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Introduction

• Motivation
• Manual testing is difficult
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Introduction

• Motivation
• Manual testing is difficult

• Requires knowledge of code
• Requires constant maintenance

• Random testing is ineffective
• Hard to deeply probe programs

• Symbolic execution?
• Automatic
• Can check for error conditions
• Can reach deep code paths
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Overview

• KLEE: A Symbolic Virtual Machine
• Basic Architecture
• Constraint Solver Optimizations
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Overview

• KLEE: A Symbolic Virtual Machine
• Basic Architecture
• Constraint Solver Optimizations

• A Modeling Environment for UNIX
• Case Study: Coreutils

• Over 80% coverage on majority of tools
• Overall coverage better than developer

tests
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What is Symbolic Execution?
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What is Symbolic Execution?

• Symbolic
Replace concrete program values with

symbolic variables
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What is Symbolic Execution?

• Symbolic
Replace concrete program values with

symbolic variables
• Execution

Program instructions become operations
on expressions

• Also:
Record branch choices in a path condition
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What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}
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What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
?
s0 6= 0

Input: s0 0

s:
c:

path:
?
s0 = 0
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What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:
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What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
s0

s0 = ’\’

Input: s0 0

s:
c:

path:
s0

s0 6= 0 ∧ s0 6= ’\’
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What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)
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}
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What is Symbolic Execution?

void escape(char *s,

char *out) {

while (*s != 0) {

char c = *s++;

if (c == ’\\’)

c = *s++;

*out++ = c;

}

}

Input: s0 0

s:
c:

path:
0
s0 = ’\’
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The KLEE Architecture

• Based on experience with EXE system
• Goals

• Simplicity
• Scalability
• Speed
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The KLEE Architecture: Simplicity

• Interpreter for LLVM Assembly Language
• Precise semantics
• Multiple language support
• Mature binary tools
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The KLEE Architecture: Simplicity

• Interpreter for LLVM Assembly Language
• Precise semantics
• Multiple language support
• Mature binary tools

• Easy to understand
• Simple interpreter loop
• Explicit process representation
• Modular search & constraint solving
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The KLEE Architecture: Scalability

• Fine-grained heap memory
• Object level copy-on-write
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The KLEE Architecture: Scalability

• Fine-grained heap memory
• Object level copy-on-write

• Careful data structure selection
• Persistent heap, expressions, path data
• Compact expression representation

• Handle over 100k processes for small
programs
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The KLEE Architecture: Speed

• Constraint solving dominates run-time
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The KLEE Architecture: Speed

• Constraint solving dominates run-time
• Keep constraints simple

• Canonicalize simple forms
• Cache concrete values and indices
• Dynamically rewrite path constraints
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The KLEE Architecture: Speed

• Constraint solving dominates run-time
• Keep constraints simple

• Canonicalize simple forms
• Cache concrete values and indices
• Dynamically rewrite path constraints

• Optimize constraint solving
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Solver Optimization

• Take advantage of the nature of symbolic
execution
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Solver Optimization

• Take advantage of the nature of symbolic
execution

• Program decomposition
• Queries deal with distinct input variables
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Solver Optimization

• Take advantage of the nature of symbolic
execution

• Program decomposition
• Queries deal with distinct input variables

• Considerable redundancy
• Processes accrue constraints
• Static set of branches
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Independent Constraint Opt.

• Path constraints may refer to many variables
• Path: s0 = ’A’ ∧ s1 = 0 ∧ y0 < 100
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Independent Constraint Opt.

• Path constraints may refer to many variables
• Path: s0 = ’A’ ∧ s1 = 0 ∧ y0 < 100

• Individual expressions only refer to a few
• Branch condition: y = 10

• Independent constraint optimization:
• Group constraints into disjoint subsets

based on referenced variables
• Only pass dependent constraints to solver
• Query: y < 100 ⇒ y = 10
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Counterexample Cache

• Take advantage of “free” counterexamples
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• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

Program Testing via Symbolic Execution – p. 12/26



Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

2. If (C ′,⊥), C ′ ⊂ C in cache, return ⊥
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Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

2. If (C ′,⊥), C ′ ⊂ C in cache, return ⊥
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Counterexample Cache

• Take advantage of “free” counterexamples
• Cache C 7→ {A,⊥}, where C is a set of

constraints and A a satisfying assignment
• When performing a query with constraints C:

1. If (C, x) in cache, return x

2. If (C ′,⊥), C ′ ⊂ C in cache, return ⊥

3. If (C ′, A), C ′ ⊃ C in cache, return A

4. Otherwise, for each (C ′, A), C ′ ⊂ C in
cache, speculatively evaluate C using A

Program Testing via Symbolic Execution – p. 12/26



Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}
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}
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Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}
• Query: x < 100, Cache:
{(x < 100, {x : 0})}
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Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}
• Query: x < 100, Cache:
{(x < 100, {x : 0})}

• Query: x < 100 ∧ x 6= 50
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Counterexample Cache Example

void foo(int x) {

if (x < 100)

...

if (x != 50)

...

