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Abstract

This paper describes the design and implementaifoa hybrid two-stage intrusion
detection system (IDS) for use with mobile ad-h@&tworks. This system, called HybrIDS,
classifies network interactions by mapping eachali from its target operational scenario to a
discrete label. The hybrid nature of our IDS istoegd in the cooperative nature of two
detection strategies. Our first detection strategyploys peak analysis and probability density
functions to isolate deviance at the level of alemode. It can perform this analysis with zero
prior knowledge of its operating environment; iu@es no calibration data. In contrast, the
secondary method relies on a cross-correlative ooewt, which requires careful tuning of a
detection threshold. Its primary advantage lies it ability to detect multiple threats
simultaneously. The first stage provides tuning ealibration information for the second stage.
Our approach distributes the IDS among all conmkeatetwork nodes, allowing each node to
identify potential threats individually. The combuhresult can detect deviant nodes in a scalable
manner, in the presence of a density of deviantemodpproaching 22%. Computational

requirements are reduced to adapt optimally to ek devices on an ad-hoc network.



1. Introduction

Distributed and mobile technologies pervade dhiéyin almost every way shape and
form, and this creates an increasing need to grotaconly systems, but their ever-critical data
from malicious activity. [1] Because these techgads are further expanding in their abilities to
intercommunicate, simple static methods are nodorglequate in providing security to these

computational scenarios.

To this end, we can identify three quantifiableele of protecting a system: 1.) Intrusion
protection: preventing unauthorized access by meainencryption or another form of
obfuscation. 2.) Intrusion detection: identifyingruders that have breached the mechanisms put
in place to secure the networked system. 3.) lidnuslimination: removing an intruder while

providing minimal disruption to the legitimate netrk.

Much work exists in the field of intrusion protieet;, providing data integrity and
confidentiality has long been provided by signatarel encryption mechanisms, such as the
industry-standard RSA encryption method, [2-4]eihémploys public-key cryptography. RSA
provides the advantages of a block cipher encrgptiethod and combines it with the principle
that factoring large numbers is difficult even @mtvanced, sophisticated computing equipment.
However, recent developments in distributed, passwlefeating mechanisms as well as the
advent of quantum computing, which in theory coingtantly factor large numbers [5], are
leaving RSA more vulnerable to attacks. Examplesotbfer schemes succumbing to their
inherent vulnerabilities are numerous; high-deifomtDVD content, such as that encrypted under
the Advanced Access Content System (AACYS) for digights management [6] was said to be

completely impervious to attack, but was cracketthiwia few months of release [7].



This leads to the desire for the second securiplementation: intrusion detection. This
article will cover intrusion detection within theape of an ad-hoc network scenario; it will not
cover intrusion elimination. The classic model dorintrusion detection system, or IDS, involves
the usage of a primary detection mechanism thapied to a network or subnet. [8-14] In
Figure 1, the brick wall, which can represent a
firewall, houses the intrusion detection
component. This component is filters away
operational parameters related to its host

system, and instead focuses on packet-level

Figurel- An example of a Centralized IDS

information, such as source, destination, frequemnayting mechanisms, and other protocol-
specific pieces of information. As a direct resaflthis protocol-specific behavior, a traditional,

centralized IDS requires large amounts of companati power [2, 15] to identify threats on a

s 1

network. The need for complex traffic analysis al

statistical pattern recognition cause the systerbeto
impractical for scenarios not employing gener:

purpose computation.

We propose the development of
decentralized IDS approach that uses a combina
of detection strategies to accomplish its ¢
effectively, while minimizing resource utilization

Figure 2 demonstrates that each node in the ad:'9/"¢?-Aneamplect adisributed IDS



network contains a local copy of the IDS systemrtif@rmore, this IDS utilizes a set of
abstraction principles that allows it to monitorhbeiors related to different operational
scenarios. Computational overhead is reduced byitarorg the system’s behavior instead of
individual network packets that may omit the cobtefxan application’s functionality. The IDS

is called HybrIDS, and shall be referred to as dumm this point forward.

To enable HybrIDS to adapt to multiple scenarias, interface must be developed
between the host system and IDS that still captimésmation about its target scenario.
Therefore, we chose to abstract the system beh&viarlevel where only interactions among
nodes are visible to the IDS This allows us taugedrequirements for computational intensity,
which, depending on the target application, camriiecal for power and hardware needs. In our
scenario-driven tests, we were able to scale Hybridb-linearly from network sizes ranging

from 5 to 100 active nodes.

