
Program Testing via Symbolic
Execution

Daniel Dunbar

Program Testing via Symbolic Execution – p. 1/26

Introduction

• Motivation
• Manual testing is difficult

Program Testing via Symbolic Execution – p. 2/26

Introduction

• Motivation
• Manual testing is difficult

• Requires knowledge of code

Program Testing via Symbolic Execution – p. 2/26

Introduction

• Motivation
• Manual testing is difficult

• Requires knowledge of code
• Requires constant maintenance

Program Testing via Symbolic Execution – p. 2/26

Introduction

• Motivation
• Manual testing is difficult

• Requires knowledge of code
• Requires constant maintenance

• Random testing is ineffective
• Hard to deeply probe programs

Program Testing via Symbolic Execution – p. 2/26

Introduction

• Motivation
• Manual testing is difficult

• Requires knowledge of code
• Requires constant maintenance

• Random testing is ineffective
• Hard to deeply probe programs

• Symbolic execution?
• Automatic
• Can check for error conditions
• Can reach deep code paths

Program Testing via Symbolic Execution – p. 2/26

Overview

• KLEE: A Symbolic Virtual Machine
• Basic Architecture
• Constraint Solver Optimizations

Program Testing via Symbolic Execution – p. 3/26

Overview

• KLEE: A Symbolic Virtual Machine
• Basic Architecture
• Constraint Solver Optimizations

• A Modeling Environment for UNIX

Program Testing via Symbolic Execution – p. 3/26

Overview

• KLEE: A Symbolic Virtual Machine
• Basic Architecture
• Constraint Solver Optimizations

• A Modeling Environment for UNIX
• Case Study: Coreutils

• Over 80% coverage on majority of tools
• Overall coverage better than developer

tests

Program Testing via Symbolic Execution – p. 3/26

What is Symbolic Execution?

Program Testing via Symbolic Execution – p. 4/26

What is Symbolic Execution?

• Symbolic
Replace concrete program values with

symbolic variables

Program Testing via Symbolic Execution – p. 4/26

What is Symbolic Execution?

• Symbolic
Replace concrete program values with

symbolic variables
• Execution

Program instructions become operations
on expressions

Program Testing via Symbolic Execution – p. 4/26

What is Symbolic Execution?

• Symbolic
Replace concrete program values with

symbolic variables
• Execution

Program instructions become operations
on expressions

• Also:
Record branch choices in a path condition

Program Testing via Symbolic Execution – p. 4/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: A 0
s:
c:?

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
?

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
?

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
?
s0 6= 0

Input: s0 0

s:
c:

path:
?
s0 = 0

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
s0

s0 6= 0

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
s0

s0 = ’\’

Input: s0 0

s:
c:

path:
s0

s0 6= 0 ∧ s0 6= ’\’

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
0
s0 = ’\’

Program Testing via Symbolic Execution – p. 5/26

What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
0
s0 = ’\’

Program Testing via Symbolic Execution – p. 5/26

The KLEE Architecture

• Based on experience with EXE system
• Goals

• Simplicity
• Scalability
• Speed

Program Testing via Symbolic Execution – p. 6/26

The KLEE Architecture: Simplicity

• Interpreter for LLVM Assembly Language
• Precise semantics
• Multiple language support
• Mature binary tools

Program Testing via Symbolic Execution – p. 7/26

The KLEE Architecture: Simplicity

• Interpreter for LLVM Assembly Language
• Precise semantics
• Multiple language support
• Mature binary tools

• Easy to understand
• Simple interpreter loop
• Explicit process representation
• Modular search & constraint solving

Program Testing via Symbolic Execution – p. 7/26

The KLEE Architecture: Scalability

• Fine-grained heap memory
• Object level copy-on-write

Program Testing via Symbolic Execution – p. 8/26

The KLEE Architecture: Scalability

• Fine-grained heap memory
• Object level copy-on-write

• Careful data structure selection
• Persistent heap, expressions, path data
• Compact expression representation

Program Testing via Symbolic Execution – p. 8/26

The KLEE Architecture: Scalability

• Fine-grained heap memory
• Object level copy-on-write

• Careful data structure selection
• Persistent heap, expressions, path data
• Compact expression representation

