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1. INTRODUCTION

Many organizations are increasingly publishing microdata, that is, tables that
contain unaggregated information about individuals. These tables can include
medical, voter registration, census, and customer data. Microdata is a valuable
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source of information for the allocation of public funds, medical research, and
trend analysis. However, if individuals can be uniquely identified in the micro-
data, then their private information (such as their medical condition) would be
disclosed, and this is unacceptable.

To avoid the identification of records in microdata, uniquely identifying in-
formation like names and social security numbers are removed from tables.
However, this first sanitization still does not ensure the privacy of individuals
in the data. A recent study estimated that 87% of the population of the United
States can be uniquely identified using the seemingly innocuous attributes of
gender, date of birth, and 5-digit zip code [Sweeney 2000]. In fact, these three
attributes were used to link Massachusetts voter registration records (which in-
cluded the name, gender, zip code, and date of birth) to supposedly anonymized
medical data from GIC! (which included gender, zip code, date of birth and di-
agnosis). This linking attack managed to uniquely identify the medical records
of the governor of Massachusetts in the medical data [Sweeney 2002].

Sets of attributes (like gender, date of birth, and zip code in the previous
example) that can be linked with external data to uniquely identify individuals
in the population are called quasi-identifiers. To counter linking attacks using
quasi-identifiers, Samarati and Sweeney proposed a definition of privacy called
k-anonymity [Samarati 2001; Sweeney 2002]. A table satisfies £-anonymity if
every record in the table is indistinguishable from at least £ — 1 other records
with respect to every set of quasi-identifier attributes; such a table is called a k-
anonymous table. Hence, for every combination of values of the quasi-identifiers
in the k-anonymous table, there are at least k£ records that share those values.
This ensures that individuals cannot be uniquely identified by linking attacks.

An Example. Figure 1 shows medical records from a fictitious hospital located
in upstate New York. Note that the table contains no uniquely identifying at-
tributes like name, social security number, etc. In this example, we divide the
attributes into two groups: the sensitive attributes (consisting only of medical
condition) and the nonsensitive attributes (zip code, age, and nationality). An
attribute is marked sensitive if an adversary must not be allowed to discover
the value of that attribute for any individual in the dataset. Attributes not
marked sensitive are nonsensitive. Furthermore, let the collection of attributes
{zip code, age, nationality} be the quasi-identifier for this dataset. Figure 2
shows a 4-anonymous table derived from the table in Figure 1 (here “*” denotes
a suppressed value so, e.g., “zip code = 1485*” means that the zip code is in the
range [14850-14859] and “age = 3*” means the age is in the range [30-39]).
Note that in the 4-anonymous table, each tuple has the same values for the
quasi-identifier as at least three other tuples in the table.

Because of its conceptual simplicity, £-anonymity has been widely discussed
as a viable definition of privacy in data publishing, and due to algorithmic ad-
vances in creating k-anonymous versions of a dataset [Aggarwal et al. 2004;
Bayardo and Agrawal 2005; LeFevre et al. 2005; Meyerson and Williams 2004;

1Group Insurance Company (GIC) is responsible for purchasing health insurance for Massachusetts
state employees.
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Non-Sensitive Sensitive
Zip Code| Age | Nationality Condition
1 13053 28 Russian Heart Disease
2 13068 29 American Heart Disease
3 13068 21 Japanese Viral Infection
4 13053 23 American Viral Infection
5 14853 50 Indian Cancer
6 14853 55 Russian Heart Disease
7 14850 47 American Viral Infection
8 14850 49 American Viral Infection
9 13053 31 American Cancer
10 13053 37 Indian Cancer
11 13068 36 Japanese Cancer
12 13068 35 American Cancer
Fig. 1. Inpatient microdata.
Non-Sensitive Sensitive
Zip Code| Age | Nationality Condition
1 130%* < 30 * Heart Disease
2 130** < 30 * Heart Disease
3 130%* < 30 * Viral Infection
4 130%* < 30 * Viral Infection
5 1485* > 40 * Cancer
6 1485%* > 40 * Heart Disease
7 1485%* > 40 * Viral Infection
8 1485* > 40 * Viral Infection
9 130** 3% * Cancer
10 130%* 3% * Cancer
11 130** 3% * Cancer
12 130%** 3% * Cancer

Fig. 2. 4-anonymous inpatient microdata.

