verification (937 ms)
dominated by TPM Unseal (905 ms)

Adds < 2 seconds of delay to client login
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Optimizing Flicker’s Performance

• Non-volatile storage
– Access control based on PCRs
– Read in 20ms, Write in 200 ms
– Store a symmetric key for “sealing” and

“unsealing” state

Reduces context-switch overhead by an
order of magnitude
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Hardware Performance
Improvements

• Late launch cost only incurred when
Flicker session launches

• TPM (Un)Seal only used for long-term
storage

• Multicore systems remain interactive
• Context switch overheads (common case)

resemble VM switches today (~0.5 µs)

[ASPLOS 2008]
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Ongoing Work
• Creating a trusted path to the user
• Porting implementation to Intel
• Improving automatic privilege separation
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Related Work
• Secure coprocessors

– Dyad [Yee 1994], IBM 4758 [JiSmiMi 2001]
• System-wide attestation

– Secure Boot [ArFaSm 1997], IMA [SaZhJaDo 2004],
Enforcer [MaSmWiStBa 2004]

• VMM-based isolation
– BIND [ShPeDo2005], AppCores [SiPuHaHe 2006],

Proxos [TaLiLi 2006]
• “Traditional” uses of late launch

– Trustworthy Kiosks [GaCáBeSaDoZh 2006],
OSLO [Kauer 2007],
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Conclusions
• Flicker greatly reduces an application’s TCB
• Isolate security-sensitive code execution
• Provide fine-grained attestations
• Allow application writers to focus on the

security of their own code