To reduce the load on the host system, the IDSbeamtegrated as separate hardware
from the main processing platform. Our testbedf@tat was a 200MHz ARM9-based 32-bit
RISC architecture equipped with 64MB of RAM and mali, embedded Linux platform
featuring the Linux 2.6 kernel. However, for spéiogted applications, and applications in
which there also exists plenty of computing povike IDS can be integrated directly into the
host computing infrastructure. For reasons of fmlitg, HybrIDS utilized the Java platform to

write the IDS application itself.

HybrIDS applies itself well to a wide range ofgear applications because it scales well to
a large ad-hoc network. This gives it desirablegpprbes of being able to monitor an extremely

flexible size of network configurations without sificantly increasing the computational load.



As a result, almost any ad-hoc network that pogssessdiscrete set of possible interactive

behaviors can be a candidate target for HybrID&gration.

HybrIDS provides a flexible method of intrusiontelgtion. Rather than relying on a fixed
detection strategy, HybrIDS utilizes a system o twtrusion detection schemes. They operate
in a cooperative effort to increase detection &fficy and accuracy beyond the capabilities of
each individual method. The detection scheme Ihjtarovides detection for a single anomaly
without the need for training data, as the firsag# prepares the second phase of the IDS. This
phase also calibrates the multiple-anomaly-detecioheme. Our scenario-driven examples
show that HybrIDS is capable of detecting deviagerds comprising up to 22% of the
population of the nodes in an ad-hoc network. Weaomplish this in a scalable manner that

allows for efficient identification of deviant nosle

In Section 2 we will discuss two operational sr#rs in which HybrIDS provides useful
intrusion detection. Under Section 3, we provid&aie on how HybrIDS captures a model of its
target system efficiently. Section 4 details thdividual operating principles that comprise the
hybrid nature of the IDS, followed by an explanataf their joint operation. Section 5 discusses
HybrIDS in the context of the two operational saers while Section 6 places HybrIDS in the
context of other efforts in intrusion detection.c@n 7 summarizes the paper and discusses

future work.

2. Scenarios

The selection of a set of target applications gbHDS is perhaps as important as the
nature of the system itself. Here we describe #tiemale that enables a range of applications to

benefit from the features offered in HybrIDS. Theeg examples are neither a complete list nor



a basis for an explorative space of possible agipios, but show potential applications of how

HybrIDS adapts itself to its target’s needs.

2.1 Modified ADS-B

The first scenario to consider is within the awatsector. ADS-B, or the Automated
Dependent Surveillance Broadcast system, providescn-needed update to aircraft avionics. It
provides aircraft and ground-based systems withctggability: (1) to manage and identify
surrounding aircraft, (2) to evaluate traffic camwhs, and (3) to provide collision avoidance
(Airborne Collision Avoidance System) [16-19]. Besa it is designed to operate within the
civilian airspace domain, the broadcasts are madédahle to all aircraft and ground control
mechanisms, regardless of the receiver’'s iderAiBS-B is currently, at the time of this writing,
in extensive testing to determine its broader im@ac benefits on the state of aviation today.
Therefore, there is no accessible data on sedorégches, security compromises, and possible
misuse of the unencrypted, broadcasted data. Howe\Becomes clear that security concerns,

in some form or another, will arise as a result.

To use this as an example candidate for intrugietection in an ad-hoc network, we
have extended the capabilities of ADS-B to opebatged on node-to-node interaction requests.
It is important to understand that ADS-B is intedider public, civilian use. Therefore, it does
not serve well as an example system without firstlifying some of its operational parameters.
It is assumed that for first-level security purpgmssome form of a security protocol exists, such
as encryption and/or a shared secret method. Tablews the unmodified ADS-B messages,
which include details such as altitude, positiond adentification parameters that allow the

system to form a model of the airspace.



Table1- Tradition ADS-B broadcast contents

Broadcast Category Broadcast Content Statistical Distribution
1 Positior Symmetric (2Hz
2 Velocity Symmetric (2Hz
3 Altitude Symmetric (2Hz
4 Aircraft ID Symmetric (2Hz
5 Rate of Climl Symmetric (2Hz

In addition to changing broadcasts to requests|ish of available requests was extended
to 10 by adding information that might enable joapterations between manned or unmanned

aircraft.