Samarati 2001; Sweeney 2002; Zhong et al. 2005], k-anonymity has grown in
popularity. However, does k-anonymity really guarantee privacy? In the next
section, we will show that the answer to this question is interestingly no. We
give examples of two simple yet subtle attacks on a k-anonymous dataset that
allow an attacker to identify individual records. Defending against these at-
tacks requires a stronger notion of privacy that we call ¢-diversity, the focus of
this article. But we are jumping ahead in our story. Let us first show the two
attacks to give the intuition behind the problems with k-anonymity.

1.1 Attacks On k-Anonymity

In this section, we present two attacks, the homogeneity attack and the back-
ground knowledge attack, and we show how they can be used to compromise a
k-anonymous dataset.

Homogeneity Attack. Alice and Bob are antagonistic neighbors. One day Bob
falls ill and is taken by ambulance to the hospital. Having seen the ambulance,
Alice sets out to discover what disease Bob is suffering from. Alice discovers
the 4-anonymous table of current inpatient records published by the hospital
(Figure 2), and so she knows that one of the records in this table contains Bob’s
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data. Since Alice is Bob’s neighbor, she knows that Bob is a 31-year old Ameri-
can male who lives in the zip code 13053 (the quiet town of Dryden). Therefore,
Alice knows that Bob’s record number is 9, 10, 11, or 12. All of those patients
have the same medical condition (cancer), and so Alice concludes that Bob has
cancer.

Observation 1. k-Anonymity can create groups that leak information due to
lack of diversity in the sensitive attribute.

Such a situation is not uncommon. As a back-of-the-envelope calculation,
suppose we have a dataset containing 60,000 distinct tuples where the sen-
sitive attribute can take three distinct values and is not correlated with the
nonsensitive attributes. A 5-anonymization of this table will have around
12,000 groups? and, on average, 1 out of every 81 groups will have no diversity
(the values for the sensitive attribute will all be the same). Thus we should
expect about 148 groups with no diversity. Therefore, information about 740
people would be compromised by a homogeneity attack. This suggests that, in
addition to k-anonymity, the sanitized table should also ensure diversity, that
is, all tuples that share the same values of their quasi-identifiers should have
diverse values for their sensitive attributes.

The possibility of a homogeneity attack has been previously discussed in the
literature (e.g., Ohrn and Ohno-Machado [1999]). One solution to the homo-
geneity problem, as presented by Ohrn and Ohno-Machado [1999], turns out to
be a specific instance of our general principle of ¢-diversity (see Section 4). For
reasons that will become clear in Section 4, we refer to this method as entropy
¢-diversity. By examining privacy from a different perspective, we prove ad-
ditional privacy-preserving properties of entropy ¢-diversity. We also present
other privacy definitions that satisfy the principle of ¢-diversity that have
greater flexibility.

The next observation is that an adversary could use background knowledge
to discover sensitive information.

Background Knowledge Attack. Alice has a pen-friend named Umeko who is
admitted to the same hospital as Bob and whose patient records also appear in
the table shown in Figure 2. Alice knows that Umeko is a 21-year old Japanese
female who currently lives in zip code 13068. Based on this information, Alice
learns that Umeko’s information is contained in record number 1,2,3, or 4.
Without additional information, Alice is not sure whether Umeko caught a
virus or has heart disease. However, it is well known that Japanese have an
extremely low incidence of heart disease. Therefore Alice concludes with near
certainty that Umeko has a viral infection.

Observation 2. k-Anonymity does not protect against attacks based on back-
ground knowledge.

We have demonstrated (using the homogeneity and background knowledge
attacks) that a k-anonymous table may disclose sensitive information. Since
both of these attacks are plausible in real life, we need a stronger definition

2Qur experiments on real data sets show that data is often very skewed, and a 5-anonymous table
might not have so many groups
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of privacy that takes into account diversity and background knowledge. This
article addresses this very issue.

