
Towards the Security and Privacy Analysis

of Patient Portals

Janos L. Mathe

1
 Sean Duncavage

1
 Jan Werner

1

Bradley A. Malin
2
 Akos Ledeczi

1
 Janos Sztipanovits

1

1
Institute for Software Integrated Systems

Vanderbilt University
Nashville, TN 37209

{first}.{mi}.{last}@vanderbilt.edu

2
Department of Biomedical Informatics

Vanderbilt University
Nashville, TN 37209

b.malin@vanderbilt.edu

ABSTRACT

Clinical information systems (CIS) significantly influence the

quality and efficiency of health care delivery. However, CIS are

complex environments that integrate information technologies,

human stakeholders, and patient-specific data. Given the

sensitivity of patient data, federal regulations require healthcare

providers to adopt policy, as well as technology, protections for

patient data. Ad hoc system design and implementation of CIS

can cause unforeseen and unintended privacy and security

breaches. The introduction of model-based design techniques

combined with the development of high-level modeling

abstractions and analysis methods provide a mechanism to

investigate these concerns by conceptually simplifying CIS

without losing expressive power. This work introduces the Model-

based Design Environment for Clinical Information Systems

(MODECIS) - a graphical design environment that assists CIS

architects in formalizing CIS systems as well-defined services.

MODECIS leverages Service-Oriented Architectures to create

realistic system models at an abstract level. By modeling CIS

using abstractions, we enable the analysis of legacy architectures,

as well as the design and simulation of, future CIS. We present

the feasibility of MODECIS via modeling certain functions, such

as the authentication process of the MyHealth@Vanderbilt patient

portal.

1. INTRODUCTION
Health care systems with errors that are difficult to detect and

address can lead to serious mistakes in patient care. To reduce

errors, many health-care organizations have migrated from paper-

based to Electronic Medical Records (EMR), which have been

shown to increase both staff productivity and patient safety [1].

Expanding on the success of EMRs, Clinical Information Systems

(CIS) are part of an emerging technology that incorporates a wide

range of the informational and organizational components of the

health-care environment.

Local and federal regulations concerning the management of

patient information influence CIS design and implementation.

The Privacy Rule of the Health Insurance Portability and

Accountability Act (HIPAA) specifically grants patients the right

to access their medical records as well as request corrections and

disclosures of their personal health information [2]. The HIPAA

Security Rule additionally requires healthcare organizations to

provide security protections at the physical, technical, and

administrative levels to log access to identifiable health

information [3]. Patient Portals are one method to accommodate

the Privacy Rule and provide patients with a simple method to

access their medical records, disclosures, and audits. Designing

such a system optimally to protect patient confidentiality and

respect health-care providers’ rights is an open problem.

We begin to address this challenge by casting patient portals, a

key portion of CIS, onto a Service-Oriented Architecture (SOA).

We developed a domain-specific modeling environment called

Model-based Design Environment for Clinical Information

Systems (MODECIS) with which we create formal models of

healthcare services and features for detailed analysis.

Our initial research with MODECIS successfully demonstrates

that patient portals can be modeled as SOA. The development of

critical modeling abstractions adds the feature of scalability to our

tool. Although MODECIS is a work-in-progress, it is already able

to express multiple aspects of patient portals and has been used to

create high-fidelity models of the MyHealth@Vanderbilt patient

portal, which relate to larger CIS operation.

2. BACKGROUND
Patient portals provide means to view, and contribute to, one’s

medical records; however, this patient integration also creates

complex policy and technology management issues. Addressing

these complications and adhering to both the HIPAA Privacy and

Security Rule is a major concern for CIS.

Security was addressed in the PCASSO patient portal system,

which, among other features, provided patients and physicians

online access to medical records and the ability to audit these

records [4]. Pilot studies reported positive effects on patient care

while maintaining the security of patient records, evidenced by

zero reported security breaches in the portal systems. Despite the

apparent success of the pilot studies, applying the same design

strategies to more complex systems with large numbers of users

and available functions may not yield the same positive results.

As opposed to ad hoc design strategies, SOA is a web-inspired

architectural style that enables extensible interoperability by using

loosely coupled, interacting services to compose complex

applications [5]. SOA calls upon independent, heterogeneous

components, known as services, which can be accessed through

predefined interfaces and composed into a workflow representing

business logic [6][7]. The principal design goals of SOA services

are composability, adaptability, and platform independence,

which lead to improved interoperability among systems and future

extensibility.

