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Abstract—Traffic routing plays a critical role in determining
the performance of a wireless mesh network. To investigate
the best solution, existing work proposes to formulate the
mesh network routing problem as an optimization problem. In
this problem formulation, traffic demand is usually implicitly
assumed as static and known a priori. Contradictorily, recent
studies of wireless network traces show that the traffic demand,
even being aggregated at access points, is highly dynamic and
hard to estimate. Thus, in order to apply the optimization-based
routing solution into practice, one must take into account the
dynamic and unpredictable nature of wireless traffic demand.

This paper presents an integrated framework for network
routing in multi-radio multi-channel wireless mesh networks
under dynamic traffic demand. This framework consists of two
important components: traffic estimation and routing optimiza-
tion. By analyzing the traces collected at wireless access points,
the traffic estimation component predicts future traffic demand
based on its historical value using time-series analysis, and
represents the prediction result in two forms – mean value
and statistical distribution. The optimal mesh network routing
strategies then take these two forms of traffic demand estimations
as inputs. In particular, two routing algorithms are proposed
based on linear programming which consider the mean value
and the statistical distribution of the predicted traffic demands,
respectively. The trace-driven simulation study demonstrates
that our integrated traffic estimation and routing optimization
framework can effectively incorporate traffic dynamics in mesh
network routing, where both algorithms outperform the shortest
path algorithm in about 80% of the test cases.

I. INTRODUCTION

Wireless mesh networks have attracted increasing attention
and deployment as a high-performance and low-cost solution
to last-mile broadband Internet access. In a wireless mesh
network, local access points and stationary wireless mesh
routers communicate with each other and form a backbone
structure which forwards the traffic between mobile clients and
the Internet. To alleviate the problem of location-dependent
interference in wireless communication, mesh routers are
usually equipped with multiple radios which enable them to
transmit and receive simultaneously or transmit on multiple
channels simultaneously.

Traffic routing and channel assignment jointly play a critical
role in determining the performance of a wireless mesh
network. Thus it attracts extensive research recently. The pro-
posed approaches usually fall into two ends of the spectrum.
On one end of the spectrum are the heuristic algorithms
(e.g., [1]–[4]). Although many of them are adaptive to the
dynamic environments of wireless networks, these algorithms

lack the theoretical foundation to analyze how well the net-
work performs globally (e.g., whether the traffic shares the
network in a fair fashion).

On the other end of the spectrum, there are theoretical
studies based on optimization methods (e.g., [5], [6]). The
algorithms derived from these optimization formulations can
usually claim analytical properties such as resource utiliza-
tion optimality and throughput fairness. In these optimization
frameworks, traffic demand is usually implicitly assumed as
static and known a priori. Contradictorily, recent studies of
wireless network traces [7] show that the traffic demand, even
being aggregated at access points, is highly dynamic and hard
to estimate. Such observations have significantly challenged
the practicability of the existing optimization-based routing
solutions in wireless mesh networks.

To address this challenge, this paper investigates the optimal
mesh network routing framework which takes into account
the dynamic nature of wireless traffic demand. This routing
framework could work as a part of the joint routing and
channel assignment solution in [5]. To incorporate the traffic
dynamics, the following two components must be seamlessly
integrated into this framework.

• Traffic demand estimation which derives the traffic model
of a wireless mesh network. The model should be de-
pendable at predicting the mean demand at long term,
yet agile at containing often uncertain dynamics at short
term.

• Routing optimization which works with channel assign-
ment and distributes the traffic along different routes,
channels and radio interfaces so that minimum congestion
will be incurred even under dynamic traffic. The routing
strategy should effectively take into account the traffic
demand estimation results.

By studying the traces collected at Dartmouth College
campus wireless network [8], the traffic prediction method
derives future traffic demand based on its historical value
using time-series analysis. The mean value of the predicted
demand, together with its prediction error distribution, are used
in establishing a statistical model for the traffic demand at a
local access point.

This paper further identifies an optimization framework
which integrates the demand prediction into traffic routing. In
particular, two forms of traffic demands are considered as the
inputs for routing optimization, namely the mean value of the
demand prediction and its statistical distribution. We present
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two routing algorithms for each form of the traffic demand
estimation respectively. For the first case, based on the clas-
sical maximum concurrent flow problem, we formulate multi-
radio multi-channel mesh (M3) network routing as a linear
programming problem, which maximizes the minimum scaling
factor (λ) of throughput to fixed-value demand among all
flows. We then present a fast (1− ε)-approximation algorithm
(fixed-demand multi-radio multi-channel mesh network rout-
ing (FM3R) algorithm) which could accept the mean value
of the demand prediction as the input. For the second case, in
order to incorporate the statistical distribution of the demand
estimation into the problem formulation, we characterize the
traffic demand using a random variable. Now the scaling factor
λ under a given routing solution is also a random variable.
The throughput optimization problem is then extended to a
stochastic optimization problem where the expected value of
the scaling factor λ is maximized. Finally, based on the design
of the FM3R algorithm, a (1 − ε)-approximation algorithm
(uncertain-demand multi-radio multi-channel mesh network
routing (UM3R) algorithm) is presented for mesh network
routing under uncertain demand.

