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Abstract

Wireless mesh networks have attracted increasing at-
tention and deployment as a high-performance and low-
cost solution to last-mile broadband Internet access. Net-
work routing plays a critical role in determining the per-
formance of a wireless mesh network. To study the best
mesh network routing strategy which can maximize the net-
work throughput while satisfying the fairness constraints,
existing research proposes to formulate the mesh network
routing problem as an optimization problem. These works
usually make ideal assumptions such as known static traf-
fic input. Whether they could be applied for practical use
under the highly dynamic and uncertain traffic in wireless
mesh network is still an open issue.

The main objective of this paper is to understand the ef-
fects of traffic uncertainty in wireless mesh networks and
consider these effects in throughput maximization routing.
It identifies the appropriate optimization framework that
could integrate the statistical user traffic demand model into
a tractable throughput maximization problem. The trace-
driven simulation study demonstrates that our algorithm
can effectively incorporate the traffic demand uncertainty in
routing optimization, and outperform the throughput maxi-
mization routing which only considers static traffic demand.

1 Introduction

Wireless mesh networks [4, 3] have attracted increasing
attention and deployment as a high-performance and low-
cost solution to last-mile broadband Internet access. In
wireless mesh networks, local access points and station-
ary wireless mesh routers communicate with each other and
form a backbone network which forwards the traffic from
mobile clients to the Internet.

Traffic routing in the mesh backbone network plays a
critical role in determining the performance of a wireless
mesh network. These existing routing solutions usually fall

into two ends of the spectrum. On one end of the spectrum
are the heuristic algorithms (e.g., [19, 8, 20]). Although
many of such approaches are adaptive to the dynamic en-
vironments of wireless networks, they lack the theoretical
foundation to analyze how well the network performs glob-
ally (e.g., whether the network resource is fully utilized,
whether the flows share the network in a fair fashion). On
the other end of the spectrum, there are theoretical studies
that formulate these network planning decisions into opti-
mization problems (e.g., [5, 14]). Yet these results usually
make ideal assumptions towards the network such as known
static traffic input, which makes them unsuitable for practi-
cal use in the highly dynamic wireless networking environ-
ments.

To date, how mesh network could optimize its perfor-
mance under dynamic user demand is still an open ques-
tion. This question calls for a new framework that could
characterize the traffic demand uncertainty and integrate its
effect into optimal network routing. To answer this call, this
paper investigates the traffic routing problem for through-
put optimization with fairness constraint under uncertain
demand. In particular, it studies how traffic from(to) local
access points could be routed in a mesh network so that the
minimum proportion of the demands from all local access
points could be maximized.

If the traffic demand from each local access point is
known a priori, the throughput optimization problem with
fairness constraint could be formulated as a linear program-
ming problem (maximum concurrent flow problem). To in-
corporate demand uncertainty into this optimization frame-
work, this paper first characterizes the uncertain traffic de-
mand using a random variable. Under this model, the pro-
portions of traffic demands are also random variables for a
given routing strategy. Thus this paper extends the maxi-
mum concurrent flow problem to a stochastic optimization
problem where the expected value of the performance ratio
between the achieved traffic demand proportion and its op-
timum is maximized. This paper further presents two fast
(1− ε)-approximation algorithms for throughput optimiza-



tion under fixed and uncertain demand respectively.
To evaluate and compare the performance of these two

algorithms under realistic network traffic environment, we
conduct trace-driven simulation study. In particular, we de-
rive the traffic demands from the access points of campus
wireless LANs based on the traces collected at Dartmouth
College [1]. These traffic demands are used to drive the sim-
ulation. Our simulation results demonstrate that our statis-
tical problem formulation could effectively incorporate the
traffic demand uncertainty in routing optimization, and our
algorithm outperforms the conventional solution which only
considers the static traffic demand.

The original contributions of this paper are two-fold.
First, to the best of our knowledge, this is the first work
that integrates statistical user traffic demand model into
a tractable throughput optimization problem for wireless
mesh networks. Second, this paper evaluates the practi-
cability of optimization-based routing solutions using the
trace data collected in the real wireless network environ-
ments.

The remainder of this paper is organized as follows.
Sec. 2 presents the network and traffic demand model.
Sec. 3 formulates the mesh network routing problem un-
der fixed traffic demand based on maximum concurrent flow
and presents a fast approximation algorithm. Sec. 4 extends
the routing problem to handle uncertain traffic demand. We
show simulation results in Sec. 5, present related work in
Sec. 6 and finally conclude the paper in Sec. 7.

2 Model

2.1 Network Model
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Figure 1. Illustration of Wireless Mesh Net-
work

We consider a multi-hop wireless mesh network as illus-
trated in Fig. 1. In this network, local access points aggre-
gate the traffic from mobile clients that are associated with
them. They communicate with each other, also with station-
ary wireless routers, forming a multi-hop wireless backbone

network which forwards the user traffic to a gateway access
point connecting to the Internet. In the following discus-
sion, local access point, gateway access point, and mesh
routers are collectively called mesh nodes.