Table2 - Modified ADS-B behavioral enumeration

Broadcast Category Broadcast Content Statistical Distribution
1 GPS Position Informatic 0.4z
2 Altitude 0.2¢
3 Rate of Climl 0.1t
4 Velocity Vectol 0.1
5 Mission Updat 0.0¢
6 Request Redirecti 0.01
7 Mission Star 0.01
8 Mission Enc 0.01
9 Emergency Actio 0.01
10 Leader/Follower chan 0.01




In this updated model (Table 2), the aircraft idferation request has been removed. For
simplicity, it is assumed that sender/receiver rimfation is ascertained during the network’s
specific communication protocol. The third colunmdicates the probability that such a request
will occur, thereby mapping a frequency distribatié-or example, the networked aircraft would
likely not issue many “Mission End” commands duringrmal operation, while a “GPS

position” request would logically occur more freqtlg.

The modified ADS-B example contains four criticlements that make it an ideal
candidate for the application of HybrIDS: 1.) A séfactions or behaviors that can be quantified
before the network is in operation (Discrete Bebess) 2.) A statistical distribution of those
actions (known or unknown). 3.) Independent fumatig of the interconnected nodes. 4.) The
capacity for each node to identify requests madelmf other nodes. These parameters map to a
set of requirements for a low-power, embedded qiatf 1.) High-level system abstraction. 2.)
Minimized computational power requirement. 3.) Logsource utilization and overhead. The
two lists indicate the level o&daptability and conformity the former demonstrates how
applicable and useful HybrIDS is within the systeamtext, while the latter demonstrates the
efficiency of its implementation. For instance, Hf25 may adapt well to a target scenario, but
certain elements such as size or speed requiremegls limit its conformity. Further sections

will clarify why HybrIDS conforms well to the ADS-Bcenario.

2.2. Massively-distributed microrobotics

Another interesting target area involves the daplent of large numbers of autonomous

robots that, in large numbers, can quantify andyaeaa situation. These robots often enter areas



where it would be unsafe or impractical for humémsexist. As an example, a “BallBot” or

“Planetary Microbot” [20] was proposed as a solutior exploring crevasses on Mars. Many of
them could be deployed — thousands at a time -wduilé many would be lost to the conditions
of the environment, the remaining collective cowdrner valuable information about the
surroundings. In this example, the robots haveeex¢ty small computing environments, and
have minimal communication skills, qualifying theas deeply embedded systems [21]. While
the need for security is not apparent for coopegasicientific research, other adaptations, for
instance espionage, could well use capabilitiesefaryption and intrusion detection. A single

external influence could cause the entire collectosfail if properly crafted.

2.3. Summary of scenarios

The ADS-B and distributed microrobotics examplaglght needs present in an ad-hoc
network of homogeneous systems: security beyonglsiencryption. Taking into account the
requirements of adaptability and conformity, welwibw explore how HybrIDS becomes a

viable platform for intrusion detection in an adeheetwork infrastructure.

3. System-level abstraction

To meet the requirements for adaptability, we noosisider how HybrIDS can abstract a
“world model” with which to understand its targgipdication. The key to this lies in abstracting
the possible space of node-to-node interactionantiging them ahead of time. For instance, in

the modified ADS-B scheme, the “Broadcast Categaptumn in Table 2 represents a discrete



listing of all the possible interactions that cartar. Not only are they listed discreetly, but they

can also be seen as “mapped” to a label, albé@mples integer numbering scheme.

HybrIDS utilizes an integer labeling system toresent all interactions between nodes.

The behaviors and interactions are
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interactions a node will experience over time.
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made to reduce the complexity and processing reougnts for the IDS. Rather, the level of

abstraction is simply limited to the request typkme, as denoted by “Level 1” in Figure 4.

4. Reasons for a hybrid methodology

Because no one strategy is foolproof or completfigient, we describe two techniques
that, to some degree, compensate for each othex&kivesses. The first strategy requires no
training data, and can perform basic detection atnnmmediately upon starting. The second
strategy can provide identification of multiple amalies within the network. HybrIDS combines

these strategies to provide an improved level ifigion detection.

4.1 The Maxima Detection System (MDS)

The first detection method used by HybrIDS is exhlthe Maxima Detection System
(MDS). Its primary purpose is to rapidly identifptential threats. Under the hybrid detection
scheme, its secondary purpose is to provide célioranformation so that the secondary IDS
phase, called CCIDS (Cross-Correlative IntrusiorteDgon System, introduced in the next
section) can function more accurately. Its detecioheme analyzes peaks present in the PDF

from statistics generated from requests made lsrotbdes.