Workflows are a conceptual tool that can help capture the

business logic of a system and are a cornerstone of the Business

Process Execution Language (BPEL) [8]. BPEL is part of a

group of SOA orchestration languages, which describe processes

from a single point of view (such as the view of the patient portal

in CIS), and it is complemented by a suite of standards for access

control and security policy modeling.

Model Integrated Computing (MIC) is another design strategy

that leverages models to capture the requirements, architecture,

and the environment of system in high-level models [9]. The

models can have multiple aspects to capture the actual structure of

the system in design and the environment in which it will be

deployed. For example, one can imagine models with aspects

depicting the software components of a system (such as an http

mirror), and the physical location of these components (such as

the server hosting the mirror). The models can also act as a

repository of information, capturing the necessary knowledge for

analyzing and generating the system.

SOA has been previously proposed for the design of formally-

composed CIS environments [10]. However, current

implementations are limited by the fact they do not model patient-

provider interactions. In this paper, we show how SOA can be

applied to a specific patient-associated environment.

3. APPROACH
Workflows in BPEL (and in general) provide a representation of

the manner by which data is accessed, handled, and shared.

Without formal representations of daily business processes and

their interrelationships within the healthcare environment, it is not

clearly evident why a patient's medical record is accessed or how

the interactions between patient and provider are managed. Both

underspecified and ad hoc workflow design can lead to malformed

policies with unanticipated consequences, and even seemingly

routine business processes can lead to serious privacy

compromises when taken in combination [15]. Taking this into

account, formal workflow models are a starting point for the

development and analysis of policy-driven operations supporting

privacy and security.

This inspired the creation of the building of the tool suite, called

MODECIS, where the formal basis of our approach allows for the

extension, reuse, and evolution of clinical information systems

[Figure 1].

MODECIS has three main components: a) a graphical design

environment for capturing the business logic of CIS through

workflows, b) an analysis tool, which allows for the analysis of

information flows and the exploration of security and privacy

properties of a CIS system modeled with the graphical design

environment, and finally c) a model translator that maps the CIS-

specific workflows to BPEL, WSDL and XACML. By translating

the domain models onto these SOA standards, using the model

transformation tool (GReAT) of the MIC tool suite [16], the

underlying alternative implementations of SOA platforms for the

standards become applicable. This radically simplifies the fast

prototyping, integration and testing tasks.

By capturing the appropriate level of abstraction, it is possible to

satisfy utility, security, and policy requirements for CIS. In

MODECIS workflows – common in SOA – provide us with this

abstraction layer, which is suitable for patient-centered clinical

information representation and management. MODECIS with the

workflow abstractions will allow us to perform vulnerability,

security and privacy analyses through model verification and

simulation-based testing tools. In addition to that; model-based

design will provide the tools for automated system generation

directly from the models.

Figure 1 - MODECIS tool suite

3.1 Modeling abstractions

In MODECIS the graphical language for creating and managing

workflows for CIS is based on BPEL, but it is customized to

specifically capture the EMR context. We found the development

of a domain-specific modeling language necessary after the

unsuccessful efforts of trying to represent every aspect of a given

CIS in BPEL. In MODECIS the domain-specific modeling

language specifications are captured in the form of metamodels –

(UML-based) models that define the language itself [GME ref].

Then, through an automatic generation process, the domain-

specific design environment is synthesized and a new GME

“instance” is created for the modeling of each CIS.

At the heart of our approach, the domain-specific modeling

language captures the system from multiple viewpoints. And

while the detailed description of this modeling language is beyond

the scope of this paper, we do present a brief description of the

modeling abstractions that help to capture the different aspects of

the multi-facetted CIS domain. These modeling abstractions

appear as different types of models in GME.

The workflow models can be thought of as a graphical equivalent

of a simplified BPEL representation. They capture the

orchestration logic with graphs that describe control, which

specify the sequence of service invocations and data flows that

represent the movement of information within a CIS system. The

first aspect allows for the orchestration of control flows that are

defined as a composition of service invocations – which can either

be asynchronous or synchronous – and the typical control

structures – such as switch, join, while, and catch – which allows

for the definition of arbitrary workflow logic. The second aspect

of workflow modeling describes the flow of data elements: how

these elements are exchanged, processed and stored between and

within various processes. This way each workflow model can be

thought of as an available service with well-defined interfaces.