1.2 Contributions and Article Outline

In the previous section, we showed that k-anonymity is susceptible to homo-
geneity and background knowledge attacks; thus a stronger definition of privacy
is needed. In the remainder of the article, we derive our solution. We start by in-
troducing an ideal notion of privacy called Bayes-optimal for the case that both
data publisher and the adversary have knowledge of the complete joint distri-
bution of the sensitive and nonsensitive attributes (Section 3). Unfortunately,
in practice, the data publisher is unlikely to possess all this information, and,
in addition, the adversary may have more specific background knowledge than
the data publisher. Hence, while Bayes-optimal privacy sounds great in theory,
it is unlikely that it can be guaranteed in practice. To address this problem,
we show that the notion of Bayes-optimal privacy naturally leads to a novel
practical criterion that we call ¢-diversity. £-Diversity provides privacy even
when the data publisher does not know what kind of knowledge the adversary
possesses. The main idea behind ¢-diversity is the requirement that the values
of the sensitive attributes are well represented in each group (Section 4).

We show that existing algorithms for £-anonymity can be adapted to compute
¢-diverse tables (Section 5), and, in an experimental evaluation, we show that ¢-
diversity is practical and can be implemented efficiently (Section 6). We discuss
related work in Section 7, and we conclude in Section 8. Before jumping into
the contributions of this article, we introduce the notation needed to formally
discuss data privacy in the next section.

2. MODEL AND NOTATION

In this section, we will introduce some basic notation that will be used in the
remainder of the article. We will also discuss how a table can be anonymized
and what kind of background knowledge an adversary may possess.

Basic Notation. Let T = {t1, to, ..., t,} be a table with attributes A4, ..., A,..
We assume that T is a subset of some larger population Q where each tuple
t; € T represents an individual from the population. For example, if T is a
medical dataset, then @ could be the population of the Caribbean island, San
Lorenzo. Let A denote the set of all attributes {A1, Ag, ..., A,,} and ¢[A;] denote
the value of attribute A; for tuple ¢t. If C={C1, Cy, ..., C,} € A, then we use the
notation ¢[C] to denote the tuple (¢[C1], ..., ¢[C,]) which is the projection of ¢
onto the attributes in C.

In privacy-preserving data publishing, there exist several important sub-
sets of A. A sensitive attribute is an attribute whose value for any particular
individual must be kept secret from people who have no direct access to the
original data. Let S denote the set of all sensitive attributes. An example
of a sensitive attribute is Medical Condition from Figure 1. The association
between individuals and Medical Condition should be kept secret; thus we
should not disclose which particular patients have cancer, but it is permissible
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to disclose the information that cancer patients exist in the hospital. We as-
sume that the data publisher knows which attributes are sensitive. To sim-
plify the discussion, for much of this article we will also assume that there
is only one sensitive attribute; the extension of our results to multiple sensi-
tive attributes is not difficult and is handled in Section 4.3. All attributes that
are not sensitive are called nonsensitive attributes. Let A denote the set of
nonsensitive attributes. We are now ready to formally define the notion of a
quasi-identifier.

Definition 2.1 (Quasi-identifier). A set of nonsensitive attributes {@1, ...,
@} of a table is called a quasi-identifier if these attributes can be linked with
external data to uniquely identify at least one individual in the general popu-
lation Q.

One example of a quasi-identifier is a primary key, like social security num-
ber. Another example is the set {gender, age, zip code} in the GIC dataset that
was used to identify the governor of Massachusetts as described in the intro-
duction. Let us denote the set of all quasi-identifiers by Q7. We are now ready
to formally define k-anonymity.

Definition 2.2 (k-Anonymity). A table T satisfies k-anonymity if for ev-
ery tuple t €T there exist 2 —1 other tuples ¢;,,t,,...,%,_, €T such that
tlCl=t;[Cl1=¢,[Cl=--- =t;, ,[Clforall Ce QT.

The Anonymized Table T*. Since the quasi-identifiers might uniquely iden-
tify tuples in 7', the table T is not published; it is subjected to an anonymization
procedure and the resulting table T is published instead.