We model the backbone of a wireless mesh network as
a directed graph G = (V, E), where each node u ∈ V
represents a mesh node. Among these nodes, g ∈ V is
the gateway access point that connects to the Internet. A
directed edge e = (u, v) ∈ E denotes that u can transmit to
v directly. We assume that all mesh nodes have a uniform
transmission range denoted by RT . We denote r(u, v) as
the distance between u and v. An edge e = (u, v) ∈ E if
and only if r(u, v) ≤ RT . We also use r(e) to represent the
length of edge e. Let b(e) bit/sec be the data rate of edge
e, which is maximum data that can be carried in a second
along e.

2.2 Traffic Demand Model

This paper investigates the throughput optimization rout-
ing scheme for wireless mesh backbone network. Thus we
consider the aggregated traffic among the mesh nodes. In
particular, we regard the gateway access points as the source
of all incoming traffic and the destination of all outgoing
traffic of a mesh network. Similarly, the local access points,
which aggregate the client traffic, serve as the sources of
all outgoing traffic and the destinations of incoming traf-
fic. For simplicity, we call the aggregated traffic that shares
the same source and destination as a flow and denote it as
f ∈ F , where F is the set of all aggregated flows. It is
worth noting that although we consider only one gateway
access point in this paper, our problem formulation and al-
gorithm presented here could be easily extended to handle
multiple gateway routers and inter-mesh-router traffic. Fi-
nally, we denote the rate of an aggregated flow f ∈ F as
xf , and use x = (xf , f ∈ F ) to represent the aggregated
flow rate vector.

2.3 Interference Model and Schedulability

In a wireless network, packet transmissions are subject
to location-dependent contention, which means that simul-
taneous transmissions in the proximate region may interfere
with each other and result in packet collision. Usually the
interference range of a node is larger than its transmission
range. Thus we denote the interference range of a node as
RI = (1 + ∆)RT , where ∆ ≥ 0 is a constant.

In this paper, we consider the protocol model for packet
transmission [11]. In the protocol model, packet transmis-
sion from node u to v is successful if and only if (1) the
distance between these two nodes r(u, v) satisfies r(u, v) <
RT ; (2) any other node w ∈ V within the interference range
of the receiving node v, i.e., r(w, v) ≤ RI , is not transmit-



ting. Two edges e, e′ interfere with each other, if they can
not transmit simultaneously based on the protocol model.
We use I(e) denote the set of edges which interfere with
edge e.

To study the throughput optimization routing problem,
we first need to understand the constraint of the flow rates.
Let y = (ye, e ∈ E) denote the wireless link rate vector,
where ye is the aggregated flow rate along wireless link e.
Link rate vector y is said to be schedulable, if there exists a
stable schedule that ensures every packet transmission with
a bounded delay. Essentially, the constraint of the flow rates
is defined by the schedulable region of the link rate vector
y.

The link rate schedulability problem has been studied
in several existing works, which lead to different mod-
els [13, 16, 24]. In this paper, we adopt the model in [16],
which presents a sufficient condition under which a link
scheduling algorithm is given to achieve stability with
bounded and fast approximation of an ideal schedule. Based
on this model, we define S(e) as a subset of I(e), where
each e′ ∈ I(e) that has a length r(e′) greater than or equal
to r(e) is in S(e). In the following discussion, we refer
S(e) as the adjusted interference set of e. Based on the re-
sults presented in [16], we have the following claims.

Claim 1. (Sufficient Condition of Schedulability) The
link rate vector y is schedulable if the following condition
is satisfied:

∀e ∈ E, ye +
∑

e′∈S(e)

ye′ ≤ b(e) (1)

where b(e) bit/sec is the data rate of edge e. For ease of
exposition, we assume that b(e) = 1 for all e ∈ E in the
following discussion.

3 Fixed Demand Mesh Network Routing

In this paper, we investigate the throughput optimization
routing problem for wireless mesh backbone network. The
objective of this problem is to maximize the throughput of
aggregated flows among local access points and the gate-
way, while satisfying the fairness constraints. This prob-
lem is usually formulated as a maximum concurrent flow
problem. In this section, we first study the formulation
of throughput optimization routing in wireless mesh back-
bone network under fixed traffic demand. We then present
a fully polynomial time approximation algorithm (FPTAS)
for this problem, which finds an ε-approximate solution.
The problem formulation and algorithm presented in this
section serve as the basis of the uncertain demand routing
problem discussed in Sec. 4.

Recall that f ∈ F is the aggregated traffic flow between
local access points and the gateway. We use df to denote

Notation Definition
G = (V, E) Network
u ∈ V Node
g ∈ V Gateway router
e = (u, v) ∈ V Edge connecting nodes u and v
f ∈ F Flow, also known as commodity
x = (xf , f ∈ F ) Aggregated flow rate vector
y = (ye, e ∈ E) Wireless link flow rate vector
d = (df , f ∈ F ) Flow demands
Pf Set of unicast paths that could

route f
xf (P ) Rate of flow f over path P ∈ Pf

λ Scaling factor
Se Adjusted interference set of e ∈

E
AeP = |Se ∩ P | Number of wireless links P

passes in Se

µe Price of Se

λ(d) =
minf∈F {xf

df
}

Scaling factor for d

λ∗(d) Optimal value of λ(d)
θ = λ(d)/λ∗(d) Performance ratio
p(d) Probability of d

Table 1. Notations
the demand of flow f and d = (df , f ∈ F ) to denote the
demand vector consisting of all flow demands. Consider
the fairness constraint that, for each flow f , its throughput
being routed is in proportion to its demand df . Our goal
is to maximize λ (so called scaling factor) where at least
λdf amount of throughput can be routed for flow f . We
assume an infinitesimally divisible flow model where the
aggregated traffic flow could be routed over multiple paths
and usePf to denote the set of unicast paths that could route
flow f .