It is important to understand how the IDS gathiesrgnformation before we can assess the
performance of MDS when performing network behavaralysis. As mentioned before,
interaction requests are classified with integéela so that the system may be modeled in a

high-level perspective. When a request is recelwed node, the request and its source are



recorded in a structure called a history tablesThble contains column entries that map to the
interaction labels and rows that map to other nodesitored by the IDS. The IDS does not keep
information about its host node. The recorded imfation is stored as counter values that
indicate the number of requests received accorttirigeir classification, and from what node it
originates. The history table is the most importafdrmation repository from which statistical

models can be generated.

The statistical model itself is an aggregatiorenfries from the history table. Each table
entry represents a counter value which can be gedrto form a PDF representing the request
statistics of individual nodes. MDS forms an averdgehavior profile” of its target scenario and
associated network which is essentially a PDF stingl of the average of all the individual
node PDFs. Figure 3 shows an example average PDd&dgstem. It is noted that the activities
are ordered in such a way that a normalized digioh exists; this is a requirement for MDS to
function properly. This ordering can take placeaal time, or can be generated as a result of

trial simulations. A Chi-Squared distribution iseferable for purposes of implementation.

Lety be the number of nodes in the system an@ lefpresent the number of behaviors
present in the system. Let represent a matrixroédsionsy x  containing the historically
and temporally-updated probabilities of a certahdvior§. The mean PDFyp is computed for

each node in ().

(1)

Iean Behavior Distribution and Detected Maximum
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Following the averaging process,s then .l
02
analyzed for peaks. Since the labels are orde 3
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Figure5- 'Example peak detection



and will experience some form of a distribution, van exclude the global maximum peak as
normal activity. Following this exclusion, the PR¥analyzed for the presence of local maxima.
Since a local maximum is a less-likely event farceimalized distribution, we assume that this
indicates the presence of deviant behavior. Of smuduring the duration of the scenario’s
operation, system behavior will change and the teess of the distribution in the mean PDF
will vary. For this reason, peak detection is leditby a sensitivity threshold. The indication of a

local maxima and its threshold is shown in Figure 5

This first stage in the detection process ideggifbnly an interaction classification that is
exhibiting an abnormal trend; it has not yet idigsdi the source of this aberration. To complete
identification, the history table is traversed todf the node that statistically has the greatest
contribution to the establishment of the local maxin in the mean PDF. This reverse-mapping
proves effective and fast; since the history tableomprised of counter values, its values can be

easily normalized to find the source of the deviaettavior in terms of average contributions.

Identification of deviant nodes can occur quickigcause trends in the average PDF
stabilize rapidly. Of course, the primary disadegya to MDS is that it can at most identify only
one deviant agent on the network. Significant stiahl deviation in local maxima therefore
provides the advantage of speed and reliabilityjclwiwill be necessary for the eventual

combination with CCIDS.

4.2 The Cross-Correlative Intrusion Detection Sys(€CIDS)

MDS relies on finding local peaks in a local ID&¢erage PDF. In order to expand the
IDS’s functionality, we would like to add featurd®at increase the IDS’s conformity to its target

application. One of the most pressing requiremintise ability to detect multiple deviant nodes



— a capability not possible with MDS. To do thisg wvnust consider a different method of
analysis that can return multiple results. One psorg technique utilizes cross-correlation to
generate scores indicating the degree of correldietween node behaviors. Of course, any
method has its disadvantages; cross-correlatiodeendent on a threshold that determines
whether a score is or is not statistically coreatio another score. However, when the threshold
is appropriately set, cross-correlation can yietdtusate results about multiple nodes that

increase the IDS’s conformity.

Our cross-correlative approach, called the Cramselative Intrusion Detection System
(CCIDS) once again draws on data from the histablet The scores are the result of cross-
correlating an average PDF for the system withviddial PDFs corresponding to each node.
This yields a set of scores, one score per noden lrepresent a row-summed vector derived
from the history table. The vector is then averageet represent a transposed vector
containing thendividual averaged distribution of a behavior for a paraculode number

The scores  from the resulting cross-correlatienadatained by . (2).

Once the scores ard

deviant. This is done

Figure6 - Thresholding of scores



may vary from the average score before it is cared deviant. Figure 6 demonstrates a
bounding box which represents the threshold. THdine denotes the mean score. Note that the
threshold is a distance from the mean score lins;an absolute value. Scores within the green
bounding box are considered acceptable valuesgewinidse outside the box, highlighted in red,

are considered deviant.

