
Constructive Techniques for Meta- and
Model-level Reasoning

Ethan K. Jackson and Janos Sztipanovits

Institute for Software Integrated Systems,
Vanderbilt University, Nashville, TN 37235, USA

ejackson@isis.vanderbilt.edu

janos.sztipanovits@vanderbilt.edu

Abstract. The structural semantics of UML-based metamodeling were
recently explored[1], providing a characterization of the models adher-
ing to a metamodel. In particular, metamodels can be converted to a
set of constraints expressed in a decidable subset of first-order logic, an
extended Horn logic. We augment the constructive techniques found in
logic programming, which are also based on an extended Horn logic, to
produce constructive techniques for reasoning about models and meta-
models. These methods have a number of practical applications: At the
meta-level, it can be decided if a (composite) metamodel characterizes
a non-empty set of models, and a member can be automatically con-
structed. At the model-level, it can be decided if a submodel has an
embedding in a well-formed model, and the larger model can be con-
structed. This amounts to automatic model construction from an in-
complete model. We describe the concrete algorithms for constructively
solving these problems, and provide concrete examples.

1 Preliminaries - Metamodels, Domains, and Logic

This paper describes constructive techniques, similar to those found in logic pro-
gramming, for reasoning about domain-specific modeling languages (DSMLs) de-
fined with metamodels. Before we proceed, we must describe how a metamodel
can be viewed as a formal object that characterizes the well-formed models
adhering to that metamodel. We will refer to the models that adhere to meta-
model X as the models of metamodel X. In order to build some intuition for
this view, consider the simple DIGRAPH metamodel of Figure 1. The models of
DIGRAPH consist of instances of the Vertex and Edge classes such that Edge

Vertex Edge
src

dst

Fig. 1. DIGRAPH: A simple metamodel for labeled directed graphs

instances “connect” Vertex instances. In other words, DIGRAPH characterizes
a class of labeled directed graphs. Thus, a model might be formalized as a pair
G = 〈V ⊆ Σ,E ⊆ V ×V 〉, where Σ is an alphabet of vertex labels. If Σ is fixed,
then the set G of all models of DIGRAPH is: G = {(V,E)|V ⊆ Σ,E ⊆ V 2}.
This is the classic description of labeled digraphs, and at first glance it might
appear possible to extend this description to characterize the models of arbi-
trary metamodels. Unfortunately, UML-like metamodels[2][3] contain a number
of constructs that deny a simple extension of graph-based descriptions. The UN-
SAT metamodel of Figure 2 illustrates some of these constructs. First, classes

RootClass ClassA

bAttribute: bool

ClassB

sAttribute: string

ClassC

zAttribute: integer

EdgeClass

bAttribute: bool

src

dst

1..3 1..2

isAPort

isAPort 1..*

0..*

Fig. 2. UNSAT: A complex metamodel with no finite non-trivial models

instOf B_3

instOf B_2

instOf B_1

instOfA_1

instOfB_1 instOfB_2 instOfB_3
instOf B_4

instOf B_5

instOfA_2

instOfB_4

instOfB_5

instOf B_7

instOf B_6

instOfA_3

instOfB_6

instOfB_7

instOfA_3

instOfA_2

instOfA_1

instOfRoot

instOf B_8

instOfC_1

instOfB_8

instOfC_2

Fig. 3. Model that (partially) adheres to the UNSAT metamodel

may have non-trivial internal structure. For example, classes of UNSAT have
typed member fields (called attributes). An instance of ClassA has a boolean
field named bAttribute. Classes also inherit this structure, e.g. an instance of
ClassC has two attributes, bAttribute and zAttribute, via inheritance. Instances
may contain other instances with constraints on the type and number of con-
tained instances. An instance of ClassA must contain between 1 and 3 instances

of ClassB. Second, internal instance structure can be “projected” onto the out-
side of an instance as ports. The containment relation from ClassA to RootClass
has the isAPort rolename, requiring that all contained instances of ClassA ap-
pear as interfaces on the outside of the containing instance of RootClass. Figure
3 shows a model with containment and ports. The hollow oblong shapes denote
instances that can contain other instances, and the small squares with white
arrows on the oblongs’ borders denote ports. For example, the outermost con-
tainer instOfRoot is an instance of the RootClass and contains three instances
of ClassA. Each ClassA instance appears as a port on the far right-hand side
of instOfRoot. Containment and ports are a useful form of information hiding,
but they also complicate matters because ports permit edges to cross hierar-
chy. For example, the edges in Figure 3 connect instances of ClassB together
even though these instances are not contained in the same parent. Furthermore,
the edges are actually contained in the RootClass instance, even though the end-
points are not. The third major complication arises because edges are not simple
binary relations. In UNSAT, edges are instances of EdgeClass, and so each edge
has a member field named bAttribute. In general, edges must be distinguishable
(i.e. labeled), otherwise it would not be possible to reliably determine the values
of member fields. In fact, the UML-notation (correctly) implies that edges are
ternary associations between an edge label, source label, and destination label.