Let xf (P ) be the rate of flow f over path P ∈ Pf . Ob-
viously the aggregated flow rate ye along edge e ∈ E is
given by ye =

∑
f :P∈Pf&e∈P xf (P ), which is the sum of

flow rates that are routed through paths P passing edge e.
Based on the sufficient condition of schedulability in Claim
1 (Eq.(1)), we have that

∑

f :P∈Pf&e∈P

xf (P ) +
∑

e′∈Se

∑

f :P∈Pf&e′∈P

xf (P ) ≤ 1 (2)

The throughput optimization routing with fairness con-
straint is then formulated as the following linear program-
ming (LP) problem:



P : maximize λ (3)

subject to
∑

P∈Pf

xf (P ) ≥ λdf , ∀f ∈ F (4)

∑

f :P∈Pf &e∈P

xf (P ) (5)

+
∑

e′∈Se

∑

f :P∈Pf &e′∈P

xf (P ) ≤ 1, ∀e ∈ E

λ ≥ 0, xf(P ) ≥ 0, ∀f ∈ F, ∀P ∈ Pf (6)

In this problem, the optimization objective is to maxi-
mize λ, such that at least λdf units of data can be routed
for each aggregated flow f with demand df . Inequality
(4) enforces fairness by requiring that the comparative ra-
tio of traffic routed for different flows satisfies the compar-
ative ratio of their demands. Thus, the absolute value df is
meaningless, as we can easily tune the value of λ by scaling
up/down all demands, while λdf stays unchanged. Inequal-
ity (5) enforces capacity constraint by requiring the traffic
aggregation of all flows passing wireless link e ∈ E sat-
isfy the sufficient condition of schedulability. This problem
formulation follows the classical maximum concurrent flow
problem, which has also been used in Internet traffic engi-
neering and load balancing routing.

This problem could be solved by a LP-solver such as [2].
To reduce the complexity for practical use, we present a
fully polynomial time approximation algorithm (FPTAS)
for problem P, which finds an ε-approximate solution. The
key to a fast approximation algorithm lies on the dual of
this problem, which is formulated as follows. First we de-
fine AeP = |Se ∩ P | as the number of wireless links a
path P passes in the adjusted interference set Se. We as-
sign a price µe to each set Se for e ∈ E. The objective is
to minimize aggregated price for all adjusted interference
sets. As the constraint, Inequality (8) requires that the price∑

e∈E AeP µe of any path P ∈ Pf for flow f must be at
least µf , the price of flow f . Further, Inequality (9) requires
that the weighted flow price µf over its demand df must be
at least 1.

D : minimize
∑

e∈E

µe (7)

subject to
∑

e∈E

AeP µe ≥ µf , ∀f ∈ F, ∀P ∈ Pf(8)

∑

f∈F

µfdf ≥ 1 (9)

Based on the above dual problem D, our fast approxima-
tion algorithm is presented in Table 2. The algorithm design
follows the idea of [10]. To start with, we initialize the price

Algorithm I: Mesh Network Routing Under Fixed
Demand
1 ∀e ∈ E, µe ← β
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 while

∑
e∈E µe < 1

4 for ∀f ∈ F do
5 d′f ← df

6 while
∑

e∈E µe < 1 and d′f > 0 do
7 P ← lowest priced path in Pf using µe

8 δ ← min{d′f , mine∈P
1

AeP
}

9 d′f ← d′f − δ

10 xf (P )← xf (P ) + δ
11 ∀e s.t. AeP �= 0, µe ← µe(1 + εδAeP )
12 end while
13 end for
14 end for

Table 2. Routing Algorithm Under Fixed De-
mand

on each adjusted interference set Se as β (Line 1). We also
zero the traffic on all paths P ∈ Pf (Line 2). Then for each
flow f , we route df units of data. We do so by finding the
lowest priced path in the path set Pf (Line 7), then filling
traffic to this path by its bottleneck capacity (Lines 8 to 10).
Then we update the prices for physical edges appeared in
this path based on the function defined in Line 11. We keep
filling traffic to flow f in the above fashion until all df units
are routed. This procedure is repeated until the aggregate
price of interference sets Se for all e ∈ E weighted by the
capacity c exceeds 1 (Line 3).