• Handle over 100k processes for small
programs

Program Testing via Symbolic Execution – p. 8/26

The KLEE Architecture: Speed

• Constraint solving dominates run-time

Program Testing via Symbolic Execution – p. 9/26

The KLEE Architecture: Speed

• Constraint solving dominates run-time
• Keep constraints simple

• Canonicalize simple forms
• Cache concrete values and indices
• Dynamically rewrite path constraints

Program Testing via Symbolic Execution – p. 9/26

The KLEE Architecture: Speed

• Constraint solving dominates run-time
• Keep constraints simple

• Canonicalize simple forms
• Cache concrete values and indices
• Dynamically rewrite path constraints

• Optimize constraint solving

Program Testing via Symbolic Execution – p. 9/26

Solver Optimization

• Take advantage of the nature of symbolic
execution

Program Testing via Symbolic Execution – p. 10/26

Solver Optimization

• Take advantage of the nature of symbolic
execution

• Program decomposition
• Queries deal with distinct input variables

Program Testing via Symbolic Execution – p. 10/26

Solver Optimization

• Take advantage of the nature of symbolic
execution

• Program decomposition
• Queries deal with distinct input variables

• Considerable redundancy
• Processes accrue constraints
• Static set of branches

Program Testing via Symbolic Execution – p. 10/26

Independent Constraint Opt.

• Path constraints may refer to many variables
• Path: s0 = ’A’ ∧ s1 = 0 ∧ y0 < 100

Program Testing via Symbolic Execution – p. 11/26

Independent Constraint Opt.

• Path constraints may refer to many variables
• Path: s0 = ’A’ ∧ s1 = 0 ∧ y0 < 100

• Individual expressions only refer to a few
• Branch condition: y = 10

Program Testing via Symbolic Execution – p. 11/26

Independent Constraint Opt.

• Path constraints may refer to many variables
• Path: s0 = ’A’ ∧ s1 = 0 ∧ y0 < 100

• Individual expressions only refer to a few
• Branch condition: y = 10

• Independent constraint optimization:
• Group constraints into disjoint subsets

based on referenced variables
• Only pass dependent constraints to solver
• Query: y < 100 ⇒ y = 10

Program Testing via Symbolic Execution – p. 11/26

Counterexample Cache

• Take advantage of “free” counterexamples

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

2. If (C ′,⊥), C ′ ⊂ C in cache, return ⊥

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

2. If (C ′,⊥), C ′ ⊂ C in cache, return ⊥

3. If (C ′, A), C ′ ⊃ C in cache, return A

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

2. If (C ′,⊥), C ′ ⊂ C in cache, return ⊥

3. If (C ′, A), C ′ ⊃ C in cache, return A

4. Otherwise, for each (C ′, A), C ′ ⊂ C in
cache, speculatively evaluate C using A

Program Testing via Symbolic Execution – p. 12/26

Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

Program Testing via Symbolic Execution – p. 13/26

Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}

Program Testing via Symbolic Execution – p. 13/26

Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}
• Query: x < 100, Cache:
{(x < 100, {x : 0})}

Program Testing via Symbolic Execution – p. 13/26

Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}
• Query: x < 100, Cache:
{(x < 100, {x : 0})}

• Query: x < 100 ∧ x 6= 50

Program Testing via Symbolic Execution – p. 13/26

Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}
• Query: x < 100, Cache:
{(x < 100, {x : 0})}

• Query: x < 100 ∧ x 6= 50
• Evaluate with {x : 0}
• 0 < 100 ∧ 0 6= 50
• Found assignment

Program Testing via Symbolic Execution – p. 13/26

Optimization Results

0

50

100

150

200

250

300

A
v
er

ag
e

T
im

e
(s

)
A

v
er

ag
e

T
im

e
(s

)

0 0.2 0.4 0.6 0.8 1

Normalized Num. InstructionsNormalized Num. Instructions

Base

Independence

Cex Cache

All

Program Testing via Symbolic Execution – p. 14/26

Environment Modeling

• Testing real applications requires providing a
realistic environment
• system libraries
• operating system