To evaluate the performance of our algorithms under real-
istic wireless networking environment, we conduct a trace-
driven simulation study. In particular, we derive the traffic
demand for the local access points of our simulated wire-
less mesh network based on the traffic traces collected at
Dartmouth College campus wireless networks. Our simulation
results demonstrate that our integrated traffic estimation and
optimal routing framework could effectively incorporate the
traffic dynamics into the routing optimization of wireless mesh
networks, where both algorithms outperform the shortest path
algorithm in about 80% of the test cases.

The original contributions of this paper are two-fold.
Practically, the integration of traffic estimation and routing
optimization effectively improves the network performance
of multi-radio multi-channel wireless mesh networks under
dynamic and uncertain traffic. The full-fledged simulation
study based on real wireless network traffic traces provides
convincing validation of the practicability of our solution.
Theoretically, upon the classical linear optimization algorithm
which only considers wireline network connection and accepts
only singlar-value demands as inputs, we extend it into a
stochastic optimization solution which is capable of handling
wireless mesh network with multiple radio interfaces operating
on multiple channels and serving uncertain demands that are
modelled by their statistical distributions.

The remainder of this paper is organized as follows. Sec. II
presents the system model and solution overview. Sec. III
formulates the mesh network routing problem under fixed-
value traffic demand and uncertain traffic demand and two
fast approximation algorithms (FM3R and UM3R). Sec. IV
describes the traffic prediction method. We show simulation
results in Sec. V, present related work in Sec. VI and finally
conclude the paper in Sec. VII.

II. SYSTEM MODEL AND SOLUTION OVERVIEW

A. Network and Interference Model

In a multi-hop wireless mesh network, local access points
aggregate and forward the traffic from the mobile clients that
are associated with them. They communicate with each other,
also with the stationary wireless routers to form a multi-
hop wireless backbone network. This wireless mesh backbone
network forwards the user traffic to the gateways which are
connected to the Internet. We use w ∈ W to denote the
set of gateways in the network. In the following discussion,
local access point, gateway and mesh router are collectively
called mesh nodes and denoted by set V (Note that W ⊂ V ).
Further, we assume that node v is equipped with κ(v) radios.
The network could use a set of orthogonal wireless channels
denoted by C. For example, in the IEEE 802.11b standard,
|C| = 3.

In a wireless network, packet transmissions in the same
channel are subject to location-dependent interference. We
assume that all mesh nodes have the uniform transmission
range denoted by RT . Usually the interference range is larger
than its transmission range. We denote the interference range
of a mesh node as RI = (1 + ∆)RT , where ∆ ≥ 0 is
a constant. In this paper, we consider the protocol model
presented in [9]. Let r(u, v) be the distance between u and
v (u, v ∈ V ). In the protocol model, packet transmission
from node u to v on channel c ∈ C is successful, if and
only if (1) the distance between these two nodes r(u, v)
satisfies r(u, v) ≤ RT ; (2) any other node w ∈ V within the
interference range of the receiving node v, i.e., r(w, v) ≤ RI ,
is not transmitting on the same channel. If node u can transmit
to v directly on channel c, they form an edge e(c). We denote
the capacity of this edge as φe(c) which is the maximum data
rate that can be transmitted. Let Ec be the set of all edges
e(c). We say two edges e(c), e′(c) interfere with each other,
if they can not transmit simultaneously based on the protocol
model. Further we define interference set Ie(c) which contains
the edges that interfere with edge e(c) and e(c) itself.

Finally, we introduce a virtual node w∗ to represent the
Internet. w∗ is connected to each gateway with a virtual edge
e′ = (w∗, w), w ∈ W . For simplicity, we assume that the link
capacity in Internet is much larger than the wireless channel
capacity, and thus the bottleneck always appears in the wireless
mesh network. Under this assumption, the virtual edges could
be regarded as having unlimited capacity. Note that none of the
virtual links interferes with any of the wireless transmissions.

B. Solution Overview

The performance of a multi-radio multi-channel wireless
mesh network critically depends on the design of three
interdependent components: scheduling, channel assignment,
and routing. Their joint design has been studied in several
existing works [5], [6]. In this paper, we adopt the same
approach as in [5] which formulates this problem as an integer
linear programming problem. To solve this problem, [5] first
solves its LP (linear programming) relaxation and derives the
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routing solution based on the necessary conditions of channel
assignment and schedulability. Then the channel assignment
and post processing algorithms are designed to adjust the flows
to yield a feasible solution.

We assume that the system operates synchronously in a
time-slotted mode. The result we obtain will provide an upper
bound for systems using IEEE 802.11 MAC. We further
assume that the traffic between a local access point and
the Internet could be infinitesimally divided and routed over
multiple paths to multiple gateways achieving the optimal load
balancing and the least congestion.