Graph-based formalisms have been used extensively by the model transfor-
mation community, and provide reasonable approximations of model structure
for the purpose of transformation. However, in this paper we do not focus on
model transformation, but rather we explore techniques for reasoning about all
the details of metamodel and model structure. One approach to characteriz-
ing realistic model structure might be to combine all existing graph extensions
and consider models to be hierarchical [4], typed, attributed [5] hypergraphs with
labeled edges. However, even this would not handle all aspects of modern meta-
modeling languages, and it would produce a brittle and unwieldy formalism. In
[1] we present an alternative approach to model structure based on formal logic,
which we briefly outline now. In order to present our view, we begin with the
concept of a domain (in the sense of domain-specific modeling languages). A
domain D = 〈Σ,Υ, ΥC , C〉 is a quadruple where Σ is an (infinite) alphabet for
distinguishing model elements, Υ is a finite signature for encoding model con-
cepts, ΥC is a finite signature for encoding model properties, and C is a set of
logical statements (constraints) for deriving model properties. A model realiza-
tion is set of terms from the term algebra[6] TΥ (Σ) over signature Υ generated
by Σ. The set of all possible model realizations is P(TΥ (Σ)), i.e. all subsets of
terms. We will use the notation (f, n) ∈ Υ to indicate that function symbol f of
arity n is a member of the signature Υ .

Example 1. The domain of labeled digraphs DG has the model realizations given
by the signature Υ = {(v, 1), (e, 2)} and a countably infinite alphabet (|Σ| =
|ℵ0|). These two symbols encode the concepts of vertex and edge. Vertices are
encoded using the unary function symbol v and edges are encoded using the
binary function symbol e. Some model realizations include:

1. M1 = { v(c1), v(c2), e(c1, c2) }, a 2-path from a vertex c1 to a vertex c2.
2. M2 = { v(c3), e(c3, c4) }, a dangling edge starting at vertex c3.
3. M3 = { v(e(c5, c6)), v(v(c7))}, a structure that is not a graph at all.

where the symbols written in typewriter font indicate members of the alphabet.

The term algebra easily captures arbitrary n-ary concepts and permits con-
cepts to be combined in complex ways. Item 3 of Example 1 shows that function
symbols can be arbitrarily nested. Notice also that not all model realizations
combine the modeling concepts in ways that match our intentioned meaning of
the symbols. Item 1 describes a simple 2-path, but Item 2 describes a dangling
edge because vertex c4 is not in the model. Finally, Item 3 does not correspond
to a graph in any obvious way, but is still a legal member of P(TΥ (Σ)).

The set of model realizations of a domain contains all possible ways that
the concepts can be used together. In fact, with a single operator f of ar-
ity greater than or equal to one, and an alphabet with at least one element,
a countably infinite number of terms can be generated. (Consider a succes-
sor operation succ and Σ = {0}.) Thus, for all non-trivial cases the number
of possible model realizations is uncountably infinite. Therefore P(TΥ (Σ)) will
typically contain many model realizations that use the function symbols con-
trarily to our intentions. In order to counteract this, we must define a set of
model properties, characterized by another signature ΥC , and a set C of log-
ical statements for deriving model properties. For simplicity, we assume that
ΥC simply extends the signature of Υ (i.e. ΥC ⊃ Υ). For example, the prop-
erty of directed paths could be captured by: ΥC = {(v, 1), (e, 2), (path, 2)} and
C = {∀x, y, z (e(x, y)∨ path(x, y))∧ e(y, z)⇒ path(x, z)}. The symbol path(·, ·)
encodes the concept of a directed path between two vertices. The single logical
statement in C defines how to derive the paths in a digraph. The keyword derive
is important, and there are some subtle points to be made about derivation.

Classically, the notion of a derivation is represented by a consequence op-
erator, written `, which maps sets of terms to sets of terms `: P(TΥC

(Σ)) →
P(TΥC

(Σ)). A consequence operator encapsulates the inference rules of a par-
ticular style of logic, and may make use of additional axioms to derive terms. In
our framework, the set C is the set of axioms that the consequence operator may
use. Given a model M (i.e., a set of terms), M `C M ′ denotes the set of terms
M ′ that can be discovered from the terms M and the axioms C. A term t can
be derived from a model M if t ∈ M ′. We will simply write M `C t to denote
that t ∈ M ′. Notice that using consequence operators we can extend the nota-
tion of a derivation beyond predicate logic. For example, given the simple graph
M1 (Item 1 of Example 1), we can derive the term path(c1, c2) without make
any claims about the value of this term. Classical consequence operators, in the
sense of Tarski, correspond to closure operators and are extensive, isotone, and
idempotent [6]. Later, we will discuss the consequence operators of nonmonotonic
logics where the isotone property does not hold. The history of mathematical
logic is rich and diverse; we will not summarize it here. Instead, we will focus
on particular applications and limit our discussion to those applications. For the
reader unfamiliar with this area, it suffices to remember these two points: First,

consequence operators capture the derivation of terms. Second, terms are not
predicates.