}

• Cache: {}
• Query: x < 100, Cache:
{(x < 100, {x : 0})}

• Query: x < 100 ∧ x 6= 50
• Evaluate with {x : 0}
• 0 < 100 ∧ 0 6= 50
• Found assignment
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Optimization Results
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Environment Modeling

• Testing real applications requires providing a
realistic environment
• system libraries
• operating system
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Environment Modeling

• Testing real applications requires providing a
realistic environment
• system libraries
• operating system

• Our approach:
• Compile and execute using µlibc
• Implement UNIX systems calls in separate

modeling library
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Environment Modeling (2)

• Idea: Overlay symbolic environment onto
operating system
• Program sees “virtual” symbolic resources

and actual OS resources
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Environment Modeling (2)

• Idea: Overlay symbolic environment onto
operating system
• Program sees “virtual” symbolic resources

and actual OS resources
• Implemented by routing system calls through

model routines
• Symbolic resources are handled in model
• Actual resources are forwarded to OS
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Environment Modeling (3)

• Currently model supports symbolic files and
program arguments
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Environment Modeling (3)

• Currently model supports symbolic files and
program arguments

• Supports open(), close(), read(),
write(), lseek(), stat(), fstat()
as well as simple stubs for several more
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Environment Modeling (3)

• Currently model supports symbolic files and
program arguments

• Supports open(), close(), read(),
write(), lseek(), stat(), fstat()
as well as simple stubs for several more

• Implementation is about 800 lines of C code
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Testing Process

• Test generation:
• The application is linked with µclibc and the

model and run with KLEE
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Testing Process

• Test generation:
• The application is linked with µclibc and the

model and run with KLEE

• Additional arguments specify what parts of
environment to make symbolic

• KLEE generates test cases for any errors
and for coverage
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Testing Process (2)

• Test verification:
• Programs are linked with gcc using µlibc

and stripped down model
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Testing Process (2)

• Test verification:
• Programs are linked with gcc using µlibc

and stripped down model
• Tests are replayed natively
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Testing Process (2)

• Test verification:
• Programs are linked with gcc using µlibc

and stripped down model
• Tests are replayed natively
• Protects against modeling and system

errors
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Coreutils Background

• GNU implementation of standard UNIX
utilities
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Coreutils Background

• GNU implementation of standard UNIX
utilities

• Core of most Linux installations
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Coreutils Background

• GNU implementation of standard UNIX
utilities

• Core of most Linux installations
• Encompasses 90 applications of varying size

and focus
• File system: ls, dd, chmod
• Numeric: factor, seq
• System: printenv, hostname
• Text Processing: sort, head, od
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Coreutils Case Study

• All 90 applications were tested on latest
public release

Program Testing via Symbolic Execution – p. 21/26



Coreutils Case Study

• All 90 applications were tested on latest
public release

• Focused on tool front-ends

Program Testing via Symbolic Execution – p. 21/26



Coreutils Case Study

• All 90 applications were tested on latest
public release

• Focused on tool front-ends
• Covers 20k combined executable lines of

code

Program Testing via Symbolic Execution – p. 21/26



Coreutils Case Study

• All 90 applications were tested on latest
public release

• Focused on tool front-ends
• Covers 20k combined executable lines of

code
• Mostly automatic

• One source code modification required
• Most programs tested using a generic

configuration
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Results: Bugs

• Six bugs found
• One fixed in developer repository
• Three resulted in segmentation fault
• Two allowed arbitrary heap smashing

ptx -F\\ abcdefghijklmnopqrstuvwxyz

paste -d\\ abcdefghijklmnopqrstuvwxyz

seq -f %0 1

mkdir -Z a b

mkfifo -Z a b

mknod -Z a b p
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Results: Coverage

Overall coverage: 70.6%
Over 80% on 61/90
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Results: Vs. Manual

Developers tests overall coverage: 67.4%.
Generated tests outperform on majority of tools.
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Conclusion

• Symbolic execution can provide an effective
testing tool
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Conclusion

• Symbolic execution can provide an effective
testing tool

• Can scale to real applications
• Careful attention to scalability
• Take advantage of specialized domain to

optimize constraint solving
• Requires only modest amount of effort to

construct an adequate model
• Can beat manual testing out-of-the-box
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Questions?
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