CCIDS’s primary disadvantage is that the threshsldritically important in detection;
improper setting will either include many false pi@ss, or cause it to not detect any deviant
nodes. Once properly set, CCIDS can run accuratgly significant resistance to change in the
system model; node behavior can change over tirtteout significantly impacting the results of
detected deviant nodes. However, setting the tbtégtroperly must be done prior to runtime,

or after sufficient calibration data has been fotméind the optimum setting.



4.3 HybrIDS

The two detection methods introduced to this poMDS and CCIDS have their
respective strengths and weaknesses. MDS can aetecnd only one deviant agent in a short
period of time without needing any significant badtion. CCIDS can detect multiple deviant
agents, but requires a period of calibration ireottd set its threshold correctly. An improperly-
set threshold would yield false positives, or ndedgon at all. We seek to combat the
weaknesses by combining the strengths of each taetestrategy. This combined approach is

called HybrIDS.

One of the most important aspects of IDS confgritota target is its ability to scale to
larger networks. Adding more nodes to the ad-hotwok should minimally impact the
efficiency of the IDS. To accomplish this, we haagjusted the execution rate of the most
computationally-intensive portions of the IDS sattthe execution time scales sub-linearly. IDS
runs are based on two types of processing cydgsiata processing cycles, which are compute-
intensive, and (2) data collection cycles, whichrbd execute analytical functions of the IDS.
The method of controlling the number of data preces cycles relies on understanding that a
larger collective of nodes will establish an averpgofile over a smaller amount of time than a
small one. Therefore, less analysis is requiregraperly identify deviant nodes — whereas a
network consisting of fewer nodes will require maemputational analysis over the same

amount of time.

Understanding scalability then allows us to isdata processing cycles (DPCs) variably
between the data collection cycles (DCCs) such mate collection cycles will pass before

analysis for a larger network size. As a resultn@isvork size increases, IDS performance will



scale effectively. In our studies, computationdemsity varied sub-linearly dependent on the
size of the network. We tested a range of netwizdss from 5 to 100 interconnected nodes, for

both MDS and CCIDS.

The combination of the two detection strategideeig to the operation of HybrIDS. Each
stage must operate in a manner that maximizesfticeercy of the IDS as a whole. This means
limiting the run time of MDS to the point wheresitabilizes and provides necessary calibration
information for CCIDS. Before we can analyze tréosing, it is important to understand how

MDS “calibrates” the CCIDS.

As stated previously, MDS identifies at most onspected deviant node. In contrast,
CCIDS is capable of detecting several deviant nosiesultaneously. If the threshold is
improperly set, many of those detected nodes malbe positives. To reduce this probability
and to set the threshold properly, the IDS entetsaasition period following a stabilization
period for MDS. The threshold for CCIDS initially set to represent a 100% deviation from the
average score — a wide margin of deviance that fikaty would not catch any positives, false

or otherwise. During the transition, both MDS andIBS run

simultaneously and both return sets of suspectddsid’hese sets ar ‘
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ends, and CCIDS, now properly calibrated, contiragethe primary means of detection. Figure 7
shows this algorithm as a flowchart. In the figute “HybridState” decision item must be true
in order to begin the transition process. Perfomeametrics can establish the conformity of
HybrIDS on an ad-hoc target application. Based xqmeemental results, the most significant
impact on IDS performance was provided by the pdrpervasion of deviant nodes on the ad-
hoc network. Pervasion is defined as the total ggegege of nodes known to exhibit deviant
behavior within the collective. Since scale wasvamdo have little impact on HybrIDS’s

efficiency, performance was measured in numberrotgssing cycles required to stabilize an
accurate result in terms of percent pervasion. sTegre based on a fixed number of 10
behaviors (appropriate to the scenario), with gateer data conforming to the modified ADS-B
model shown in Section 2.1. The results are shownaacsurface plot in Figure 8, which

represents varying number of nodes versus a vapangentage of pervasion. The vertical axis
shows the number of processing cycles requiredréeientification was successful. This

number includes MDS, transition, and CCIDS processiycles.