Among the properties that can be encoded using ΥC and C, we require at
least one property to be defined that characterizes if a model is well-formed. We
permit well-formedness to be defined either positively or negatively. A positive
domain includes the function symbol wellform(·) in ΥC , and a model M is
well-formed if ∃x ∈ TΥC

(Σ), M `C wellform(x). In other words, a model is
well-formed if a term of the form wellform(x) can be derived for some x. A
negative domain is characterized by the function symbol malform(·) such that
a model is well-formed if ∀x ∈ TΥC

(Σ), M 0C malform(x). In other words, a
model is well-formed if it is not possible to prove malform(x) for any x. At first
glance it may appear that the positive domains have weaker definitions than
negative domains. In fact, this depends on the expressiveness of the underlying
logic of `. For example, if the logic has a “negation” (which is not the usual
propositional negation) then we can define wellform(x) ⇔ ∀y ¬malform(y)
for some arbitrary x. On the other hand, if the logic is restricted, then the
positive domains may be strictly weaker than the negative domains.

A domain captures the set of possible model realizations and provides a
mechanism to discern the good models from the bad ones. From this perspective,
the set of all metamodels also defines a domain Dmeta that characterizes all well-
formed metamodels. Let the set V be a fixed vocabulary of function symbols
and the sets Σ and Σv be two fixed disjoint countably infinite alphabets. Let
SIG(V) = {Υ |Υ : V → Z+}, be the set of all partial functions from V to the
positive integers, i.e., the set of all possible signatures. Finally, let F(Υ, ΥC) be
the set of all formulas that can be defined over terms composed from function
symbols of Υ, ΥC with constants from Σ and variables from Σv. These parameters
allow us to characterize the set of all domains ∆F that can be defined with a
particular style of logic1:

∆F =
⋃

Υ∈SIG(V)

⋃
Υ⊂ΥC∈SIG(V)

⋃
C⊆F(Υ,ΥC)

(Σ,Υ, ΥC , C)

A metamodeling language is a pair (Dmeta, τmeta) where τmeta : Dmeta → ∆F
maps metamodels to domains. In [1] we show how the mapping can be con-
structed for realistic metamodel languages. With this approach, we can extract
a precise set of domain concepts and constraints from a metamodel by applying
the mapping τmeta. Here we overload the notation D to also represent the set of
all well-formed models characterized by the domain D.

Given these preliminaries, we now turn our attention to the analysis of do-
mains. For example, we might like to know: Does a domain contain any non-
trivial finite models?. It turns out that this fundamental question is difficult to
answer for UML-like metamodels. Consider the UNSAT metamodel of Figure 2.
If a model of UNSAT contains anything at all, then it contains an instance of
1 Technically, we should include the property that all ΥC signatures contain
wellform(·) or malform(·). We have left this out as it unnecessarily complicates
the definition of ∆F

RootClass. However, an instance of RootClass must contain at least one instance
of ClassA, which in turn must contain at least one instance of ClassC. So far the
constraints pose no problem. However, the inheritance operator declares that
ClassC is a subclass of ClassA, so ClassC inherits the property that each in-
stance must also contain at least one instance of ClassC. This leads to an infinite
regress, so there exists no non-trivial finite model of UNSAT. This can be seen
in Figure 3, which is a finite model that almost adheres to UNSAT, except that
the instance instOfC 2 does not contain another instance of ClassC. The degree
to which we can reason about metamodels depends on the expressiveness of the
constraint logic. We now turn our attention to a well-known decidable subset of
first-order logic, Horn Logic.

2 Analysis of Nonrecursive Horn Domains

2.1 The Membership Problem

The simplest class of logic we examine is nonrecursive Horn logic[7]. Admit-
tedly, this class is too small for characterizing most realistic domains, but the
algorithms for manipulating this logic serve as a foundation for the more ex-
pressive logic that we describe in the next section. We begin by recalling some
definitions. Formulas are built from terms with variables and logical connec-
tives. There are different approaches for distinguishing variables from constants.
Following the notation of the previous section, let Σv be an alphabet of vari-
able names such that Σ ∩ Σv = ∅. The terms TΥC

(Σ) are called ground terms,
and contain no variables. This set is also called the Herbrand Universe denoted
UH . The set of all terms, with or without variables, is TΥC

(Σ ∪ Σv), denoted
UT . Finally, the set of all non-ground terms is just UT − UH . A substitution φ
is term endomorphism φ : UT → UT that fixes constants. In other words, if a
substitution φ is applied to a term, then the substitution can be moved to the
inside φf(t1, t2, . . . , tn) = f(φt1, φt2, . . . , φtn). A substitution does not change
constants, only variables, so ∀g ∈ UH , φ(g) = g. We say two terms s, t ∈ UT
unify if there exists substitutions φs, φt that make the terms identical φss = φtt,
and of finite length. (This implies the occurs check is performed.) We call the
pair (φs, φt) the unifier of s and t. The variables that appear in a term t are
vars(t), and the constants are const(t).