Formally, let ye(c) be the flow rate on edge e(c) ∈ Ec, y

be the link flow vector, ρe(c) = ye(c)
φe(c) be the utilization of

channel c over link e, and E(v) be the set of links that is
adjacent to node v. Based on the results presented in [5], the
necessary conditions of channel assignment and scheduling are
summarized in the following claim:

Claim 1 (Necessary Condition of Channel Assignment and
Schedulability). For the multi-channel, multi-radio wireless
mesh network, if a given link flow vector y does not satisfy
the following inequalities:

∑

e′(c)∈Ie(c)

ρe′(c) ≤ γ(∆);∀e(c) ∈ Ec,∀c ∈ C (1)

∑

c∈C

∑

e(c)∈E(v)

ρe(c) ≤ κ(v);∀v ∈ V (2)

then y is not schedulable.
In particular, Inequality (1) is the congestion constraint over

an individual channel. γ(∆) is a constant that only depends
on the interference model. Inequality (2) gives the node radio
constraint. Recall that a mesh node v ∈ V has κ(v) radios,
and thus can only support κ(v) simultaneous communications.

The focus of this paper is to investigate the optimal routing
scheme under dynamic traffic based on the above necessary
conditions of channel assignment and schedulability. Once the
flow routes are derived, we simply apply the same method
presented in [5] to adjust the flow routes and scale the flow
rates to yield a feasible routing and channel assignment.

III. OPTIMAL ROUTING

This paper investigates the optimal routing strategy for
wireless mesh backbone network. Thus it only considers the
aggregated traffic among the mesh nodes. In particular, we
regard the virtual node w∗ that connects to gateways as the
source of all incoming traffic and the destination of all outgo-
ing traffic of a mesh network. Similarly, the local access points,
which aggregate the client traffic, serve as the sources of all
outgoing traffic and the destinations of incoming traffic. It is
worth noting that although we consider only the aggregated
traffic between gateway access points and local access points
in this paper, our problem formulations and algorithms could
be easily extended to handle inter-mesh-router traffic.

For simplicity, we call the aggregated traffic from a local
access point to the Internet a flow and denote it as f ∈ F ,

where F is the set of all aggregated flows. We also denote the
rate of an aggregated flow f ∈ F as xf , and use x = (xf , f ∈
F ) to represent the aggregated flow rate vector.

A. Fixed Demand Multi-Radio Multi-Channel Mesh Network
Routing (FM3R)

We first study the formulation of throughput optimization
routing problem in a wireless mesh backbone network under
the fixed traffic demand. We use df to denote the demand
of flow f and d = (df , f ∈ F ) to denote the demand
vector consisting of all flow demands. Consider the fairness
constraint that, for each flow f , its throughput being routed
is in proportion to its demand df . Our goal is to maximize
λ (so called scaling factor) where at least λ · df amount of
throughput can be routed for flow f .

We assume an infinitesimally divisible flow model where
the aggregated traffic flow could be routed over multiple paths
and use Pf to denote the set of unicast paths that connect the
source of f and w∗. Let xf (P ) be the rate of flow f over
path P ∈ Pf . Obviously the link flow rate ye(c) is given by
ye(c) =

∑
f :P∈Pf&e(c)∈P xf (P ), which is the sum of the flow

rates that are routed through paths P passing edge e(c) ∈ Ec.
Based on the necessary conditions of scheduling and channel
assignment in Claim 1 (Eq.(1) and Eq.(2)), we have that

∑

e′(c)∈Ie(c)

1
φe′(c)

∑

f :P∈Pf&e′(c)∈P

xf (P ) ≤ γ(∆);∀e(c) ∈ Ec (3)

∑

c∈C

∑

e(c)∈E(v)

1
φe(c)

∑

f :P∈Pf&e(c)∈P

xf (P ) ≤ κ(v);∀v ∈ V (4)

To simplify the above equations, we define
Ae(c)P =

∑
e′(c)∈Ie(c),e′(c)∈P

1
φe′ (c)

and BvP =∑
c∈C

∑
e(c)∈E(v),e(c)∈P

1
φe(c) . The throughput optimization

routing with fairness constraint is then formulated as the
following linear programming (LP) problem:

PT : maximize λ (5)

subject to
∑

P∈Pf

xf (P ) ≥ λ · df ,∀f ∈ F (6)

∑

f∈F

∑

P∈Pf

xf (P )Ae(c)P ≤ γ(∆),

∀e(c) ∈ Ec,∀c ∈ C (7)∑

f∈F

∑

P∈Pf

xf (P )BvP ≤ κ(v),∀v ∈ V(8)

λ ≥ 0, xf (P ) ≥ 0,∀f ∈ F,∀P ∈ Pf (9)

In this problem, the optimization objective is to maximize
λ, such that at least λ · df units of data can be routed
for each aggregated flow f with demand df . Inequality (6)
enforces fairness by requiring that the comparative ratio of
traffic routed for different flows satisfies the comparative ratio
of their demands. Inequality (7) and (8) come from the nec-
essary conditions of channel assignment and scheduling. This



4

problem formulation follows the same form as the maximum
concurrent flow problem.

Problem PT could be solved by a LP-solver such as [10].
To reduce the complexity for practical use, we present a
fully polynomial time approximation algorithm for problem
PT, which finds an ε-approximate solution. This algorithm
also enlightens the design of the uncertain-demand routing
algorithm. The key to a fast approximation algorithm lies on
the dual of this problem, which is formulated as follows.