There has been a lot of research on techniques for anonymization (see
Section 7 for a discussion of related work). These techniques can be broadly
classified into generalization techniques [Aggarwal et al. 2004; LeFevre et al.
2005], generalization with tuple suppression techniques [Bayardo and Agrawal
2005; Samarati and Sweeney 1998], and data swapping and randomization
techniques [Adam and Wortmann 1989; Duncan and Feinberg 1997]. In this
article we limit our discussion to generalization techniques.

Definition 2.3 (Domain Generalization). A domain D*={Pq, Ps,...} is a
generalization (partition) of a domain D if | JP; =D and P; N P; = whenever
i# j.Forx e D we let ¢p-(x) denote the element P € D* that contains x.

Note that we can create a partial order <z on domains by requiring D<gD*
if and only if D* is a generalization of D. Given a table T ={t1, ..., t,} with
the set of nonsensitive attributes A" and a generalization D}, of domain(\), we
can construct a table T* = {¢], ...,%;} by replacing the value of #;[N] with the
generalized value ¢p: (¢;,[N]) to get a new tuple #;. T}le tuple ¢ is called a gen-
eralization of the tuple #; and we use the notation #;—¢/ to mean ¢} generalizes
t;. Extending the notation to tables, T->T* means T* is a generalization of
T. Typically, ordered attributes are partitioned into intervals, and, categorical
attributes are partitioned according to a user-defined hierarchy (e.g., cities are
generalized to counties, counties to states, and states to regions).
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Example 1 (Continued). The table in Figure 2 is a generalization of the
table in Figure 1. We generalized on the Zip Code attribute by partitioning it
into two sets: 1485* (representing all zip codes whose first four digits are 1485)
and 130%* (representing all zip codes whose first three digits are 130). Then
we partitioned Age into three groups: <30, 3* (representing all ages between
30 and 39), and >40. Finally, we partitioned Nationality into just one set “*”
representing all nationalities.

The Adversary’s Background Knowledge. Since the background knowledge
attack was due to the adversary’s additional knowledge about the table, let us
briefly discuss the type of background knowledge that we are modeling.

First, the adversary has access to the published table 7* and she knows
that 7™ is a generalization of some base table T'. The adversary also knows the
domain of each attribute of T'.

Second, the adversary may know that some individuals are in the table. This
knowledge is often easy to acquire. For example, GIC published medical data
about all Massachusetts state employees. If the adversary Alice knows that her
neighbor Bob is a Massachusetts state employee, then Alice is almost certain
that Bob’s information is contained in that table. In this case, we assume that
Alice knows all of Bob’s nonsensitive attributes. In addition, the adversary
could have knowledge about the sensitive attributes of specific individuals in
the population and/or the table. For example, the adversary Alice might know
that neighbor Bob does not have pneumonia since Bob does not show any of the
symptoms of pneumonia. We call such knowledge instance-level background
knowledge since it is associated with specific instances in the table. In addition,
Alice may know complete information about some people in the table other than
Bob (e.g., Alice’s data may be in the table).

Third, the adversary could have partial knowledge about the distribution
of sensitive and nonsensitive attributes in the population. We call this de-
mographic background knowledge. For example, the adversary may know
P(t[Condition] =“cancer”| t[Age] > 40) and may use it to make additional in-
ferences about records in the table.

Armed with the right notation, let us start looking into principles and defi-
nitions of privacy that leak little information.

3. BAYES-OPTIMAL PRIVACY

In this section, we analyze an ideal notion of privacy. We call it Bayes-Optimal
Privacy since it involves modeling background knowledge as a probability dis-
tribution over the attributes and uses Bayesian inference techniques to reason
about privacy. We introduce tools for reasoning about privacy (Section 3.1), use
them to discuss theoretical principles of privacy (Section 3.2), and then point
out the difficulties that need to be overcome to arrive at a practical definition
of privacy (Section 3.3).

3.1 Changes in Belief Due to Data Publishing

For simplicity of discussion, we combine all the nonsensitive attributes into
a single multidimensional quasi-identifier attribute @ whose values are
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generalized to create the anonymized table 7* from the base table T'. Since
Bayes-optimal privacy is only used to motivate a practical definition, we make
the following two simplifying assumptions. First, we assume that T is a sim-
ple random sample from some larger population 2 (a sample of size n drawn
without replacement is called a simple random sample if every sample of size n
is equally likely). Second, we assume that there is a single sensitive attribute.
We would like to emphasize that both these assumptions will be dropped in
Section 4 when we introduce a practical definition of privacy.