A Horn clause is a formula of the form h ⇐ t1, t2, . . . , tn where h is called
the head and t1, . . . , tn are called the tail (or body). We write T to denote the
set of all terms in the tail. The head only contains variables that appear in the
tail, vars(h) ⊆

⋃
i vars(ti). A clause with any empty tail (h⇐) is called a fact,

and contains no variables. Recall that these clauses will be used only to calculate
model properties. This is enforced by requiring the heads to use those function
symbols that do not encode model structure, i.e. every head h = f(t1, . . . , tn)
has f ∈ (ΥC − Υ). (Proper subterms of h may use any symbol.) This is similar
to restrictions placed on declarative databases[8]. We slightly extend clauses to
permit disequality constraints. A Horn clause with disequality constraints has
the form h ⇐ t1, . . . , tn, (s1 6= s′1), (s2 6= s′2), . . . , (sm 6= s′m), where si, s′i are

terms with no new variables vars(si), vars(s′i) ⊆
⋃
i vars(ti). We can now define

the meaning of a Horn clause. The definition we present incorporates the Closed
World Assumption which assumes all conclusions are derived from a finite initial
set of facts (ground terms) I. Given a set of Horn clauses Θ, the operator ̂̀Θ is
called the immediate consequence operator, and is defined as follows:

M ̂̀
Θ = M ∪

{
φ(hθ) | ∃φ, θ, φ(Tθ) ⊆M and ∀(si 6= s′i)θ ∈ θ, φsi 6= φs′i

}
where φ is a substitution and θ is a clause in Θ. It can be proved that I `Θ I∞
where I ̂̀Θ I1 ̂̀Θ . . . ̂̀Θ I∞. The new terms derivable from I can be calcu-
lated by applying the immediate consequence operator until no new terms are
produced (i.e. the least fixed point). Notice that the disequality constraints
force the substitutions to keep certain terms distinct. Nonrecursive Horn logic
adds the restriction that the clauses of Θ can be ordered θ1, θ2, . . . , θk such
that the head hθi of clause θi does not unify with any tail t ∈ Tθj for all
j ≤ i. This is a key restriction; without it, the logic can become undecid-
able. Consider the recursive axiom Θ = {f(f(x)) ⇐ f(x)}. Then {f(c1)} `Θ
{f(c1), f(f(c1)), . . . , f(f(f(. . . f(c1) . . .)))} includes an infinite number of dis-
tinct terms. Let FNH(Υ, ΥC) be the set of all sets of Horn clauses defined over
signatures Υ, ΥC with alphabets Σ,Σv. We call domains specified with formulas
from FNH nonrecurive Horn domains (abbreviated NHD). The first problem we
wish to solve is the membership problem for positive NHDs.

Definition 1. The membership problem for positive NHDs: Given a positive
NHD D, does there exists a finite model M ⊂ UH(D) such that M `C wellform(x)
for some x. The notation UH(D) indicates the set of ground terms defined by
the signature Υ of D.

The membership problem for positive NHDs is the easiest problem to solve.
We will solve it by actually constructing a modelM for which a wellform(·) term
can be derived. This is possible because nonrecursive Horn logic has an important
property called monotonicity : If a model M derives terms M ′, and another
model N contains M , then N must derive at least M ′. In symbols, M ⊆ N and
M `Θ M ′, N `Θ N ′, then M ′ ⊆ N ′. This property implies that an algorithm
only needs to examine the “smallest” models that could derive a wellform(·)
term. Our algorthims are similar to those found in logic programming, but with
some necessary augmentations. Typically, logic programs are provided with a
set of initial facts that form the closed world. Our task is to determine the set
of facts such that if the logic program were initialized with these facts, then the
desired outcome (e.g. deriving a wellform(·) term) would occur. This distinction
means that our algorithms cannot rely on the fact that the closed world contains
a finite number of ground terms, because these terms are not yet known. It turns
out that although there are an infinite number of “small” models, these models
can be partitioned into a finite number of equivalence classes; these classes can
be exhaustively examined.

2.2 Finding well-formed members

We have developed a theorem prover called FORMULA (FORmal Modeling
Using Logic Analysis) which implements these techniques. Figure 4 shows a
positive NHD of directed graphs, called CYCLE, using FORMULA syntax. Line
1 declares the two function symbols v (for vertex) and e (for edge). The keyword
in marks these as input symbols, i.e. elements of the signature Υ . The remaining
symbols are used to calculate properties of an input model, and are marked priv
for private symbols, i.e. elements of ΥC . The theorem prover will never return
a model that contains a private symbol. Well-formed models of the CYCLE

1: in v arity 1; in e arity 2;
2: priv path3 arity 3; priv path4 arity 4;
3: priv cycle3 arity 3; priv cycle4 arity 4;
4: priv useless arity 1; priv useless2 arity 1;
5: priv wellform arity 1;
6:

7: cycle3(X,Y,Z) <= path3(X,Y,Z), e(Z,X);
8: cycle4(X,Y,Z,W) <= path4(X,Y,Z,W), e(W,X);
9:

10: path3(X,Y,Z) <= e(X,Y), e(Y,Z),
11: !=(X,Y), !=(X,Z), !=(Z,Y);
12: path4(X,Y,Z,W) <= path3(X,Y,Z), e(Z,W),
13: !=(W,X), !=(W,Y), !=(W,Z);
14:

15: useless(X) <= useless2(X);
16: wellform(X) <= useless(X), e(X,Y);
17: wellform(X) <= cycle3(X,Y,Z);
18: wellform(X) <= cycle4(X,Y,Z,W);

 useless2(X)

 useless(X)

 wellform(X)

 e(X,Y)

 cycle3(X,Y,Z)

 cycle4(X,Y,Z,W)

 path4(X,Y,Z,W)

 path3(X,Y,Z)

Fig. 4. (Left) CYCLE: a positive NHD in FORMULA syntax. (Right) Backwards
chaining graph generated from goal wellform(X).

domain must contain either a directed 3-cycle or 4-cycle. Lines 7,8 define the
properties of 3-cycles and 4-cycles based on the properties of 3-paths and 4-
paths. For example, a 3-cycle exists if there is a 3-path on vertices X,Y, Z and
there is an edge from Z to X. (Note that the variable names are local to each
clause.) Notice the use of disequality contraints in the definition of 3-paths and
4-paths in Lines 10-13. These constraints ensure that the paths contain unique
vertices. Finally, Lines 16-18 define the derivation of wellform(·) terms.