DT : minimize
∑

c∈C

∑

e(c)∈Ec

γ(∆) · µe(c) +
∑

v∈V

κ(v)µv (10)

subject to
∑

c∈C

∑

e(c)∈Ec

Ae(c)P µe(c) +
∑

v∈V

BvP µv ≥ µf ,

∀f ∈ F,∀P ∈ Pf (11)∑

f∈F

µfdf ≥ 1 (12)

We assign a price µe(c) to each set Ie(c) for e(c) ∈ Ec

and a price µv to each node v ∈ V . The objective is to
minimize the aggregated price for all interference sets and all
nodes. As the constraint, Inequality (11) requires that the price∑

e(c)∈Ec
Ae(c)P µe(c) +

∑
v∈V BvP µv of any path P ∈ Pf

for flow f must be at least µf , the price of flow f . Further,
Inequality (12) requires that the weighted flow price µf over
its demand df must be at least 1.

Based on the above dual problem DT, our fast approxima-
tion algorithm is presented in Table I. The algorithm design
follows the idea of [11] and extends the work of [12] with
multi-radio multi-channel consideration. In particular, Line 1
and Line 2 initialize the algorithm. Then for each flow f , we
route df units of data. We do so by finding the lowest priced
path in the path set Pf (Line 7), then filling traffic to this path
by its bottleneck capacity (Lines 8 to 10). Then we update the
prices for the interference sets and the nodes appeared in this
path based on the function defined in Line 11 and Line 12. We
keep filling traffic to flow f in the above fashion until all df

units are routed. This procedure is repeated until the weighted
aggregated price of the interference sets and the nodes exceeds
1 (Line 3).

We formally analyze the properties of our algorithm in the
following theorem. The proofs of the theorems in this paper
are available in the technical report [13].

Theorem 1: If β = ((|Ec| + |V |)/(1 − ε))−1/ε, then
the final flow generated by the FM3R algorithm is at least
(1 − 3ε) times the optimal value of PT. The running time is
O( 1

ε2 [log(|Ec|+|V |)(2|F | log |F |+|Ec|+|V |)+log U)])·Tmp,
where U is the length of the longest path in G, and Tmp is
the running time to find the shortest path.

B. Uncertain Demand Mesh Network Routing

Now we proceed to investigate the throughput optimization
routing problem for wireless mesh backbone network when
the aggregated traffic demand is uncertain. We model such
uncertain traffic demand of an aggregated flow f ∈ F using a

FM3R: Fixed-Demand Multi-Radio Multi-Channel
Mesh Network Routing

1 ∀c ∈ C, ∀e(c) ∈ Ec, γ ← γ(∆), µe(c) ← β/γ,
µv ← β/κ(v)

2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 while

∑
c∈C

∑
e(c)∈E(c) γ · µe(c) +

∑
v∈V κ(v)µv < 1

4 for ∀f ∈ F do
5 d′

f ← df

6 while
∑

c∈C

∑
e(c)∈E(c) γ·µe(c)+

∑
v∈V κ(v)µv < 1

and d′
f > 0 do

7 P ← lowest priced path in Pf using µe(c) and µv

8 δ ← min{d′
f , mine(c)∈P

γ
Ae(c)P

, minv∈V
κ(v)
BvP
}

9 d′
f ← d′

f − δ
10 xf (P )← xf (P ) + δ
11 ∀c ∈ C, ∀e(c) ∈ Ec s.t. Ae(c)P �= 0,

µe(c) ← µe(c)(1 + εδAe(c)P /γ)
12 ∀v ∈ V s.t. BvP �= 0, µv ← µv(1 + εδBvP /κ(v))
13 end while
14 end for
15 end for

TABLE I
ROUTING ALGORITHM UNDER FIXED DEMAND

random variable Df . We assume that Df follows the following
discrete probability distribution Pr(Df = di

f ) = qi
f , where

Df = {d1
f , d2

f , ..., dm
f } is the set of of values for Df with

non-zero probabilities. Let d = (df , df ∈ Df , f ∈ F ) be a
sample traffic demand vector, D be the corresponding random
variable, and D be the sample space. Thus the distribution of
D is given by the joint distribution of these random variables:
Pr(D = d) = Pr(Df = di

f , f ∈ F ). We abbreviate Pr(D =
d) as p(d). It is obvious that

∑
d∈D p(d) = 1.

Let us consider a traffic routing solution (xf (P ), P ∈
Pf , f ∈ F ) that satisfies the capacity and node-radio con-
straints (Inequality (7) and (8)). It is obvious that λ is a func-
tion of d: λ(d) = minf∈F {xf

df
}, where xf =

∑
P∈Pf

xf (P ).
Further let us consider the optimal routing solution under
demand vector d. A ε-optimal solution could be easily derived
based on Algorithm I shown in Table I. We denote the optimal
value of λ as λ∗(d).