Recall that in our attack model, the adversary Alice has partial knowledge
of the distribution of the sensitive and nonsensitive attributes. Let us assume
a worst-case scenario where Alice knows the complete joint distribution f of
@ and S (i.e., she knows their frequency in the population 2). Consider any
individual Bob that Alice knows is in the table. She knows that Bob corresponds
to a record ¢ € T' that has been generalized to a record ¢* in the published table
T*. She also knows the value of Bob’s nonsensitive attributes (i.e., she knows
that t[@1=q). Alice’s goal is to use her background knowledge to discover Bob’s
sensitive information, namely, the value of £[S]. We gauge her success using two
quantities: Alice’s prior belief, and her posterior belief.

Alice’s prior belief, () that Bob’s sensitive attribute is s, given that his
nonsensitive attribute is g, is just her background knowledge:

g, =Pr[S]=s|t[Q1=q).

After Alice observes the table T*, her belief about Bob’s sensitive attribute
changes. This new belief, B s 7+), is her posterior belief:

Ba.sr=Prt[S]=s|t[Ql=q A3t € T*, t->t*).

Given f and T™*, we can derive a formula for 8 s 7+) which will help us formulate
our new privacy definition in Section 4. The main idea behind the derivation is
to find a set of equally likely disjoint random worlds (as in Bacchus et al. [1996])
such that a conditional probability P(A|B) is the number of worlds satisfying
the condition A A B divided by the number of worlds satisfying the condition B.

TuEOREM 3.1. Let T* be a published table which is obtained by performing
generalizations on a table T'; let X be an individual with X [Q1=q who appears
in the table T (and also T*); let g* be the generalized value of q in T*; let s be a
possible value of the sensitive attribute; let n- ) be the number of tuples t* € T*
where t*|Q] = g* and t*[S]1 = s'; and let f(s' | q*) be the conditional probability
of the sensitive attribute being s’ conditioned on the fact that the nonsensitive
attribute @ is some q’ which can be generalized to q*. Then the observed belief
that X[S]= s is given by:

f(slq)

fGslg*) "

f'lg)
dses n(q',s’)w

N(gs)

Bg,s,m) =

Proor. For ease of reference, we review the notation used in this proof in
Figure 3.
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Notation | Description
T Unanonymized table
T The anonymized table
Q Domain of the quasi-identifier attribute
Q* Generalized domain of the quasi-identifier attribute
S Domain of the sensitive attribute
Q Population of individuals
X Bob, the individual in the population © with X[Q] = ¢ and who is known to be in T'
Ny Number of individuals w in the population €2 such that w[Q] = ¢
Nig,s) Number of individuals w in the population € such that w[Q] = ¢ and w[S] = s
Nig*,s) Number of individuals w in the population € such that w[S] = s and w[Q*] = ¢*
n Number of tuples in the anonymized table T*
n(g*,s) Number of tuples t* in the anonymized table T* such that ¢*[S] = s and t*[Q*] = ¢*

Fig. 3. Notation used in the proof of Theorem 3.1.

To help us model the adversary’s uncertainty about the value of Bob’s sen-
sitive attribute after seeing the anonymized table 7, we will construct a set
of random worlds such that T* could have come from any one of these random
worlds with equal probability. In all of these worlds, Bob (or X, as we will call
him in this proof) appears in T*. In any two different random worlds, either
some individual in the population has a different value for the sensitive at-
tribute or a different set of individuals appear in T*. Since the random worlds
are equally likely and mutually exclusive, the required conditional probability
is the fraction of the total number of worlds in which X[S]=s (as in [Bacchus
et al. 1996]).