We can see that an increase of pervasion affeetstabilization time of the IDS. This
makes sense because the increase in occurrenceviahtibehavior becomes more common,
which in turn has a greater impact on the scorarsg¢ipn found by CCIDS. Since individual
scores are compared to an average, the averagéegilh to manifest elements of the deviant
behavior in a more determiental way. As a resutirariransition cycles are required to adjust the
threshold more stringently, and more CCIDS process required, since more data is required

to find the correct number of deviant agents.
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Figure 8- HybrIDS performance

According to data collected for the modified ADSsBenario, HybrIDS is capable of
converging on a list of suspect nodes, providettti@pervasion of deviant nodes is less than or
equal to 22%. HybrIDS will converge on results wikrvasions exceeding this limit, but
predictability becomes difficult, impacting the dommity of the IDS to an embedded
application. This is an important constraint, simoest real-time systems have little to no
tolerance for non-determinacy in their operatiohgh these limitations in mind, the adaptability

of various scenarios to use HybrIDS becomes magoarapt.

5. Analyzing Scenarios: Modified ADS-B



Let us refer now to the two scenarios describedvipusly to explore adaptability and
conformity. We will cover the four requirements fadaptability and the three requirements for
conformity. The modified ADS-B scheme will be armdy first, followed by the BallBot

scheme.

The modified ADS-B scheme meets the Discrete Biehagquirement easily. According
to our scheme, there is a fixed set of 10 behavttmtdefines the operational characteristics of
the system. These behaviors are listed in Tabl&€h2. second requirement, i.e., a statistical
distribution of actions, is also met. Because AD®4Bctions are, in general, the same for all

aircraft, there will be an inherent distributiontb& occurrence of behaviors.

Independent operation of nodes is also guarantéédle the nodes may coordinate
information, no one aircraft may take control obtrer. The last requirement for adaptability, of
knowing a received request, is provided in thahdaansmission contains a sender along with
the receipt of request information. We make an g assumption that identity spoofing is
rendered either impossible or impractical by thengwnications protocol. All nodes are

“presumed innocent until proven guilty” by the fighase (i.e., MDS) of the IDS.

Turning our attention now to conformity, we nownumstrate that HybrIDS can
efficiently meet the criteria for conforming to adet scenario. The requirement for a high level
of system abstraction is implicitly demonstratedT@able 2 in that all interactions between the
aircraft have been abstracted to a request typbrlB$ utilizes these integer mappings at face
value. There is no notion of data or associatedarpaters that might complicate the
understanding of the system itself. Computatiormalgr requirement is mitigated inherently by

the distribution and control of data processingleycHybrIDS uses situational awareness to



reduce the need for large and complex computatidherefore, we can utilize less powerful

hardware that can reduce the power, cost and theesarements of its host system.

Finally, resource utilization is met through a stwained use of program resources. For
portability reasons, HybrIDS is written in Javadaran run on any system implementing or
emulating the Java 1.5 Runtime Environment. Jactudes garbage collection routines and
intelligent memory management, which is useful fmmservation. Despite this, garbage
collection can affect determinacy, which can seyarapact responsiveness and performance in
a real-time system. To combat this problem, akvaht memory structures persist throughout
the entire period of HybrIDS’s execution. In a tgdi configuration, utilizing 35 nodes with 10
behavior types for the ADS-B scenario, maximum mgmeage by the largest data structure

does not exceed 2.7 kilobytes.

In our test configuration, we utilized a 200MHz KRB-based development board with
64MB of RAM and an embedded Linux operating systeamel. A specially-designed, cross-
compiled Java runtime environment, called JamVM..6.0 was loaded in order to execute the
HybrIDS application, which was packaged as a JA&® fiamVM itself is does not fully comply
with the Java 1.5 standard due to licensing isdmgisis completely compatible in terms of the
execution of HybrIDS. It also features a compactmoey footprint and is optimized for

embedded systems applications.



To assess the overall memc
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therefore be negligible. The JVM itself require@MB of memory to runwhile HybrIDS, due
to various program and control structures, requiesd than 75 KB of RAM. Together, JVV
and IDS required approximateh MB of application memory, which can be seen in Fegf

This conforms easily to the requirements of all lbbe most deeply embedded syst
architectures. Approximately 2.4 MB of RAM was iz#ld by the operating system kerr

issuing a total requirement of 7.4 MB for the systes a whole

Viewing the different aspects of adaptability ammhformity, it become apparent that
HybrIDS is a good match for the modified A-B scenario. It is capable of quickly a
thoroughly identifying multiple deviant agents imetscenario’s &hoc network, and does
utilizing minimal system resources. Therefore, eommend HbrIDS as a possible solution

intrusion detection needs for Al-B and any possible derivatives.