We make following notes to our algorithm. First, it com-
pletes in finite time, which is guaranteed by the asymptotic
link price update function defined in Line 11. ε here is the
step size, which controls the growing speed of the link price.
Second, as one might see, the algorithm in fact routes more
traffic than the network is able to afford. Therefore, a scal-
ing procedure is needed to scale down the routed traffic so
it fits the capacity of each physical link in the network. We
formally analyze the properties of our algorithm in the fol-
lowing lemmas and theorem. In the analysis, we denote
f∗ as the result returned by the algorithm and OPT as the
optimal value of D as well as P. The detailed proofs of
the following lemmas and theorem are provided in the Ap-
pendix.

Lemma 1: If OPT ≥ 1, scaling the final flow by
log1+ε 1/β yields a feasible primal solution of value f∗ =

t−1
log1+ε 1/β , t being the number of phases the algorithm takes
to stop.

Lemma 2: If OPT ≥ 1, then the final flow scaled by
log1+ε 1/β has a value at least (1 − 3ε) times OPT , when
β = (|E|/(1− ε))−1/ε.

Lemma 3: If OPT ≥ 1 and β = (|E|/(1− ε))−1/ε, Al-



gorithm I terminates after at most t = 1+ OPT
ε log1+ε

|E|
1−ε

phases.
These lemmas require that OPT ≥ 1. The running time

of the algorithm also depends on OPT . Thus we need to
ensure that OPT is at least one and not too large. Let ζf

be the maximum traffic value of flow f when all other flows
have zero traffic. Let ζ = minf

ζf

df
. Since at best all single

commodity maximum flows can be routed simultaneously,
ζ is an upper bound on f∗. On the other hand, routing 1/|F |
fraction of each flow of value ζf is a feasible solution, which
implies that ζ/|F | is a lower bound on OPT . To ensure that
OPT ≥ 1, we can scale the original demands so that ζ/|F |
is at least one. However, by doing so, OPT might be made
as large as |F |, which is also undesirable.

To reduce the dependence on the number of phases on
OPT , we adopt the following technique. If the algorithm
does not stop after T = 2

ε log1+ε
|E|
1−ε phases, it means that

OPT > 2. We then double demands of all commodities,
so that OPT is halved and still at least 1. We then continue
the algorithm, and double demands again if it does not stop
after T phases.

Lemma 4: Given ζf for each flow f , the running time of

Algorithm I is O( log |E|
ε2 (2|F | log |F |+ |E|)) · Tmp.

Theorem 1: The total running time of Algorithm I is
O( 1

ε2 [log |E|(2|F | log |F |+ |E|) + log U)]) · Tmp.

4 Uncertain Demand Mesh Network Routing

Now we proceed to investigate the throughput optimiza-
tion routing problem for wireless mesh backbone network
when the aggregated traffic demand is uncertain. We model
such uncertain traffic demand of an aggregated flow f ∈ F
using a random variable Df . We assume that Df follows
the following discrete probability distribution

Pr(Df = di
f ) = qi

f (10)

where Df = {d1
f , d2

f , ..., dm
f } is the set of of values for Df

with non-zero probabilities. Let d = (df , df ∈ Df , f ∈ F )
be a sample traffic demand vector of all flows, D be the
corresponding random variable, andD be the sample space.
We assume that the demand from different access points are
independent from each other. Thus the distribution of D is
given by the joint distribution of these random variables as
follows.

Pr(D = d) = Pr(Df = di
f , f ∈ F ) = Πf∈F qi

f (11)

Let us consider a traffic routing solution (xf (P ), P ∈
Pf , f ∈ F ) that satisfies the capacity constraint (Eq. (5)).
It is obvious that the λ is a function of d:

λ(d) = min
f∈F
{xf

df
} (12)

where xf =
∑

P∈Pf
xf (P ). Further let us consider the

optimal routing solution under demand vector d. Such a so-
lution could be easily derived based on Algorithm I shown
in Table 2. We denote the optimal value of λ as λ∗(d). We
further define the performance ratio θ of routing solution
(xf (P ), P ∈ Pf , f ∈ F ) as follows:

θ =
λ(d)
λ∗(d)

Obviously, the performance ratio is also a random vari-
able under uncertain demand. We denote it as Θ. Θ is a
function of random variable D. Now we extend the wire-
less mesh network routing problem to handle such uncertain
demand. Our goal is to maximize the expected value of Θ,
which is given as follows.

E(Θ) = Pr(D = d)× λ(d)
λ∗(d)

(13)

We abbreviate Pr(D = d) as p(d). It is obvious that∑
d∈D p(d) = 1. Formally, we formulate the throughput

optimization routing problem with fairness constraints for
wireless mesh backbone network under uncertain traffic de-
mand as follows.

PU : maximize
∑

d∈D
p(d)

λ(d)
λ∗(d)

(14)

subject to
∑

P∈Pf

xf (P ) ≥ λ(d)df , (15)

∀d ∈ D, ∀f ∈ F∑

f :P∈Pf&e∈P

xf (P ) + (16)

∑

e′∈Î(e)

∑

f :P∈Pf&e′∈P

xf (P ) ≤ 1,

∀e ∈ E, ∀f ∈ F, ∀P ∈ Pf , xf (P ) ≥ 0

Similar to problem P, the constraints of PU come from
the fairness requirement and the wireless mesh network ca-
pacity. In particular, Inequality (15) enforces fairness for
all demand d ∈ D, and Inequality (16) enforces capacity
constraint as (5) in problem P.