Since the workflow models only describe how data elements are

used we have created the view for building datatype models (in a

hierarchical fashion) which allows the language to be strongly

typed.

Workflows in general allow system architects to follow the

information traveling between entities and can represent diverse

entities interacting with system, such as physical databases or

people. For this reason MODECIS incorporates two more types of

models for the integration of workflow models with the

underlying architectures and physical entities. This means that a

complicated, explicitly represented social and technical

architecture can be constructed that the services build on.

The creation of organizational models allows for the human

coordination within CIS. These models are used to specify the

architecture of the enterprise itself, such as the roles of different

people. Organizational models reflect inter- and intradepartmental

interactions, as well as people’s roles within departments

specifying tasks and groups to whom these tasks are assigned. For

example, they are referred to by policies to facilitate role-based

access control.

While organizational models relate human-based workflow (i.e.

workflows that describe expected behavior of and tasks preformed

by the human players in CIS), deployment models specify the

organization of computer servers, their conjunctive networks and

interface with workflows in a similar manner to organizational

models. They are often referred to as the network architecture (ex:

they depict hospital servers and workstations along with the

services they provide).

The final abstraction captures policy statements that crosscut

workflow, organizational and deployment models. They place

restrictions on accessing certain services and information. We

have looked into modeling policies as a set of OCL expressions

similarly to the method in [14].

3.2 Model analysis

The built-in constraint manager of GME is used for checking the

models against structural violations. While we planning to either

develop a suite of analysis tools for static model verification, the

existing constraint checker already provides a powerful method to

force modelers not to violate domain specific design rules (c.f.

correct-by-construction).

As previously mentioned, MODECIS will include a model

translator capable of mapping domain-specific models to

executable BPEL code. Despite its wide acceptance, BPEL

provides no support for the detection of a) possible deadlocks or

b) process paths that are not viable. For the so-called workflow

nets (a type of Petri nets), techniques and tools exist which make

it possible to detect such anomalies. The idea proposed in [11]

claims to resolve this problem by mapping BPEL process models

onto workflow-nets. Existing research on modeling and verifying

BPEL processes with the help of Petri Nets, SPIN model checker,

Process Algebras, Abstract State Machines (ASM), Automata, etc.

is nicely summarized in [12]. MODECIS plans to capitalize on

these existing technologies for (BPEL) model verification.

One major advantage of using OCL for policy representation is

that the MODECIS tool suite (specifically GME) has native

support for OCL in the form of a parser and expression evaluator.

We leverage this asset for static policy design and enforcement in

the CIS domain.

The distribution of portal services across deployments raises

complex logistical, privacy, and security concerns that we are

planning to address with the analysis techniques mentioned

above.

3.3 Execution engine

As a final, system integration step to guarantee correct flow of

logic captured by the domain models, the tool suite interfaces with

an execution engine, which after deployment manages the

multiple instances of workflows. Specifically, the engine

organizes and executes the services required by the CIS entities

(e.g., a patient, primary care provider, and patient portal) and

enforces policies.

We are currently using the Oracle BPEL Process Manager as our

execution engine [13].

4. DISCUSSION AND CONCLUSIONS
The MODECIS tool suite provides a domain-specific, graphical

design environment for precisely describing organizational,

deployment, service, and data models in relation to patient portals.

Through our collaboration with Vanderbilt University Medical

Center (VUMC), we were able to create a modeling language

capable of representing a functional patient portal. The VUMC

group was also able to confirm the expressiveness and correctness

of our patient portal workflow models, which we have begun to

deploy on the Oracle BPEL execution engine.

Although MODECIS is a work-in-progress, models created with

the tool suite serve as formal system specifications that can be

mapped onto various SOA execution platforms for simulation.

Consistency and wellformedness checking is already supported by

MODECIS; support for policy verification and vulnerability and

security analysis of the models is our next step, which will be

supported through the use of existing analysis tools.

MODECIS provides a scalable tool to evaluate design decisions

and system changes before deploying costly healthcare

infrastructure. The creation of patient portal models and

simulations is one step toward designing robust CIS that are able

to take into account the diverse privacy and security concerns of

stakeholders.