The first step towards generating a well-formed model is to determine the
derivation steps that lead to wellform(·) terms. This is done via an augmented
form of backwards chaining. First, some definitions are necessary. We call two
terms s, t isomorphic if there exists a substitution φ such that φ is a term
monomorphism (one-to-one map), φ s = t, and φ−1 is also a substitution. Clearly
it holds that s = φ−1 t. Given a set of terms T , let IT be an equivalence relation
on terms such that (s, t) ∈ IT if s and t are isomorphic. It is easy to see that IT is

an equivalence relation, because composition of monomorphisms yields another
monomorphism. A goal term g is a term (with variables), and a solution M is a
set of ground terms such M `Θ M ′ and ∃φ, ∃t ∈M ′ (φ g = t). In other words, a
solution is a model that derives a ground term unifying with the goal. The terms
derived from the solution M are all ground terms, so, without lost of generality,
it can be assumed that the unifier is (φ, idUT

). Let terms(D) be the union of all
terms in the domain definition, (i.e. union of all heads and tails). Given a set of
goals G and a domain D, let [t] be the equivalence class of t in Iterms(D)∪G. A
backwards chaining graph B(G) over a set of goal terms G is defined inductively
as follows:

1. For each g ∈ G, [g] ∈ VB(G).
2. For all clauses hθi

⇐ t1, . . . , tm in Θ such that [hθi
] ∈ VB(G), then [ti]1≤i≤m ∈

VB(G) and there exists a directed “AND” edge ([hθi
], {[ti]}1≤i≤m) ∈ EB(G).

3. For all clauses hθi ⇐ t1, . . . , tm in Θ such that hθi unifies with some tail
tθj and [tθj] ∈ VB(G) then [hθi] ∈ VB(G) and there exists a directed edge
([tθj

], [hθi
]) ∈ EB(G).

The right-hand side of Figure 4 shows the backwards chaining graph generated
by the single goal term wellform(X). There are significantly fewer vertices in the
graph than terms in the domain definition, because many terms are isomorphic.
B(G) has several properties, though we will not prove them here. B(G) is finite
because the domain D has a finite number of clauses, and B(G) is acyclic because
D is nonrecursive. Unlike typical backwards chaining, the sinks in the graph are
not ground terms, but are terms with function symbols completely in Υ . (The
ground terms must be discovered.) Any sinks without this property are pruned
from the graph. For example, the useless(·) and useless2(·) terms are pruned,
because there are no ways to derive these terms from Υ terms. The vertices
and edges in dotted lines are the pruned part of the graph. If a solution exists
then there must be a directed path from every [g]g∈G vertex to a non-pruned
sink using non-pruned edges. This holds because a solution contains only ground
terms, which impose stronger restrictions on the unifier morphisms, than those
imposed by the construction of B(G).

The backwards chaining graph captures the various paths from the goal to
possible solutions, and each path must be walked until a solution is found or it is
confirmed that no solution exists. A path can be “unrolled” one at a time (as in
SLD resolution[9]), or a tree can be constructed capturing every possible walk.
We choose the latter in order to support other uses of FORMULA. The left-hand
side of Figure 5 shows the unrolling of the Figure 4 into a solution tree. The tree
has a root with a single AND edge having an endpoint on each goal term g.
Every goal term g attached to the root receives an edge for each v ∈ B(G) such
that g unifies with v. For example, Figure 5 shows the vertex wellform(V 0)
connected to the wellform(V 1). This edge indicates that wellform(V 0) unifies
with wellform(V 1). The tree construction algorithm always standardizes apart
unifying terms by instantiating them with unique variables. wellform(V 1) has
two distinct paths in the backwards chaining graph, and each of these are un-

rolled into two subtrees of the wellform(V 1) vertex. If a clause has disequality
constraints, then these appear as constraints on the edges in the solution tree.

ROOT

 wellform(V0)

 wellform(V1)

 cycle3(V1,V3,V4)

 path3(V1,V3,V4) e(V4,V1)

!=(V4,V3) !=(V4,V1) !=(V3,V1)

 e(V1,V3) e(V3,V4)

 cycle4(V1,V6,V7,V8)

 path4(V1,V6,V7,V8) e(V8,V1)

!=(V8,V6) !=(V7,V6) !=(V8,V1)

 path3(V1,V6,V7) e(V7,V8)

!=(V7,V6) !=(V7,V1) !=(V6,V1)

 e(V1,V6) e(V6,V7)

 e(V4,V1)

JOIN

depends

V4

depends

V0

V1
V3

Not equal Not equal

 e(V3,V4)

depends

depends

Not equal

 e(V1,V3)

dependsdepends

 path3(V1,V3,V4)

depends

depends

depends

 cycle3(V1,V3,V4)

depends

depends

depends

 welform(V0)

depends

 welform(V1)

depends

Fig. 5. (Left) Solution tree generated from backwards chaining graph of Figure 4
(Right) Constraint system shown as a forest of union-find trees.