We further define the performance ratio ω of routing
solution (xf (P ), P ∈ Pf , f ∈ F ) as ω(d) = λ(d)

λ∗(d) Obvi-
ously, the performance ratio is also a random variable under
uncertain demand. We denote it as Ω which is a function of
random variable D. Now we extend the wireless mesh network
routing problem to handle such uncertain demand. Our goal
is to maximize the expected value of Ω, which is given by
E(Ω) =

∑
d∈D p(d) × λ(d)

λ∗(d)

Formally, we formulate the throughput optimization routing
problem for wireless mesh backbone network under uncertain
traffic demand as follows.
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PU :

maximize
∑

d∈D
p(d)

λ(d)
λ∗(d)

(13)

subject to ∀d ∈ D, where d = (df , f ∈ F )∑

P∈Pf

xf (P ) ≥ λ(d) · df ,∀f ∈ F (14)

∑

f∈F

∑

P∈Pf

xf (P )Ae(c)P ≤ γ(∆),

∀e(c) ∈ Ec,∀c ∈ C (15)∑

f∈F

∑

P∈Pf

xf (P )BvP ≤ κ(v),∀v ∈ V (16)

λ ≥ 0, xf (P ) ≥ 0,∀f ∈ F,∀P ∈ Pf (17)

Similar to problem PT, the constraints of PU come from
the fairness requirement and the wireless mesh network ca-
pacity and node radio interfaces. In particular, Inequality
(14) enforces fairness for all demand d ∈ D, Inequality
(15) enforces capacity constraint as Inequality (7) in problem
PT, and Inequality (16) enforces the node-radio constraint as
Inequality (8) in problem PT.

Now we consider the dual problem DU of PU. Similar to
DT, the objective of DU is to minimize the aggregated price
for all adjusted interference sets. However, in Inequality (20),
for each sample demand vector d, the aggregated price of all
flows weighted by their demand needs to be larger than its
probability.

DU : minimize
∑

c∈C

∑

e(c)∈Ec

γ(∆) · µe(c) +
∑

v∈V

κ(v)µv (18)

subject to
∑

c∈C

∑

e(c)∈Ec

Ae(c)P µe(c) +
∑

v∈V

BvP µv ≥ µf ,

∀f ∈ F,∀P ∈ Pf (19)
∑

f∈F

µfdf ≥ p(d)
λ∗(d)

,∀d ∈ D (20)

where d = (df , f ∈ F )

Now we present an approximation algorithm for PU in
Table II. This algorithm (UM3R) has the same initialization
as the algorithm for problem PT (FM3R). Then we march
into the iteration, in which we find dmin, the demand whose
price µmin is the minimum among others (Lines 4 to 12). If
µmin ≥ 1, then the algorithm stops (Lines 13 and 14), since
Inequality (19) and (20) would be satisfied for all demand.
Otherwise, we will increase the price of dmin by routing more
traffic. This procedure (Lines 16 to 23) is the same as what
has been described in Lines 4 to 12 of FM3R algorithm.
Following the same proving sequence for FM3R, we are able
to prove the similar properties with UM3R.

Theorem 2: If β = ((|Ec| + |V |)/(1 − ε))−1/ε, then
the final flow generated by the UM3R algorithm is at least
(1 − 3ε) times the optimal value of PU. The running time is

UM3R: Uncertain-Demand Multi-Radio Multi-Channel
Mesh Network Routing

1 ∀c ∈ C, ∀e(c) ∈ Ec, γ ← γ(∆), µe(c) ← β/γ,
µv ← β/κ(v)

2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 loop
4 for ∀f ∈ F do
5 P̄ ← lowest priced path in Pf using µe(c), µv

6 µf ←
∑

c∈C

∑
e(c)∈Ec

Ae(c)P̄ µe(c) + BvP̄ µv

7 end for
8 for ∀d ∈ D do
9 µd ←

∑
f∈F µfdf

λ∗(d)
p(d)

10 end for
11 µmin ← mind∈D µd

12 dmin ← arg mind∈D µmin

13 if µmin ≥ 1
14 return
15 for ∀f ∈ F do
16 d′

f ← dmin
f

17 while d′
f > 0 do

18 P ← lowest priced path in Pf using µe(c), µv

19 δ ← min{d′
f , mine(c)∈P

γ
Ae(c)P

, minv∈V
κ(v)
BvP
}

20 d′
f ← d′

f − δ
21 xf (P )← xf (P ) + δ
22 ∀c ∈ C, ∀e(c) ∈ Ec s.t. Ae(c)P �= 0,

µe(c) ← µe(c)(1 + εδAe(c)P /γ)
23 ∀v ∈ V s.t. BvP �= 0, µv ← µv(1 + εδBvP /κ(v))
24 end while
25 end for
26 end loop

TABLE II
ROUTING ALGORITHM UNDER UNCERTAIN DEMAND

O( 1
ε2 [log(|Ec|+ |V |)(2|D||F | log |F |+ |Ec|+ |V |)+log U)]) ·

Tmp, where U is the length of the longest path in G, Tmp is
the running time to find the shortest path.

IV. TRAFFIC ESTIMATION

The goal of this section is to (1) develop a reliable esti-
mation method that is able to predict the aggregated traffic
demand of an access point based on its historical data, and
(2) develop a statistical model to characterize the prediction
results. The estimated traffic demands serve as the inputs for
the FM3R and UM3R algorithms respectively.