Constructing the set of random worlds. Formally, a random world is a pair
(¢, Z,) where ¢ : Q@ — S is an assignment of sensitive values for each individ-
ual w € @, and Z, is a simple random sample of n individuals from Q. We are
interested in only those assignments v which are consistent with the adver-
sary’s background knowledge. In particular, the adversary knows the size of Q
and the distribution of sensitive and nonsensitive attributes; in other words, for
every (q, s), the adversary knows N, 5), the number of individuals with nonsen-
sitive attribute ¢ who have sensitive value s Therefore for every (g, s), ¥ should
assign the value s to exactly N, ) out of the N, individuals who have the non-
sensitive value q. Note that in any two distinct assignments 1, ¥, there is
some individual o such that ¥;(w) # ¥e(w), that is, w is assigned to different
values of S. Moreover, given only knowledge of the distribution of sensitive and
nonsensitive attributes, the adversary has no preference for any of the ¥ and,
invoking the principle of indifference, considers each i to be equally likely.

The second component of a random world is Z,,. Z,, is a size n simple random
sample from the population Q. By the definition of a simple random sample,
each Z, is equally likely. Since the sample Z, is picked independent of the
assignment ¢, each random world (v, Z,) is equally likely.

Each (¢, Z,) describes a table Ty z,) containing n tuples with @ and S as
attributes. We are interested in only those random worlds where X appears
in T(y,z,) and where Ty z,)—*T*. We can rephrase this condition as follows.
We say that a random world (v, Z,,) is compatible with the published table T*
containing X , written as (v, Z,) + (T*, X), if the following two conditions hold:

ACM Transactions on Knowledge Discovery from Data, Vol. 1, No. 1, Article 3, Publication date: March 2007.
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(1) X € Z,, where X is the individual with X[®]=q who is known to be in the
table; and

(2) for every (g*, s) pair, there are n(; 5 individuals w in Z, such that »[Q] is
generalized to ¢* and such that ¥ (w)=s.

The set of compatible random worlds completely characterizes the set of worlds
which give rise to the anonymized table T* containing X . It is clear that these
worlds are equally likely. Also any two compatible random worlds are mutu-
ally exclusive because either some individual in the population is assigned a
different value for S or the sample of individuals Z, is different.

Calculating the conditional probability B s +). To calculate the conditional
probability B s 7+), we need to find the fraction of the total number of compatible
random worlds in which X is assigned the sensitive value s. Let 73 ={(y, Z,) -
(T™*, X)} be the set of random worlds which are compatible with T* containing X .
Let T&,g ={(y, Z,) = (T*, X)| ¥(X)=s} be the set of random worlds compatible
with T* where X is assigned the sensitive value s. Then,

|78(,s)|
Big,s,m) = T2

Note that T s and Tk .o, are disjoint sets of random worlds—in all the worlds
in ’Z&’SI), X is assigned tile sensitive value s; and, in all the world in ’T&,sz), X
is assigned the sensitive value sq. Thus
ITi= ) 1Tl
s'eS

We now proceed to calculate the cardinality of 7% , for each s. First we will
compute the number of assignments ¢ such that (X )=s, and then for each
Y, we will compute the number of samples Z,, such that (v, Z,) - (T*, X). The
number of assignments ¥y compatible with the background knowledge such that
¥ (X )=s can be calculated as follows. X is assigned the sensitive value s. Since
X[Q]=gq, out of the remaining N, —1 individuals having the nonsensitive value
g, N(g,s) — 1 of them are assigned s. For every other sensitive value s’, N +) out
of the N, — 1 individuals are assigned s'. For every q’ #q and every s’, some
Ny ¢) out of the N/ individuals having the nonsensitive value g’ are assigned
s’. The number of these assignments is

(N, — 1! N,!
(N(q,s) - ! ]_[ N(q,s’)! q' £q ]_[ N(q/,s’)!
s'#s s'eS
_ N(q,s) Nq’!

(2)

Ny 7<Q [1 N
s'eS

For each mapping ¥ such that (X )=s, we count the number of Z,’s such
that (v, Z,) = (T*, X)) as follows. Let ¢g* be the generalized value of ¢ = X[@Q].
X’s record will appear as t3 =(g*, s) in the table T*. Apart from ¢%, T* contains
n(qs)— 1 other tuples of the form (g*, s). Hence, apart from X, Z,, should contain
N s) — 1 other individuals o with ¥(w) =s and w[@]=¢q’, where g’ generalizes
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to g*. For all other (g*, s’) such that g% #q* or s’ #s, Z, should contain ng )

individuals o', where {(0')=s" and q* is the generalized value of w[@]. The
number of Z,’s is given by