Now we consider the dual problem DU of PU. Similar
to D, the objective of DU is to minimize the aggregated
price for all interference sets. However, in Inequality (19),
for each sample demand vector d, the aggregated price of
all flows weighted by their demand needs to be larger than
the ratio of its probability to its optimal value of λ.



DU : minimize
∑

e∈E

µe (17)

subject to
∑

e∈E

AeP µe ≥ µf ,

∀f ∈ F, ∀P ∈ Pf (18)
∑

f∈F

µfdf ≥ p(d)
λ∗(d)

, ∀d ∈ D (19)

where d = (df , f ∈ F )

Algorithm II: Mesh Network Routing Under Uncer-
tain Demand
1 ∀e ∈ E, µe ← β
2 xf (P )← 0, ∀P ∈ Pf , ∀f ∈ F
3 loop
4 for ∀f ∈ F do
5 P̄ ← lowest priced path in Pf using µe

6 µf ←
∑

e∈E AeP̄ µe

7 end for
8 for ∀d ∈ D do
9 µd ←

∑
f∈F µfdf

λ∗(d)
p(d)

10 end for
11 µmin ← mind∈D µd

12 dmin ← argmind∈D µmin

13 if µmin ≥ 1
14 return
15 for ∀f ∈ F do
16 d′f ← dmin

f

17 while d′f > 0 do
18 P ← lowest priced path in Pf using µe

19 δ ← min{d′f , mine∈P
1

AeP
}

20 d′f ← d′f − δ

21 xf (P )← xf (P ) + δ
22 ∀e s.t. AeP �= 0, µe ← µe(1 + εδAeP ×
λ∗(dmin)
p(dmin) )

23 end while
24 end for
25 end loop

Table 3. Routing Algorithm Under Uncertain
Demand

Now we present an approximation algorithm for PU in
Table 3. This algorithm (Algorithm II) has the same ini-
tialization as the algorithm for problem P (Algorithm I).
Then we march into the iteration, in which we find dmin,
the demand whose price µmin is the minimum among oth-
ers (Lines 4 to 12). If µmin ≥ 1, then the algorithm stops
(Lines 13 and 14), since Inequality (8) and (9) would be

satisfied for all demand. Otherwise, we will increase the
price of dmin by routing more traffic through its node pairs.
This procedure (Lines 16 to 22) is the same as what has
been described in the lines 4 to 11 of the previous algo-
rithm. Following the same proving sequence for Algorithm
I, we are able to prove the similar properties with Algorithm
II, which we illustrate the details in the Appendix.

5 Simulation Study

5.1 Simulation Setup

We evaluate the performance of our algorithms via sim-
ulation study. In the simulated wireless mesh network, 30
mesh nodes are randomly deployed over a 800× 800m2 re-
gion, among which 10 nodes are local access points that for-
ward traffic for clients. Node 10 which resides in the center
of the deploy region is selected as the gateway router. Each
mesh nodes has a transmission range of 250m. The simu-
lated network topology is shown in Fig. 2
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Figure 2. Mesh Network Topology.

5.2 Traffic Demand Generation

To realistically simulate the traffic demand at each local
access point, we analyze the traces collected in the cam-
pus wireless LAN network. The network traces used in this
work are collected in Spring 2002 at Dartmouth College and
provided by CRAWDAD [1].

By analyzing the snmp log trace at each access point, we
are able to derive its incoming and outgoing traffic volume
in a 5-minute period. We argue that the local access points
of a wireless mesh network serve a similar role as the ac-
cess points of wireless LAN networks at aggregating and
forwarding client traffic. Thus, we select 10 access points
from the Dartmouth campus wireless LAN and assign their
traffic traces to the local access points in our simulation.
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Figure 3. Traffic Time Series.

Fig. 3 plots the time series of the traffic volume during one-
hour period at the same time of a day (12pm-1pm) from 4
access points for 20 consecutive work days. We remove the
weekend days from the traces due to their extreme low traf-
fic volume. From the figure, we observe that the traffic at
each access point is highly dynamic and unpredictable due
to the insufficient level of aggregation. This observation
motivates the need of mesh routing schemes that are aware
of the traffic uncertainty.

Based on the one-hour traffic volume data from the
traces, we further derive the traffic demand distribution for
each access point. Essentially, We round the obtained raw
traffic volume into finite collection of traffic demand ranges.
We treat each piece of traffic volume data as a sample and
derive its probability density function. Fig. 4 plots the
probability density function for the 4 corresponding access
points in Fig. 3.

5.3 Performance Comparison

We compare the performance of three traffic routing so-
lutions described as follows. In particular, the first two em-
ploy the throughput maximization algorithm under fixed de-
mand (Algorithm I), while the last one employs the algo-
rithm under uncertainty demand (Algorithm II).