In order to develop such a traffic demand model, first
let’s examine the traces collected at the campus wireless
LAN network of Dartmouth College in Spring 2002 [8]. By
analyzing the snmp log from each access point, we can derive
its aggregated traffic behavior. Given the present availability
of wireless network traces, we argue that the above trace best
resembles the traffic condition of a wireless mesh network,
since the access points of a wireless LAN serve a similar role
and thus exhibit similar behavior as the local access points of
a wireless mesh network.

To illustrate our analysis procedure, we choose one of
the access points (ResBldg97AP3) as an example. The time
series of its incoming traffic is plotted in Fig. 1. The first
step of our analysis is to identify and remove the daily and
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Fig. 1. Incoming Traffic Time Series of ResBldg97AP3 (March 25, 12am,
2002 - June 9, 11pm, 2002 EST).
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Fig. 2. Raw Traffic vs. Moving Average Series

weekly cyclic patterns in the time series. This requires us
to calculate the weekly/daily cyclic average. Formally, let us
denote x(t) as the raw traffic series. We estimate the moving
average of this series based on the same time of the day:
x̄(t) =

∑W
i=1 x(t − 24 × i)/W , where W is the size of the

moving window. To eliminate the effect of bursty traffic, we
also filter out the spike traffic during the above averaging
procedure. Fig. 2 plots the raw traffic as well as its moving
average with W = 5 for the interval [30, 65] day.

By removing the cyclic effect from the raw data, we
derive the adjusted traffic series z(t) as z(t) = x(t) − x̄(t).
This adjusted traffic exhibits short-term (a few hours) traffic
correlations. We model the adjusted traffic series with an
autoregressive process as follows.1

z(t) = β1z(t− 1) + β2z(t− 2) + ... + βKz(t−K) + ε (21)

where K is the process order. To apply this model for
prediction, we estimate the parameters of this process. Given
N observations z1, z2, ..., zN , the parameters β1, ..., βK are
estimated via least squares by minimizing:

N∑

t=K+1

[
z(t) − β1z(t − 1)... − βKz(t − K)

]2
(22)

Based on these parameters, we further derive the adjusted
traffic prediction ẑ(t) as ẑ(t) = β1z(t − 1) + β2z(t − 2) +
... + βKz(t − K). Fig. 3 illustrates the estimation results
for the adjusted traffic series for the interval [780, 840] hour,
where K = 2, β1 = 0.531, β2 = 0.469. The figure plots the
predicted series for the adjusted traffic as well as its raw data.
In this figure, the number of observations used for parameter
estimation is N = 60. The fitted traffic series is also plotted
for the interval [720, 779] hour for the purpose of comparison.

1Ideally, z(t) should have zero mean. In some cases, z(t) has a small mean
value which needs to be removed before fitting an autoregressive process.

We now consider the errors involved in this prediction
process. In particular, we define the adjusted traffic prediction
error as εz(t) = z(t) − ẑ(t). Through normality test, we find
the error distribution fits the normal distribution with a mean
close to zero.
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Fig. 3. Adjusted Traffic and Its Prediction

Finally, we define traffic prediction x̂ as follows:

x̂(t) = [x̄(t) + ẑ(t)]+ (23)

where [x]+ = max{0, x}. Fig. 4 plots the predicted traffic
series x̂(t) in comparison with the raw traffic. We can see the
predicted traffic closely matches the real(raw) traffic. Again
the prediction error εx(t) = x(t) − x̂(t) also fits the normal
distribution with a near-zero mean. To this end, we could
consider the estimated traffic demand at time t as a random
variable X(t) which follows the normal distribution with mean
x̂(t) and the same variance as εx(t).
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To summarize, the presented estimation method provides
two prediction models: mean value and statistical distribution,
which serve as the inputs for the FM3R and the UM3R
algorithms respectively.

V. SIMULATION STUDY

A. Simulation Setup and Performance Metrics

We evaluate the performance of our algorithms via simula-
tion study. We develop a simulator which provides flow-level
wireless mesh network simulation with multi-radio and multi-
channel capability. In the simulated wireless mesh network,
60 mesh nodes are randomly deployed over a 1000×2000m2

region. In the default simulation setup, 10 nodes at the edge of
this network are selected as the local access points (LAP) that
forward traffic for clients. 4 nodes in the center of the deploy
region are selected as the gateway access points. Each mesh
node has a transmission range of 250m and an interference
range of 500m, which means ∆ = 1. The channel capacity
φc(e) is the same for all links e and channels c, which is set
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as 54 Mbps. In the basic setting, each mesh node is equipped
with 3 radio interfaces. And there are 3 orthogonal channels
in the network. Aside from this basic setting, we have also
evaluated the performance of our algorithms with different
configurations of radio and channel numbers, which we will
show in the later part of this section.

To realistically simulate the traffic demand at each LAP,
we employ the traces collected in the campus wireless LAN
network. The network traces used in this work are collected in
Spring 2002 at Dartmouth College and provided by CRAW-
DAD [8]. By analyzing the snmp log trace at each access point,
we are able to derive its 1108-hour incoming and outgoing
traffic volume since 12:00AM, March 25, 2002 EST. We select
the access points from the Dartmouth campus wireless LAN
and assign their traffic traces to the LAPs in our simulation.2

We evaluate and compare different traffic prediction and
routing strategies for this simulated network. In particular, we
consider the following strategies.