Program Testing via Symbolic Execution – p. 15/26

Environment Modeling

• Testing real applications requires providing a
realistic environment
• system libraries
• operating system

• Our approach:
• Compile and execute using µlibc
• Implement UNIX systems calls in separate

modeling library

Program Testing via Symbolic Execution – p. 15/26

Environment Modeling (2)

• Idea: Overlay symbolic environment onto
operating system
• Program sees “virtual” symbolic resources

and actual OS resources

Program Testing via Symbolic Execution – p. 16/26

Environment Modeling (2)

• Idea: Overlay symbolic environment onto
operating system
• Program sees “virtual” symbolic resources

and actual OS resources
• Implemented by routing system calls through

model routines
• Symbolic resources are handled in model
• Actual resources are forwarded to OS

Program Testing via Symbolic Execution – p. 16/26

Environment Modeling (3)

• Currently model supports symbolic files and
program arguments

Program Testing via Symbolic Execution – p. 17/26

Environment Modeling (3)

• Currently model supports symbolic files and
program arguments

• Supports open(), close(), read(),
write(), lseek(), stat(), fstat()
as well as simple stubs for several more

Program Testing via Symbolic Execution – p. 17/26

Environment Modeling (3)

• Currently model supports symbolic files and
program arguments

• Supports open(), close(), read(),
write(), lseek(), stat(), fstat()
as well as simple stubs for several more

• Implementation is about 800 lines of C code

Program Testing via Symbolic Execution – p. 17/26

Testing Process

• Test generation:
• The application is linked with µclibc and the

model and run with KLEE

Program Testing via Symbolic Execution – p. 18/26

Testing Process

• Test generation:
• The application is linked with µclibc and the

model and run with KLEE

• Additional arguments specify what parts of
environment to make symbolic

Program Testing via Symbolic Execution – p. 18/26

Testing Process

• Test generation:
• The application is linked with µclibc and the

model and run with KLEE

• Additional arguments specify what parts of
environment to make symbolic

• KLEE generates test cases for any errors
and for coverage

Program Testing via Symbolic Execution – p. 18/26

Testing Process (2)

• Test verification:
• Programs are linked with gcc using µlibc

and stripped down model

Program Testing via Symbolic Execution – p. 19/26

Testing Process (2)

• Test verification:
• Programs are linked with gcc using µlibc

and stripped down model
• Tests are replayed natively

Program Testing via Symbolic Execution – p. 19/26

Testing Process (2)

• Test verification:
• Programs are linked with gcc using µlibc

and stripped down model
• Tests are replayed natively
• Protects against modeling and system

errors

Program Testing via Symbolic Execution – p. 19/26

Coreutils Background

• GNU implementation of standard UNIX
utilities

Program Testing via Symbolic Execution – p. 20/26

Coreutils Background

• GNU implementation of standard UNIX
utilities

• Core of most Linux installations

Program Testing via Symbolic Execution – p. 20/26

Coreutils Background

• GNU implementation of standard UNIX
utilities

• Core of most Linux installations
• Encompasses 90 applications of varying size

and focus
• File system: ls, dd, chmod
• Numeric: factor, seq
• System: printenv, hostname
• Text Processing: sort, head, od

Program Testing via Symbolic Execution – p. 20/26

Coreutils Case Study

• All 90 applications were tested on latest
public release

Program Testing via Symbolic Execution – p. 21/26

Coreutils Case Study

• All 90 applications were tested on latest
public release

• Focused on tool front-ends

Program Testing via Symbolic Execution – p. 21/26

Coreutils Case Study

• All 90 applications were tested on latest
public release

• Focused on tool front-ends
• Covers 20k combined executable lines of

code

Program Testing via Symbolic Execution – p. 21/26

Coreutils Case Study

• All 90 applications were tested on latest
public release

• Focused on tool front-ends
• Covers 20k combined executable lines of

code
• Mostly automatic

• One source code modification required
• Most programs tested using a generic

configuration

Program Testing via Symbolic Execution – p. 21/26

Results: Bugs

• Six bugs found
• One fixed in developer repository
• Three resulted in segmentation fault
• Two allowed arbitrary heap smashing