(N(q.ﬁ) — 1) 1—[ (N(qﬂ,s,))
n(q‘,s) -1 (@*,s) € (Q*xS)\{(g*,s)} n(q*’,s’)

_ Mg 1—[ (N(q”,s/)) (3)

Nig 9) (v sre s \Ha"s)

The cardinality of Tk 18 therefore the product of Equations (2) and (3) and
can be expressed as

| (3{ s)| _ N]:«]],s) Nq’! - Ngs (N(q*’,s’)>
7 1 aeQ s’I;[S N(q/’S/)‘ N(q”s) (g%, eQ*xS Ng.s)
n(q*,s)]]vV(q’S) X NL _ Net P X (N(q'/’s/)>
(@*9) q4€Q s’];[S N s (@,s)e @ xS \THa".s)
_ N(q,S) £
n(q"S)N(q*,s)

The expression £ is the same for all s € S. Hence, the expression for the observed
belief is

7 0

Big,s,T > 7T+
Zs’ eS |723(,s')|

Using the substitutions f(q,s)=N,»/N and f(q*,s) =N /N, we get the
required expression.

. f(g,s)
(q 'S)if(q*,s)
f(q,s)
Zs’ eS n(q*,s’)%
P ACICY
(q ,s)if(slq*)

f(s'lq)
dses n<q*,s’>w

lg(q,s,T')
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Note that in the special case when S and @ are independent, the expression
for the observed belief simplifies to

f(slg)
Ba.sro = fs1g)
” f(s'lq)
Yses ”(q*,s')w
T F (s)

(s")
dses n(qns')%

N(g,s)

N(g~,s)
Zs’ s Ng~,s" O

Armed with a way of calculating Alice’s belief about Bob’s private data after
she has seen T'*, let us now examine some principles for building definitions of
privacy.

3.2 Privacy Principles

Given the adversary’s background knowledge, a published table 7* might leak
private information in two important ways: positive disclosure and negative
disclosure.

Definition 3.1 (Positive Disclosure). Publishing the table T* that was de-
rived from 7" results in a positive disclosure if the adversary can correctly iden-
tify the value of a sensitive attribute with high probability, that is, givena § > 0,
there is a positive disclosure if S s 7+) > 1 — § and there exists ¢ € T such that
t[Q@l=q and t[S]=s.

Definition 3.2 (Negative Disclosure). Publishing the table 7* that was de-
rived from T results in a negative disclosure if the adversary can correctly
eliminate some possible values of the sensitive attribute (with high probabil-
ity); i.e., given an € > 0, there is a negative disclosure if B s 7+) <€ and there
exists a t € T such that t[@]=q but ¢[S]#s.

The homogeneity attack in Section 1.1 where Alice determined that Bob has
cancer is an example of a positive disclosure. Similarly, in the example from
Section 1.1, even without background knowledge Alice can deduce that Umeko
does not have cancer. This is an example of a negative disclosure.

Note that not all positive disclosures are disastrous. If the prior belief was
that () > 1-6, the adversary would not have learned anything new. Similarly,
negative disclosures are not always bad: discovering that Bob does not have
Ebola might not be very serious because the prior belief of this event was small.
Hence, the ideal definition of privacy can be based on the following principle:

Principle 1 (Uninformative Principle). The published table should provide
the adversary with little additional information beyond the background knowl-
edge. In other words, there should not be a large difference between the prior
and posterior beliefs.
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The uninformative principle can be instantiated in several ways, for example,
with the (p1, p2)-privacy breach definition [Evfimievski et al. 2003].

Definition 3.3 ((p1, p2)-Privacy). Given a table T* and two constants p;
and py, we say that a (p1, pe)-privacy breach has occurred when either
Uq,s) <P1 A Bigs,r>p2or when o e) > 1—p1 A B < 1—p2. If a(p1, p2)-
privacy breach has not occurred, then table T* satisfies (p1, p2)-privacy.

An alternative privacy definition based on the uninformative principle would
bound the maximum difference between «, 5) and B s 7+) using any of the func-
tions commonly used to measure the difference between probability distribu-
tions. Any privacy definition that is based on the uninformative principle and
instantiated either by a (o1, p2)-privacy breach definition or by bounding the
difference between «(q ) and B s, 7+) is a Bayes-optimal privacy definition. The
specific choice of definition depends on the application.