The solution tree is viewed as a constraint system over terms. As the tree
is walked, equations concerning terms are collected. A unification of terms s, t
can be converted to a system of equations over variables. For example g(X,Y)
unifies with g(Z,Z) if X = Y = Z. Clearly any unifier (φs, φt) must have
φs(X) = φs(Y) = φt(Z). The correct equations are calculated by an induc-
tive procedure as motivated in [9]. The constraint system is represented as a
forest of union-find trees; a unification s, t yields a set of equations {si = ti},
which is converted to operations on the forest: for each equation si = ti perform
join(find(si), find(ti)) where the find(x) operation creates the vertex labeled
x if x does not already exist. For example, there is one non-trivial union-find tree
in Figure 5 resulting from the unification of wellform(V 0) with wellform(V 1),
which joins V 0 and V 1. As terms are added to the forest, so are their subterms.
Dependency links are maintained between vertices, where a term t is dependent
on a term s if s is a subterm of t. An operation fails if the dependency edges form
a cycle, essentially indicating that a multi-step unification fails. The dependency
edges in Figure 5 are gray and labeled “depends”. Disequality constraints are
implemented as “Not equal” edges between vertices. Notice that all terms in the
same union-find tree share the same constraints and dependencies. As trees are
joined, all the constraints are moved up to the root. For example, in Figure 5 all
constraint edges terminate on the JOIN vertex. Thus, a disequality constraint
fails if a vertex is deemed unequal to itself, or a join operation moves the source
and destination of a disequality edge onto the same join vertex. As the algo-

rithm walks the solution tree, it performs operations on the constraint system.
As soon as the constraint system becomes inconsistent, the algorithm restarts
on an unexplored combination of subtrees. FORMULA maintains all possible
restart configurations, and only fails after all restarts have been tried. Let W be
the sequence of vertices visited in a walk of the solution tree. Then CS(W) is
the constraint system produced by that walk.

After a consistent walk W has been found, the constraint system CS(W)
can be converted into a set of ground terms. Notice that the sinks (ignoring
disequality edges) in the constraint system are those terms for which all other
terms are dependent. In fact, our construction guarantees that the sinks are just
variables or ground terms. Let sinks(CS) be the sinks of a consistent constraint
system CS defined as follows: A union-find tree T ∈ CS is a sink tree if the root
has no outgoing edges, or only has outgoing disequality edges. If no leaves of
the sink tree are ground, then pick a leaf and place it in sinks(CS). Choose any
substitution φmin such that φmin(X) 7→ cX ∈ (Σ − const(D)), where cX is a
unique constant not appearing anywhere in the domain definition. If a variable X
is in the same union-find tree as a ground term tg, then φmin(X) 7→ tg. The values
of all other variables are calculated transitively to form the full substitution φsol.
Finally, the candidate solution MW for walk W is

MW =

(⋃
v∈W

φsol(tv)

)
∩ TΥ (Σ)

where tv is the term of a vertex v in the walk W of the solution tree. MW

is a proper solution if no model terms of the form f(t1, . . . , tn), where f ∈ Υ ,
are removed by the intersection with TΥ (Σ). Such a term would be thrown
out if it contains a subterm ti built from symbols of ΥC − Υ . In this case, the
candidate solution is discarded and another walk through the solution tree is
attempted. Applying this algorithm to the constraint system of Figure 5 gives
sinks(CS) = {V 0, V 3, V 4}. Let φmin(V 0) 7→ c0, φmin(V 3) 7→ c1, φmin(V 4) 7→
c2. By transitivity, φsol(V 1) 7→ c0, and all variables are accounted for. Applying
φsol to each vertex on the left-hand walk of Figure 5 gives a candidate model
MW = {e(c0, c1), e(c1, c2), e(c2, c0)}, which is a correctly constructed 3-cycle. It
is not difficult to prove:

Theorem 1. A positive NHD has a non-trivial finite model iff there exists a
walk W such that CS(W) is consistent and the candiate model MW is proper.

2.3 Generating well-formed embeddings

These algorithms can also be used to construct well-formed models with partic-
ular embeddings. Let γ : UH 7→ UH be a term endomorphism (i.e. a homomor-
phism over model terms). A model M ′ can be embedded into a model M , written
M ′ ≤M , if there exists a one-to-one term endomorphism (i.e. a monomorphism)
such that γ(M ′) ⊆ M . Constructive techniques that can produce embeddings
allow us to sketch a model that might be malformed, but produce a well-formed

c1
c2

c3

c4

c1
c2

c3

c4

c5

c6

c7

c1

c2

c3

c4
12

11 Join

Join

3

8

Join

Join Join

2
7

5

6
0

1

4

9

T1

Join

11

T3

1

6

T2

3

8

T4

Join

Join

0

5

49

Join

12

2

7

Fig. 6. (Left) From top to bottom: A malformed input model, a well-formed embed-
ding, and a minimal embedding. (Middle) Initial constraint system showing only sink
trees and disequality constraints. (Right) Minimized constraint system.