• Oracle Routing (OR). In this strategy, the traffic demand
is known a priori. It runs the FM3R algorithm (presented
in Tab. I) based on this demand. This solution runs every
hour based on the up-to-date traffic demand from the trace
and returns the optimal set of routes. This ideal strategy
is designed to return the benchmark result, which the rest
of the practical strategies compare to.

• Mean-Value Prediction Routing (MVPR). This strategy
does not know the traffic demand a priori. Instead, it only
predicts the traffic demand based on its historical data. In
particular, it employs the mean value prediction model
and runs the FM3R algorithm based on this predicted
demand. This solution also runs every hour to provide
the set of routes for the next hour.

• Statistical-Distribution Prediction Routing (SDPR). Simi-
lar to MVPR, this strategy also relies on traffic prediction.
It predicts not only the mean-value of the traffic demand
in the next hour, but also its distribution. It runs the
UM3R algorithm (presented in Tab. II) with the predicted
traffic demand distribution as its input. Since UM3R
only accepts discrete probability distribution, we need
to discretize the demand distribution by sampling the
following values, the mean value µ, and values µ − σ,
µ+σ, µ−2σ, and µ−2σ. Since about 95% of all traffic
demand values fall within the range [µ− 2σ, µ+2σ], we
ignore the values which has a probability smaller than
5%.

• Shortest-Path Routing (SPR). This strategy is agnostic of
traffic demand, and returns fixed routing solution purely
based on the shortest distance (number of hops) from
each mesh node to the gateway. The purpose to evaluate
this strategy is to quantitatively contrast the advantage of
our traffic-predictive routing strategies.

Note that the flows derived from the above routing strategies
will be adjusted by the channel assignment, post processing

2For the details of the simulated network topology, gateway selection and
traffic assignment, please refer to our technical report [13].

and flow scaling algorithms in [5]. We denote the final rate
of flow f along path P as xA

f =
∑

P∈Pf
xA

f (P ). This is
the maximum flow throughput under the fairness constraint
weighted by the traffic demand, which maximizes the scaling
factor λ. However, for performance study, λ is not a suitable
performance metric. First, we are more interested in the
network performance (i.e., congestion) incurred by the given
traffic demand, instead of the achievable throughput. Second,
the absolute value of λ could be misleading, especially when
the actual demand is not the same as the predicted demand
which is being used for routing.

Now we proceed to define the performance metric we use in
the simulation study. First, we derive x′

f (P ), the actual traffic
load that is imposed on path P under our routing and channel
assignment scheme, by scaling the achievable flow rate xA

f by
its actual traffic demand df :

x′
f (P ) = xA

f (P ) · df

xA
f

(24)

Thus the traffic being routed within the interference set Ie(c)
over channel c is given by

∑
f∈F

∑
P∈Pf

x′
f (P )Ae(c)P . We

define the congestion of an interference set Ie(c) using its

utilization and denote it as θch
e (c) =

∑
f∈F

∑
P∈Pf

x′
f (P )Ae(c)P

γ(∆) .
Then θch = maxe(c)∈Ec

θch
e (c) is the maximum congestion

among all the interference sets. We further consider the
congestion at a single mesh node incurred by the traffic from
all channels. The congestion of a node v is defined as θrd

v =∑
f∈F

∑
P∈Pf

x′
f (P )BvP

κ(v) . And θrd = maxv∈V θrd
v . Finally, the

network congestion θ is defined as θ = max{θrd, θch}. Note
that θ could be larger than 1, since it reflects the network
congestion caused by real traffic demands. In this case, the
capacity constraints and node-radio constraints can be violated,
causing packet delay and loss.

B. Simulation Results

We experiment with the above routing strategies along the
time range [108, 1108], a 1000-hour period excerpted from the
trace.3 Note that all the simulation results presented in this
section are using 108 as the zero point.
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Fig. 5. Overview of All Strategies

We start by presenting the congestion achieved by all strate-
gies (OR, MVPR, SDPR, and SPR) during the entire 1000-hour
simulation period. As seen in Fig. 5, OR constantly achieves
the minimum worst-case congestion among others, due to its
unrealistic capability to know the actual traffic demand. We

3Note that the beginning part of the trace [0, 107] is used as training data,
thus is not included in the simulation result.
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note that the burstiness of θ applies to all strategies including
OR. Such observation comes from the burstiness of the traffic
load in the snmp log trace, which is caused by the insufficient
level of traffic multiplexing at wireless local access points.
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Sorted View

To have a clearer comparison among the MVPR, SDPR, and
SPR strategies, in Fig. 6 we show the sorted congestion ratio
between MVPR and SPR ( θMV P R

θSP R
) and the sorted congestion

ratio between SDPR and SPR ( θSDP R

θMV P R
). From the figure,

MVPR outperforms SPR in 81.4% of all time instances (test
cases) with an average congestion ratio of 0.803. While SDPR
outperforms MVPR in 79% of all time instances.
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Also in Fig. 7(a), we take a close-up look during the hour
range [190, 290]. Here, the MVPR and SDPR strategies achieve
less than 2 times of the optimal congestion in most cases,
while the SPR strategy performs worse than the previous two
in most cases. The above observations get clearer when we
sort out the normalized congestion ratio for the three strategies
in Fig. 7(b). It is clear that our MVPR and SDPR strategies
which integrate the traffic prediction with the optimal routing
outperform the SPR strategy which is agnostic about the traffic
demand. Further, SDPR achieves lower congestion than MVPR
in most of the time due to more comprehensive representation
of the traffic demand estimation. However, in a few cases (less
than 10% of the time), the worst-case congestion of SDPR is
higher than MVPR. This problem can be mostly attributed to
the inaccuracy of traffic prediction.