• Online Solution: This solution keeps track of the
dynamically changing demand and maximizes the
throughput based on the current demand of each ac-
cess point, meanwhile maintaining the fairness among
them. Since the access point demand keeps changing,
it has to continuously rerun Algorithm I (Table 2) to
adapt to the new demand. This solution yields the op-
timal routing result at the cost of frequent routing com-
putation and update.

• Average-Demand-based Solution: This solution es-
timates the dynamic traffic demand using the mean
value from its probability distribution for each access
point. It computes a fixed route based on this aver-
age demand vector using Algorithm I. Using only the
average demand, this solution does not consider the
uncertainty of the traffic demand.

• Uncertainty-aware Solution: This solution accommo-
dates the uncertainty in traffic demand by maximizing
the throughput for all demand vectors normalized by
their occurring probabilities. In particular, it employs
Algorithm II presented in Table 3 with the traffic dis-
tribution derived from the traces.

We evaluate the above three routing solutions under a
series of experiments. For each experiment, the traffic de-
mand of each access point is generated based on their prob-
ability distribution. We repeat the experiment for 100 times
with 100 randomly generated traffic demand vectors. For
each experiment, we derive its scaling factor λ, which is the
minimum ratio of throughput and demand among all access
points. Fig. 5 plots the sorted values of λ in these 100 ex-
periments. Evidently, the online solution keeps delivering
the optimal scaling factor, at the cost of rerouting for each
experiment. Comparatively, average-demand solution pro-
vides a single set of routes for all demand vectors, but still
achieves a scaling factor no worse than 50% of the opti-
mum, except at the last 5 experiments. Uncertainty-aware
solution demonstrate the same trend, but continuously out-
performs the average-demand solution by 20%. Although
there are exceptions in the first 20 experiments when the
optimal value of λ is low, the difference is minor.
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Figure 5. Comparison of Three Algorithms

After evaluating the overall performance of these solu-
tions, we then study them in the granularity of a single ex-
periment. In particular, we are interested to learn the ability
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Figure 4. Traffic Demand Distribution.

of each algorithm at maintaining fairness among different
access points. In Fig. 6, we randomly choose one exper-
iment listed in Fig. 5, and plot the scaling factor of ag-
gregated flows achieved on four local access points (node
15, 16, 18, and 22). Here, the average-demand solution
achieves the worst fairness among four nodes, as it gives the
highest scaling factor for node 18, and the lowest for 221.
On the other hand, online algorithm maintains the best fair-
ness among four nodes, since its result is tuned on-the-fly
to the specific demand. Finally, the uncertainty-aware solu-
tion trades off well between the former two, by returning the
scaling factor which is much higher than average-demand
solution (observing node 22), yet only slightly lower than
the online solution (observing node 15 and 18).
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In Fig. 7, we compare the aggregated throughput of all
local access points enabled by these three solutions. Obvi-
ously, throughout all experiments, the aggregated through-
put remains the same for average-demand and uncertainty-
aware solutions since they stick to only one set of routes.
The latter solution outperforms the former one, as con-
firmed by our observation in Fig. 5 in terms of scaling fac-
tor. The online solution, however, results in unstable ag-
gregate throughput over different experiments. While its
maximum value is higher than the other two solutions, the
minimum throughput is also well below both of them.

1Recall in Fig. 5, the scaling factor achieved at each experiment is the
lowest value among all access nodes.
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In summary, our simulation results demonstrate that our
statistical problem formulation could effectively incorpo-
rate the traffic demand uncertainty in routing optimization,
and its algorithm outperforms the algorithm which only
considers the static traffic demand.

6 Related Work

We evaluate and highlight our original contributions in
light of previous related work.

The problem of wireless mesh network routing has
been extensively studied in the existing literature. For
example, routing algorithms are proposed to improve the
throughput for wireless mesh networks via integrating MAC
layer information [7], such as expected packet transmission
time [8]. Joint solutions for channel allocation and rout-
ing are explored in [20] using a centralized algorithm and
in [19] in a distributed fashion. These heuristic solutions
lack the theoretical foundation to analyze how well the net-
work performs globally (e.g., whether the network resource
is fully utilized, whether the flows share the network in a
fair fashion) under their routing schemes.

There are also theoretical studies that formulate these
network planning decisions into optimization problems. For
example, the works of [5], [14] study the optimal solu-
tion of joint channel assignment and routing for maximum
throughput under a multi-commodity flow problem formu-
lation and solves it via linear programming. The work of



[21] presents bandwidth allocation schemes to achieve max-
imum throughput and lexicographical max-min fairness re-
spectively. [9] presents a rate limiting scheme to enforce the
fairness among different local access points. These results
provide valuable analytical insights to the mesh network de-
sign under ideal assumptions such as known static traffic
input. It is not clear whether they will be unsuitable for
practical use under highly dynamic traffic situation. Differ-
ent from these existing works, our work explicitly incorpo-
rates traffic uncertainty into the routing optimization, thus
better fits the routing need in the dynamic wireless mesh
networks. Distributed algorithms have presented for joint
scheduling and routing in [17], and for joint channel assign-
ment, scheduling and routing in [17]. These distributed al-
gorithms only use local information for traffic routing, thus
have the potential to accommodate dynamic traffic. How-
ever, their crucial properties, such as convergence speed and
messaging overhead, are yet to be evaluated under realistic
traffic conditions.