version that still contains the original model. This can be quite useful for users
who do not understand all of the particular constraints of a modeling language,
and would like the computer to correct mistakes. Consider the top-left graph of
Figure 6. This star graph (S4) is malformed with respect to the CYCLE domain,
because it contains neither a 3-cycle nor 4-cycle. However, with a slight modi-
fication to the algorithms above, a new model can be built that is well-formed
and contains an embedding of the star graph. Let D be a domain and let an
input model MI be a finite subset of model terms TΥ (Σ). Choose any one-to-one
map α : Σ → Σv that uniquely relates constants to variables in Σv. Clearly α
induces a monomorphism φα : TΥ (Σ) → TΥ (Σv) from terms without variables
to terms that only have variables. We will use this monomorphism to encode the
input model as a Horn clause. Pick any function symbol f /∈ ΥC and add it ΥC
with arity |consts(MI)|, i.e. the arity of f is equal to the number of constants
in the input model MI . Add the following clause θMI

to D:

θMI

·= f(α(c1), α(c2), . . . , α(cn))⇐
∧

tm∈MI

φα(tm)
∧
i6=j

(α(ci) 6= α(cj))

where 1 ≤ i, j ≤ n = |consts(MI)|. Recall from the previous algorithms, that
a solution is constructed by defining a substitution φsol that is determined
by the sink variables sinks(CS(W)). Consider any solution to any goal set
G where f(α(c1), . . . , α(cn)) ∈ G. By construction, the restriction of φsol to
sinks(CS(W)) yields a one-to-one map. In the construction above, all pairs
of variables induced by MI have disequality constraints, so α(consts(MI)) ⊆
sinks(CS(W)) for any consistent walk W 2. Therefore, the restriction of any φsol
to the terms TΥ (α(consts(MI))) must be a monomorphism. Thus, γ = (φsol◦φα)
gives the embedding of MI in any proper solution MW for a consistent walk W .
2 This is a slight simplification. There will be some representative sink variable for

each variable in the image of α.

Theorem 2. Given an input model MI and a positive NHD D, augmented with
f and θMI

. Any proper solution to a goal set G, where f(α(c1), . . . , α(cn)) ∈ G,
contains an embedding of MI .

In particular, let the goal set G = {f(α(c1), . . . , α(cn)), wellform(X)}, where
the variable X is not in the image of α, then any solution to G contains MI and is
well-formed. The middle-left graph of Figure 6 shows FORMULA’s construction
of a well-formed version of the star graph in the CYCLE domain.

The default embedding produced by FORMULA is not particularly elegant.
It contains a star juxtaposed with a 3-cycle. This solution was constructed be-
cause φsol assigns a unique constant to each sink variable, yielding a maximal
solution with respect to the number of constants. A smaller solution can be found
by manipulating the final constraint system CS(W) so that the number of sink
variables are reduced. This can be accomplished by merging sink trees, which is
legal if the trees do not have disequality constraints between them. The middle
graph of Figure 6 shows the sink trees of the constraint system after produc-
ing the middle-left embedding. The root of each tree is in bold, and disequality
constraints between trees are shown as bold edges. These are the only types of
edges between trees, because sink trees do not have dependency edges between
them. A minimal solution can be formed by partitioning the root vertices into a
minimal number of independent sets. This is a computationally hard optimiza-
tion problem related to the independent set problem. The right side of Figure
6 shows the optimized constraint system, which contains only four trees (and
four sink variables). The roots of the optimized constraint system form a clique,
therefore no further optimization is possible. The bottom-left graph shows the
optimized solution generated by FORMULA, wherein the star and 3-cycle have
been merged in an ideal fashion. Note that this process yields a minimal, but not
neccessarily minimum model. Finding a minimum model requires minimizing all
possible consistent walks of the solution tree.

3 Extensions, Tools, and Future Directions

We have shown that the constructive reasoning of UML-like metamodels is a
rich area of study, both theoretically and algorithmically. In the interest of
space we have used directed graphs as our toy example. However, these tech-
niques can be applied to much more complicated metamodels, and with prac-
tical applications: Metamodel composition is the process of constructing new
domain-specific languages by combining existing metamodels. Two metamodels,
mm1 and mm2, can be syntactically combined with an operator ◦, such as class
equivalence[10], and the syntactic composition can be converted into a domain
Dcomp = τmeta(mm1 ◦ mm2). The membership problem for the domain can
then be solved, thereby deciding if the metamodel composition is semantically
meaningful. Other problems, like the construction of embeddings, correspond to
the automatic construction of useful models that satisfy the domain constraints.
Model transformations can also be incorporated into our framework, and then
constructive techniques can be used to prove that the transformation always

produces well-formed output models from well-formed input models. This is the
weakest form of correctness one could imagine, but checking these properties has
remained mostly open. There is already precedent for the use of Prolog engines
to transform a particular input model MI to an output model MO, as is done
by Viatra2[11]. A particular input/output pair (MI ,MO) can then be compared
to check for mutual consistency (e.g. via bisimulation). However, checking prop-
erties of the overall transformation is more difficult, though our approach can
handle it as long as the transformation is restricted to an appropriate class of
logic. The verification goal resembles Hoare’s notion of a verifying compiler [12].