5.2 Analyzing scenarios: Microrobot

In the modified ADSB scenario, wedo not see much hobised restriction of HybrID

in terms of memory and processing requirements. QiPatessing capability, power, a



memory are not greatly curtailed by a large sysseich as an aircraft. In contrast, the BallBot
features a much smaller processing environmentlé/the exact constraints are unknown, it is
assumed that a processing system available to demobot only a few centimeters in size will

be restricted to sensors and communications. Remgaspace will be used by power supply and
mobility, which severely limits the possibilitie$ mnning complex operations. We can assume
that operational memory space will shift from megab to a few kilobytes in order to conserve

power. Processing, if any, would exist via an 8 &bit microcontroller.

Given these restrictions, Java would not make @ dmplementation choice. Memory
and processing overhead from the JVM would be sirtga great to allow for execution to take
place. While a C or assembly-based implementatas rieither been written nor tested, it is
possible to re-factor the code into a minimalisigiaage to bypass overhead incurred by high-
level implementations. We believe this that thelBall scenario is future fertile ground for our
IDS technology. Given the scalability results foe tmodified ADS-B scenario, which shows
sub-linear growth as nodes are added, it is eapyifgiple to extend the ad-hoc network size to
include thousands of nodes. Figure 10 demonstatesojected analysis of the number of
processing cycles required to identify deviant sod&e have utilized individual logarithmic
trends for each pervasion percentage. While notteae logarithmic-like nature demonstrates
that adding more nodes reduces the number of DRCdisaussed earlier. Furthermore, the
flexibility of the IDS monitoring method assuresatleach node monitors only other nodes with
which it actively interacts. This further reduche bverhead. For example, a 1000-node network
does not necessarily imply that each node is mong®99 other nodes; it may be monitoring as
few as 10 or as many as 500, depending on thaomsaips it establishes with the network’s

constituent nodes.



Forecast Scalability vs Percentage Pervasion
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Figure 10 - Projected Scalability Surface Plot

As processing
hardware and power

supplies advance in

their capabilities,
HybrIDS could
eventually be

integrated into this
ultra-small-scale
computing
environment with

relative ease. The four

requirements of adaptability would be met by ingelht distinctions between sen-based data

and shared requests or commands. For the BallBsa, @nformity is the greatest challen

Fitting the computing environment efficiently insoch a minimalist system presents challer

that at the time of this writing may not have ausioin. Despite this, we are confident that -

scalability and performance aspects of HybrIDSJesonstrated in the modified Al-B model,

shows promise of providing enhanced security thattaid, embeddedDS can provide

6. Related Work

There exists a signifant body of research on intrusiontelgion. Much of this worl

focuses on the development of IDSs that exist aticsbr norrad-hoc networks. Some of o

research relates closely to the work by Xiaogiangl., who specify methods for using cr-



correlation in anomaly detection [12]. Irdis anda8tugam demonstrate how techniques of
artificial intelligence (Al) may be applied to tfield of intrusion detection. Our strategy does
not use Al in order to reduce dependence on anyatgwithm or system [8]. Dwen-Ren et al.
specify the use of a hybrid intrusion detectiontesys[22]. Their approach does not explicitly
cover the ad-hoc network implementation, and thieridytechniques are based on the use of
centralized analysis alternating between a sefiészay logic classification mechanisms. Other
references explore the application of reputaticstesys, such as that presented by Buchegger et
al. [23]. A reputation system describes a methoctebdbly routing data. Useful for the context
of connected routers, a reputation system seekdetdify transmission nodes that are either
aiding or impeding proper transmission of inforroati The identification is performed by

“reputation” information which is gathered from tbleservations of other nodes over time.

The authors of works [15, 23-39] specify the usamtrusion detection within the field
of ad-hoc networks. This field is, as expected,em@mmpact and specific, as general networking
techniqgues and computing power is no longer asicgipé as in the traditional static-network-
based IDS scheme. Marchang and Datta [33] introducellaborative IDS scheme in which
message-passing between nodes serve to build toal@tformation among nodes that are either
directly connected, or within a one-hop-route ofleather. Their approach is more central to
communications and routing, while our work focusesbehavior-based IDS techniques, which

are not used to determine routing for data betwesles.