ptx -F\\ abcdefghijklmnopqrstuvwxyz

paste -d\\ abcdefghijklmnopqrstuvwxyz

seq -f %0 1

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p

Program Testing via Symbolic Execution – p. 22/26

Results: Coverage

Overall coverage: 70.6%
Over 80% on 61/90

10
-2

0%

20
-3

0%

50
-6

0%

60
-7

0%

70
-8

0%

80
-9

0%

90
-1

00
%

10
0%

0

5

10

15

20

25

30

1
2

8
9 9

24

29

8

0-
10

0

10
0-

20
0

20
0-

30
0

30
0-

40
0

50
0-

60
0

60
0-

70
0

80
0-

90
0

11
00

-1
20

0

13
00

-1
40

0

Executable Lines of CodeExecutable Lines of Code

0

20

40

60

80

100

87% (37)

80% (21) 80% (14)

71% (8)

47% (4)

77% (3)

82% (1)

57% (1) 56% (1)

Program Testing via Symbolic Execution – p. 23/26

Results: Vs. Manual

Developers tests overall coverage: 67.4%.
Generated tests outperform on majority of tools.

0

20

40

60

80

100

Generated Tests

Developer Tests

Shared

Program Testing via Symbolic Execution – p. 24/26

Conclusion

• Symbolic execution can provide an effective
testing tool

Program Testing via Symbolic Execution – p. 25/26

Conclusion

• Symbolic execution can provide an effective
testing tool

• Can scale to real applications
• Careful attention to scalability
• Take advantage of specialized domain to

optimize constraint solving

Program Testing via Symbolic Execution – p. 25/26

Conclusion

• Symbolic execution can provide an effective
testing tool

• Can scale to real applications
• Careful attention to scalability
• Take advantage of specialized domain to

optimize constraint solving
• Requires only modest amount of effort to

construct an adequate model

Program Testing via Symbolic Execution – p. 25/26

Conclusion

• Symbolic execution can provide an effective
testing tool

• Can scale to real applications
• Careful attention to scalability
• Take advantage of specialized domain to

optimize constraint solving
• Requires only modest amount of effort to

construct an adequate model
• Can beat manual testing out-of-the-box

Program Testing via Symbolic Execution – p. 25/26

Questions?

Program Testing via Symbolic Execution – p. 26/26

	Introduction
	Introduction
	Introduction
	Introduction
	Introduction

	Overview
	Overview
	Overview

	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?

	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?
	What is Symbolic Execution?

	The klee Architecture
	The klee Architecture: Simplicity
	The klee Architecture: Simplicity

	The klee Architecture: Scalability
	The klee Architecture: Scalability
	The klee Architecture: Scalability

	The klee Architecture: Speed
	The klee Architecture: Speed
	The klee Architecture: Speed

	Solver Optimization
	Solver Optimization
	Solver Optimization

	Independent Constraint Opt.
	Independent Constraint Opt.
	Independent Constraint Opt.

	Counterexample Cache
	Counterexample Cache
	Counterexample Cache
	Counterexample Cache
	Counterexample Cache
	Counterexample Cache
	Counterexample Cache

	Counterexample Cache Example
	Counterexample Cache Example
	Counterexample Cache Example
	Counterexample Cache Example
	Counterexample Cache Example

	Optimization Results
	Environment Modeling
	Environment Modeling

	Environment Modeling (2)
	Environment Modeling (2)

	Environment Modeling (3)
	Environment Modeling (3)
	Environment Modeling (3)

	Testing Process
	Testing Process
	Testing Process

	Testing Process (2)
	Testing Process (2)
	Testing Process (2)

	Coreutils Background
	Coreutils Background
	Coreutils Background

	Coreutils Case Study
	Coreutils Case Study
	Coreutils Case Study
	Coreutils Case Study

	Results: Bugs
	Results: Coverage
	Results: Vs. Manual
	Conclusion
	Conclusion
	Conclusion
	Conclusion

	Questions?