Trace analysis has been used to study the behavior of
wireless networks in many recent works. To name a few,
the works of [15, 12] analyze a campus-wide wireless net-
work traffic and its changes in two years. [18] statistically
characterizes both static flows and roaming flows in a large
campus wireless network. In [22], the flow level traffic pat-
tern is used to design a scheduling algorithm for end-host
multi-homing. Different from these existing works, which
focus on either user behavior, network flow or link perfor-
mances, we provide a framework that integrates traffic un-
certainty model with its performance optimization.

Our work is also related to dynamic traffic engineer-
ing [23] in Internet and oblivious routing [6], which also
consider the impact of demand uncertainty in make rout-
ing decisions. The major difference between our work and
these existing works lies in the different network models of
wireless mesh network and Internet and the different prob-
lem formulations. In particular, traffic engineering tries to
minimize the congestion (utilization) of the wired links of
a network. In multihop wireless network, wireless link uti-
lization can not be used to characterize the network per-
formance due to the location dependent contention in the
vicinity area. The objective of our research is to maximize
the ratio between flow throughput and its demand, subject
to the schedulability and fairness constraints.

7 Conclusion

This paper studies the throughput optimization routing
problem for wireless mesh networks. Different from ex-
isting works which assume fixed traffic demand known a
priori, this work considers the traffic demand uncertainty.
It models such uncertain demand with random variables,
extends the classical maximum concurrent flow problem

with statistical demand input, and derives approximation al-
gorithms for uncertainty-aware traffic routing. Simulation
study is conducted based on the traffic demands from the
real wireless network traces. The results show that our prob-
lem formulation and algorithm could effectively incorporate
the traffic demand uncertainty.
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8 Appendix

We show the proofs to the lemmas and theorem in the pa-
per. Here, f∗ is the result returned by the algorithm. OPT
is the optimal value of D as well as P.

8.1 Proof for Lemma 1

Proof:
We first make the following denotations. Regarding a

set of price assignments µe for Se (e ∈ E), the objective
function of D is Lµe �

∑
e∈E µe. Let Pµe(f) be the min-

imum path of the flow f ∈ F using µe. µ(Pµe(f)) �∑
e∈E AeP µe (f)µe is the aggregated price of Pµe(f). Each

phase contains |F | iterations, where traffic for each flow in
F is routed according to its demand. In each iteration, the
price of an interference set is updated. We use µ

(i)(j)
e to

denote the price of Se for e ∈ E after the jth iteration of
the ith phase. Regarding µ

(i)(j)
e , we simplify the notation

Lµ(i)(j)
e into L(i)(j), Pµ(i)(j)

e into P (i)(j), and µ(Pµ(i)(j)
e )

into µ(P (i)(j)). Based on the price update function (Line
11 in Tab. 2), we have

L(i)(j)

=
∑

e∈E

µ(i)(j−1)
e + ε

∑

e∈P (i)(j−1)

AeP (i)(j−1) µ(i)(j−1)
e d(fj)

= L(i)(j−1) + d(fj)µ(P (i)(j−1))

The price assignment at the start of the (i + 1)th phase are

the same as that at the end of the ith phase, i.e., µ
(i+1)(0)
e =

µ
(i)(|F |)
e . The price of any interference set Se is initialized

as µ
(1)(0)
e = µ

(0)(|F |)
e = β. Hence,

L(i)(|F |) ≤ L(i)(0) + ε

|F |∑

j=1

d(fj)µ(P (i)(|F |))

since the edge lengths are monotonically increasing.
Let us define µ(i)(|F |) =

∑|F |
j=1 d(fj)µ(P (i)(|F |)). Then

the objective of D is to minimize L(i)(|F |), subject to the
constraint that µ(i)(|F |) ≥ 1. This constraint can be eas-
ily satisfied if we scale the length of all inference sets by
1/µ(i)(|F |). So D is equivalent to finding a set of inference

set lengths, such that L(i)(|F |)
µ(i)(|F |) is minimized. Thus the opti-

mal value of D is OPT � minµ(i)(|F |) L(i)(|F |)
µ(i)(|F |) .

Since L(i)(|F |)
µ(i)(|F |) ≥ OPT , we have

L(i)(|F |) ≤ β|E|
1− ε

e
ε(i−1)

OP T (1−ε)

Since L(0)(|F |) = β|E|, we have

L(i)(|F |) ≤ β|E|
(1− ε/OPT )i

=
β|E|

(1− ε/OPT )
(1 +

ε

OPT − ε
)i−1

≤ β|E|
(1− ε/OPT )

e
ε(i−1)

OP T−ε

≤ β|E|
1− ε

e
ε(i−1)

OP T (1−ε)

where the last inequality assumes that OPT ≥ 1. The
algorithm stops at the first phase t for which L(t)(|F |) ≥ 1.
Therefore,

1 ≤ L(t)(|F |) ≤ β|E|
1− ε

e
ε(t−1)

OP T (1−ε)

which implies

OPT

t− 1
≤ ε

(1− ε) ln 1−ε
β|E|

(20)

Now consider an interference set Se. For every 1 units
of flow routed through Se, we increase its price by at least a
factor (1+ ε). Initially, its length is β and after t−1 phases,
since L(t)(|F |) < 1, the price of Se satisfies µ

(t−1)(|F |)
e < 1.