This brings us to questions of expressiveness. How expressive is Horn logic
and how far can it be taken? This question has driven our development of FOR-
MULA, which we now summarize. Positive NHDs are not particularly expressive,
but they are an essential starting point for developing constructive techniques
for more expressive domains. The next step in the progression is to solve the
membership problem for negative NHDs. Recall that negative domains char-
acterize the malformed models with the symbol malform(·), and a model M
is wellformed if ∀x,M 0C malform(x). Negative NHDs can express domains
not representable by positive NHDs, because of the universal quantification over
malform(x). Notice that the solution tree for a goal G = {malform(x)} con-
tains all equivalence classes of malformed models, and the malformed-ness prop-
erty is monotonic in models. With these observations, the membership problem
can be solved by repeating this procedure: Prune all leaves in B({malform(x)}),
except for one symbol f ∈ Υ . If malform(x) can be proved on the corresponding
pruned solution tree, then by monotonicity, no wellformed model can contain
a term unifiying with f . If malform(x) cannot be proved, then a wellformed
model M = {f(·, . . . , ·)} has been found. This test is repeated (at least once)
for each f ∈ Υ ; due to unification issues, it may be repeated multiple times for
non-unifying f -terms. This procedure is also implemented in FORMULA.

A further increase in expressiveness can be obtained by extending the Horn
logic so that a tail can contain a “negated” term ¬ti. (For example, the UN-
SAT domain (Figure 2) can be defined with this extension.) Loosely, a negated
term is a constraint requiring that a solution M 0C ti. Theoretically, this ex-
tension approximates the power of full first order logic, but remains decidable
(under additional restrictions on its use). It turns out that this simple extension
corresponds to a nonmonotonic logic, and has deep theoretical and algorithmic
repercussions. Our major challenge has been the development of constructive
techniques for domains written in Horn logic extended with negation. These
techniques are also implemented in FORMULA, and extend existing work on
nonmonotonic inference[7][13] to deal with the particulars of UML-like meta-
models. Theoretically, these extensions must be handled carefully in order to
maintain the soundness and completeness of the theorem prover. Algorthmically,
our approach combines the aforementioned algorithms with state-of-the-art SAT
solvers to construct models. In conclusion, a reasonable level of expressiveness
can be obtained.

A common criticism of theorem proving is the requirement of the user to
understand the underlying mathematics. We have addressed this issue by devel-
oping an automated conversion from metamodels to domain definitions. This
approach is described in [1], and supports metamodeling in the well-known
Generic Modeling Environment (GME) toolsuite[14]. Furthermore, because the
theorem prover is constructive, the results of the prover are concrete models that
can be automatically imported back into the GME modeling environment. This
closes the loop, providing constructive reasoning about models and metamodels
without leaving the comfort of the modeling toolsuite (for most of the common
queries). Our future work is to apply these techniques to analyze model transfor-
mations, including those specified with the Graph Rewriting and Transformation
(GReAT) language[15] that is also part of the GME toolsuite.

References

1. Jackson, E.K., Sztipanovits, J.: Towards a formal foundation for domain specific
modeling languages. Proceedings of the Sixth ACM International Conference on
Embedded Software (EMSOFT’06) (October 2006) 53–62

2. Object Management Group: Meta object facility specification v1.4. Technical
report (2002)

3. Object Management Group: Unified modeling language: Superstructure version
2.0, 3rd revised submission to omg rfp. Technical report (2003)

4. Drewes, F., Hoffmann, B., Plump, D.: Hierarchical graph transformation. J. Com-
put. Syst. Sci. 64(2) (2002) 249–283

5. Ehrig, H., Prange, U., Taentzer, G.: Fundamental theory for typed attributed
graph transformation. In: ICGT. (2004) 161–177

6. Burris, S.N., Sankappanavar, H.: A Course in Universal Algebra. Springer-Verlag
(1981)

7. Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power
of logic programming. ACM Comput. Surv. 33(3) (2001) 374–425

8. Minker, J.: Logic and databases: A 20 year retrospective. In: Logic in Databases.
(1996) 3–57

9. Chan, D.: Constructive negation based on the complete database. In: Proc. Int.
Conference on LP’88, The MIT Press (1988) 111–125

10. Emerson, M., Sztipanovits, J.: Techniques for metamodel composition. OOPSLA
2006 Domain-Specific Languages Workshop (2006)

11. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro, D.: Viatra:
Visual automated transformations for formal verification and validation of uml
models (2002)

12. Hoare, T.: The verifying compiler: A grand challenge for computing research. J.
ACM 50(1) (2003) 63–69

13. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In:
ICLP/SLP. (1988) 1070–1080

14. G. Karsai, J. Sztipanovits, A.L.T.B.: Model-integrated development of embedded
software. Proceedings of the IEEE 91(1) (January 2003) 145–164

15. G. Karsai, A. Agrawal, F.S.: On the use of graph transformations for the formal
specification of model interpreters. Journal of Universal Computer Science 9(11)
(November 2003) 1296–1321