In what follows, we alter our simulation configurations to
examine the abilities of different strategies at adapting various
network settings, such as radio interface numbers and channel
numbers. Here, we focus on the traffic prediction strategies,
namely, MVPR and SDPR. Also we plot their performances
by the congestion ratio θ/θOR normalized by the OR routing
results. We first vary the number of radio interfaces from
2 to 4 and study the congestion θ during the time interval
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[190, 290]. Fig. 8 plots the sorted normalized congestion θ
θOR

of the two strategies. Comparing these two figures, we could
see that the SDPR strategy performs slightly better than the
MVPR strategy. The improvement of both strategies over the
OR strategy increases (i.e., normalized congestion decreases)
with the radio number.
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Fig. 9. Impact of Channel/Radio

Finally, Fig. 9 plots the normalized congestion under differ-
ent radio and channel numbers at a single time instance 271 for
these two strategies. The results show that the improvement of
both strategies over the OR strategy decreases with the channel
number. This is because when the network has more channels,
the algorithms are likely to find more paths and the prediction
error is more likely to be magnified.

If our algorithms are implemented in real systems, the
processing overhead includes the computation overhead at the
central node and the message exchange overhead between
the central node and mesh nodes. The computation overhead
of each mesh node is relatively small. Our approximate
algorithms have shown that the computation overhead at the
centralized node is polynomial. For the message exchange
overhead, each mesh node report the traffic information to
central node and central node sends the routing information
back to mesh nodes. The complexity of message overhead is
O(n) where n is the number of mesh nodes in the network.

VI. RELATED WORK

We evaluate and highlight our original contributions in light
of previous related work.

The problem of wireless mesh network routing, channel
assignment, and the joint solution of these two have been
extensively studied in the existing literature. For example,
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routing algorithms are proposed to improve the throughput
for wireless mesh networks via integrating MAC layer infor-
mation [2], such as expected packet transmission time [1],
channel cost metric (CCM) which is the sum of expected
transmission time weighted by the channel utilization [4].
Joint solutions for channel allocation and routing are explored
in [14] using a centralized algorithm and in [3] in a distributed
fashion. These heuristic solutions are designed to adapt to the
dynamic network condition. However, they lack the theoretical
foundation to analyze how well the network performs globally
(e.g., whether the network resource is fully utilized, whether
the flows share the network in a fair fashion) under their
routing schemes.

There are also theoretical studies that formulate these
network planning decisions into optimization problems. For
example, the works of [5], [6] study the optimal solution of
joint channel assignment and routing for maximum through-
put under a multi-commodity flow problem formulation and
solve it via linear programming. The work of [15] presents
bandwidth allocation schemes to achieve maximum throughput
and lexicographical max-min fairness respectively. Further, the
work of [16] presents a rate limiting scheme to enforce the fair-
ness among different local access points. These results provide
valuable analytical insights to the mesh network design under
ideal assumptions such as known static traffic input. However,
they may be unsuitable for practical use under highly dynamic
traffic situation. Different from these existing works, our work
explicitly incorporates traffic behavior analysis and prediction
into the routing optimization, thus better fits the routing need
in the dynamic wireless mesh networks. Distributed algo-
rithms are presented for joint scheduling and routing in [17],
and for joint channel assignment, scheduling and routing in
[18]. These distributed algorithms only use local information
for traffic routing, thus have the potential to accommodate
dynamic traffic. However, their crucial properties, such as
convergence speed and messaging overhead, are yet to be
evaluated under realistic traffic conditions.

Trace analysis has been used to study the behavior of
wireless networks in many recent works. For example, [7]
statistically characterizes both static flows and roaming flows
in a large campus wireless network. Different from these exist-
ing works, which focus on either user behavior, network flow
or link performances, we provide a framework that integrates
traffic uncertainty model with its performance optimization.

Our work is also related to dynamic traffic engineering [19]
in Internet, which also considers the impact of demand uncer-
tainty in make routing decisions. The major difference between
our work and these existing works lies in the different network
and traffic models of wireless mesh network and Internet.
This work also extends our early work [12] from single-radio
single-channel network to multi-radio multi-channel wireless
mesh network.

VII. CONCLUSION

This paper studies the optimal routing strategies for wireless
mesh networks. Different from existing works which implicitly

assume traffic demand as static and known a priori, this
work considers the traffic demand uncertainty. It studies the
dynamic behavior of wireless network traffic, establishes two
prediction models based on time series analysis, and extends
the classical maximum concurrent flow problem with statistical
demand input. Simulation study is conducted based on the
traffic demand from the real wireless network traces. The
results show that our problem formulation and algorithm could
effectively incorporate the traffic demand dynamics.
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