Therefore the total amount of flow through Se in the first
t − 1 phases is strictly less than log1+ε

1
β = log1+ε 1/β

times its capacity. Thus, scaling the flow by log1+ε 1/β
will yield a feasible solution. Since in each phase, df units
of data are routed for each flow, we have f∗ = t−1

log1+ε 1/β .
�	

8.2 Proof for Lemma 2

Proof:
By Lemma 1, scaling the final flow by log1+ε 1/β yields

a feasible solution. Therefore,

OPT

f∗ < log1+ε 1/β (21)



Substituting the bound on OPT/(t−1) from In Equality
(20), we get

OPT

f∗ <
ε log1+ε 1/β

(1− ε) ln 1−ε
β|E|

=
ε

(1− ε) ln(1 + ε)
ln 1/β

ln 1−ε
β|E|

When β = (|E|/(1− ε))−1/ε, the above in Equality be-
comes

OPT

f∗ <
ε

(1 − ε)2 ln(1 + ε)

≤ ε

(1 − ε)2(ε− ε2/2)
1

≤ (1− ε)3

≤ (1 − 3ε)

�	

8.3 Proof for Lemma 3

Proof: From In Equality (21) and weak-duality, we have

1 ≤ OPT

f∗ < log1+ε 1/β

Hence, the number of phases t is strictly less than 1 +
OPT log1+ε 1/β. If β = (|E|/(1 − ε))−1/ε, then t ≤ 1 +
OPT

ε log1+ε
|E|
1−ε �	

8.4 Proof for Lemma 4

Proof: The above demand-doubling procedure is re-
peated for at most log |F | times. Thus, the total number
of phases is at most T log k. Since each phase contains k it-
erations, the algorithm runs for at most kT log k iterations.

Now we observe how many steps are within each itera-
tion. For each step except for the last step in an iteration,
the algorithm increases the length of some edge (the bottle-
neck edge on t) by 1 + ε. µe has initial value β and value
at most 1 before the final step of the algorithm. Otherwise,
the stop criterion of the algorithm,

∑
e∈E µe ≥ 1, would

have been reached. This means that the length of an edge
can be updated in at most log1+ε

1
β = 1

ε log1+ε
|E|
1−ε steps.

Therefore, the algorithm contains at most
|E|
ε log1+ε

|E|
1−ε ≤ |E|

ε2 log |E|
1−ε such “normal” steps, and

kT log k ≤ 2k log k
ε2 log |E|

1−ε “final” steps. Each step con-
tains a minimum overlay spanning tree operation. �	

8.5 Proof for Theorem 1

Proof: Computing ζi corresponds to the maximum flow
problem, where fi is the only commodity. The running time
of getting ζi is O( |E|

ε2 (log U)) · Tmp, where U is the length
of the longest unicast route, and Tmp denotes the running

time to find the minimum path. Such an operation has to
be repeated for each flow. Also from the result of Lemma
4, we can obtain the total running time as described by the
theorem. �	

8.6 Proof for Algorithm under Uncertain
Demand

The proof for the algorithm under uncertain demand fol-
lows the same sequence as the proof for the algorithm un-
der fixed demand, with minor modification. We start with
Lemma 1. Each phase of the algorithm contains |F | itera-
tions, where traffic for each flow in F is routed according
to its demand. We reuse the same denotations defined in the
original proof to Lemma 1. We further introduce d(i) as the
demand vector chosen at the ith phase.

Based on the price update function (Line 11 in Tab. 2),
we have

L(i)(j)

= L(i)(j−1) + d(fj)µ(P (i)(j−1))
λ∗(d(i))
p(d(i))

The price assignment at the start of the (i + 1)th phase are

the same as that at the end of the ith phase, i.e., µ
(i+1)(0)
e =

µ
(i)(|F |)
e . The price of any interference set Se is initialized

as µ
(1)(0)
e = µ

(0)(|F |)
e = β/c. Hence,

L(i)(|F |) = L(i)(0) + ε

|F |∑

j=1

d(fj)µ(P (i)(j−1))
λ∗(d(i))
p(d(i))

≤ L(i)(0) + ε

|F |∑

j=1

d(fj)µ(P (i)(|F |))
λ∗(d(i))
p(d(i))

since the edge lengths are monotonically increasing.
Let us define µ(i)(|F |) =

∑|F |
j=1 d(fj)µ(P (i)(|F |))λ∗(d(i))

p(d(i))
. Then the objective

of D is to minimize L(i)(|F |), subject to the constraint that
µ(i)(|F |) ≥ 1, i.e., L(i)(|F |)

µ(i)(|F |) ≥ OPT .
The rest of the proof follows the same as the original

proof to Lemma 1. The proofs to Lemma 2, 3, 4, and The-
orem 1 remain the same.