5. ACKNOWLEDGMENTS
This research was funded in part by the Team for Research in

Ubiquitous Secure Technologies (TRUST) NSF CCF-0424422,

an NSF S&T Center. The authors wish to thank John Doulis,

Dario Giuse, Jim Jirjis, Jun Kunavat, Dan Masys, Sue Muse, Bill

Stead, Yun Wang, and especially Jim Weaver for the insightful

discussions and their time. The views and conclusions contained

here are those of the authors and should not be interpreted as

necessarily representing the official policies or endorsements,

either expressed or implied, of the U.S. Government or any of its

agencies.

6. REFERENCES
[1] Davies NM. Healthcare Information and Management

Systems Society: The ROI of EMR-EHR: Productivity Soars,

Hospitals Save Time and, Yes, Money. HIMSS Journal.

2006.

[2] U.S. Department of Health and Human Services. Standards

for privacy of individually identifiable health information;

Final Rule. Federal Register, 2002 Aug 12; 45 CFR: Parts

160-164.

[3] U.S. Department of Health and Human Services, Office for

Civil Rights. Standards for protection of electronic health

information; Final Rule. Federal Register, 2003 Feb 20; 45

CFR: Pt. 164.

[4] Masys D, Baker D, Butros A, Cowles KE. Giving patients

access to their medical records: the PCASSO experience, J

Am Med Inform Assoc. 2002; 9(2): 181- 91.

[5] A. Yanchuk, A. Ivanyukovich, M. Marchese: “Towards a

Mathematical Foundation for Service-Oriented Applications

Design”,

http://www.science.unitn.it/~marchese/pdf/Towards_SOAD_

JoS_06.pdf

[6] B. Portier: "SOA terminology overview, Part 1: Service,

architecture, governance, and business terms", http://www-

128.ibm.com/developerworks/library/ws-soa-

term1/index.html

[7] B. Portier: "SOA terminology overview, Part 2:

Development processes, models, and assets", http://www-

128.ibm.com/developerworks/library/ws-soa-

term2/index.html

[8] OASIS: “Web Services Business Process Execution

Language (WSBPEL) TC”, http://www.oasis-

open.org/committees/tc_home.php?wg_abbrev=wsbpel

[9] G. Karsai, J. Sztipanovits, A. Ledeczi, and T. Bapty, “Model-

integrated development of embedded software,” Proceedings

of the IEEE, vol. 91, no. 1, pp. 145-164, Jan. 2003.

[10] Kawamoto K, Lobach D. Proposal for fulfilling strategic

objectives of the U.S. roadmap for national action on

decision support through a service-oriented architecture

leveraging HL7 services. J Am Med Inform Assoc. 2007; 14:

146-55.

[11] R. Hamadi, B. Benatallah: “A Petri Net-based Model for

Web Service Composition”,

http://crpit.com/confpapers/CRPITV17Hamadi.pdf

[12] F. van Breugel, M. Koshkina: "Models and Verification of

BPEL",

http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf

[13] Oracle BPEL Process Manager,

http://www.oracle.com/technology/products/ias/bpel/index.ht

ml

[14] M. Alam, R. Breu, M. Hafner, “Modeling permissions in a

(U/X)ML world,” in Proc. First International Conference on

Availability, Reliability and Security, pp. 685-692, April

2006.

[15] B. Malin and L. Sweeney, “How not to protect genomic data

privacy in a distributed network: using trail re-identification

to evaluate and design anonymity protection systems,”

Journal of Biomedical Informatics, vol. 37, no. 3, pp. 179-

192, Feb 2004.

[16] G. Karsai, A. Agarwal., F. Shi, and J. Sprinkle, “On the use

of graph transformation in the formal specification of model

interpreters,” Journal of Universal Computer Science, vol. 9,

no. 11, pp. 1296-1321, Nov 2003.

http://www.science.unitn.it/~marchese/pdf/Towards_SOAD_JoS_06.pdf
http://www.science.unitn.it/~marchese/pdf/Towards_SOAD_JoS_06.pdf
http://www-128.ibm.com/developerworks/library/ws-soa-term1/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term1/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term1/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term2/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term2/index.html
http://www-128.ibm.com/developerworks/library/ws-soa-term2/index.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsbpel
http://crpit.com/confpapers/CRPITV17Hamadi.pdf
http://www.cse.yorku.ca/~franck/research/drafts/tutorial.pdf
http://www.oracle.com/technology/products/ias/bpel/index.html
http://www.oracle.com/technology/products/ias/bpel/index.html