The “Layered Intrusion Detection Framework” propdsy Komninos and Douligeris
[31] delineates a specialized mobile ad-hoc ID®&régue in which nodes assume different roles
(e.g., alert, detection, and collection). This eliff from our approach in which data collection

and processing is done on each host node; thex® ¢sordinated action between IDS instances.



This allows for greater application independencel aflows the host systems to operate
independently of information from other systemsalo reduces the possibility of failure and

reduces computational needs.

Patwardhan et al. implement a threshold-based[8BFthat works with routing on an
ad-hoc network infrastructure through the use adittlhdog” nodes. This is a specialized case of
an IDS that utilizes nodes serving a specific pggp®ur system implements a general-purpose
detection scheme that is not dependent on spemiatibn nodes. HybrIDS is also not a solution

for the purposes of data routing and/or findingrapt, non-compromised routes between nodes.

Komninos, Vergados and Douligeris describe a ntktiadich in principle, is similar in
some respects to methods present to HybrIDS. Theyrilbe a two-phase process for detecting
intrusion on an ad-hoc network, one of which reegliizero-knowledge [32]. This is similar to
the MDS phase in HybrIDS, which requires no tragntata. However, their framework is more
specialized and deals with the management andhdison of encryption keys, which is a lower

level of abstraction than HybrIDS proposes.

Given the literature relevant to mobile, ad-hotamek-based IDSs, we believe HybrIDS
sets itself apart both in purpose and in its detecipproach to provide a unique perspective to
the intrusion detection landscape. Because of ritserent scalability and low resource
consumption, and portable codebase, our IDS isicgijhe to a different set of possible target

scenarios than that featured in the related worksgmted in this section.

7. Conclusion and Future Work



In this article we have demonstrated the needapplicability of an embeddable IDS
within the context of an ad-hoc network. We havevam how HybrIDS integrates well with
scenarios that require scalability and computatipnafficient implementations. The IDS
compensates for weaknesses in detection methodsldgy providing a unique two-stage

anomaly identification strategy.

The first strategy, MDS, performs peak analysiddébermine what possible deviance
exists among networked nodes, with zero knowledgbeohost system. The primary advantage
of this method is that it quickly establishes aclbon the most likely potential deviant node.
MDS balances data collection and data processiegeby lowering the required power profile.

A secondary IDS strategy, called CCIDS, providesltiple-anomaly detection. Its
primary strength comes from the use of cross-cative operators. Because of the nature of the
cross-correlation strategy, we must carefully cleoasdetection threshold with which the IDS
can successfully detect deviant nodes without duteing false positives. Inherently, this

requires prior operational knowledge of the operal scenario.

HybrIDS addresses the single-detection problebt along with the threshold issue
present with CCIDS by using the detection strategietandem. MDS is used as a calibration
instrument to tune the threshold used in CCIDSniraecurate and automated fashion. Together,
the two methods can provide a capable model ofattizities in a distributed mobile ad-hoc

network and perform analysis with minimal impactaamputational resources.

We have shown two different scenarios, with srt@large network sizes, and analyzed
how HybrIDS can take advantage of both situatidnghe modified ADS-B scenario, where

more computational power might be available, Hyl&IBhows rapid convergence on a set of



possibly deviant nodes. It can identify deviantemdp to a density of 22% of the interconnected
nodes. In contrast, the microrobotics scenario gmssan altogether different challenge of
integrating an IDS into an extremely limited compgtscenario. While current technology may
limit its implementation, a scalability forecastos¥s that HybrIDS will indeed perform well

once resources match computational requirements.dur belief that HybrIDS addresses the
intrusion detection needs of a large and scalabiy aof mobile ad-hoc networks. The two

detection strategies implemented provide flexiypiliind accuracy to situations that otherwise

may not have benefitted from the use of an IDS.

Future work includes the correlation of performamequirements for various network
sizes. The data processing cycle is a relativecatdr of the amount of work required. We will
supplement this information with of the distributi@f integer and floating point instructions
required. In addition to computation, we will alaoalyze the power requirements using the
embedded ARM9 processing platform. Further worklgo being done to model trial runs on
large distributed networking test beds, using trendérbilt University Institute for Software
Integrated Systems (ISIS) Generic Modeling Envirentn (GME) [40]. Our goal is to
dynamically render network diagrams from the vieimpof multiple connected nodes running
HybrIDS. This will provide a better perspective loow each node perceives its world model, as

well as how different instantiations of HybrIDS mdigy threats within a distributed network.
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