Note that any Bayes-optimal privacy definition captures diversity in addition
to background knowledge. To see how it captures diversity, suppose that all the
tuples whose nonsensitive attribute @ have been generalized to ¢* have the
same value s for their sensitive attribute. Then n. ) =0 for all s'#s, and
hence the value of the observed belief s 7+) becomes 1 in Equation (1). This
will be flagged as a breach whenever the prior belief is not close to 1.

3.3 Limitations of the Bayes-Optimal Privacy

For the purposes of our discussion, we are more interested in the properties of
Bayes-optimal privacy rather than its exact instantiation. In particular, Bayes-
optimal privacy has several drawbacks that make it hard to use in practice.

Insufficient Knowledge. The data publisher is unlikely to know the full dis-
tribution f of sensitive and nonsensitive attributes over the general population
Q from which T is a sample.

The Adversary’s Knowledge is Unknown. It is also unlikely that the adversary
has knowledge of the complete joint distribution between the nonsensitive and
sensitive attributes. However, the data publisher does not know how much
the adversary knows. For example, in the background knowledge attack in
Section 1.1, Alice knew that Japanese have a low incidence of heart disease,
but the data publisher did not know that Alice knew this piece of information.

Instance-Level Knowledge. The theoretical definition does not protect against
knowledge that cannot be modeled probabilistically. For example, suppose Bob’s
son tells Alice that Bob does not have diabetes. The theoretical definition of
privacy will not be able to protect against such adversaries.

Multiple Adversaries. There will likely be multiple adversaries with different
levels of knowledge, each of which is consistent with the full joint distribution.
Suppose Bob has a disease that (a) is very likely among people in the age group
[30-50], but (b) is very rare for people of that age group who are doctors. An
adversary who only knows the interaction of age and illness will think that it is
very likely for Bob to have that disease. However, an adversary who also knows
that Bob is a doctor is more likely to think that Bob does not have that disease.
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Thus, although additional knowledge can yield better inferences on average,
there are specific instances where it does not. Thus the data publisher must
take into account all possible levels of background knowledge.

In the next section, we present a privacy definition that eliminates these
drawbacks.

4. ¢-DIVERSITY: A PRACTICAL PRIVACY DEFINITION

In this section, we discuss how to overcome the difficulties outlined at the end of
the previous section. We derive the ¢-diversity principle (Section 4.1), show how
to instantiate it with specific definitions of privacy (Section 4.2), outline how to
handle multiple sensitive attributes (Section 4.3), and discuss how ¢-diversity
addresses the issues raised in Section 3.3.

4.1 The ¢-Diversity Principle

In this section, we will derive the principle of ¢-diversity in two ways. First,
we will derive it in an ideal theoretical setting where it can be shown that
the adversary’s background knowledge will not lead to a privacy breach. Then
we will rederive the ¢-diversity principle from a more practical starting point
and show that even under less than ideal circumstances, ¢-diversity can still
defend against background knowledge that is unknown to the data publisher.
Although the arguments in this section can be made precise, we will keep our
discussion at an intuitive level for the sake of clarity.

Let us reexamine the expression for computing the adversary’s observed
belief (Theorem 3.1):

" f(slg)
(g*,s) f(slq*)

ﬂ(q,s,T*) = Z . f(s/|q) .
s'e8 g8 F(s'lg*)

4)

For the moment, let us consider an ideal setting where if two objects have
“similar” nonsensitive attributes, then their sensitive attributes have similar
probabilistic behavior. More formally, given a similarity measure d(., -), then
Ve > 0, 38 such that if d(q1, g2) <8, then max; | f (s|g1) — f(s|q2)| < €. This simi-
larity assumption is implicit in all 2-nearest neighbor classifiers.

Now let us define a g*-block to be the set of tuples in T* whose nonsensitive
attribute values generalize to g*. If all tuples in a g*-block are similar based on
their nonsensitive attributes, then f(s|q)~ f(s|q*) for those ¢ that appear in
the ¢*-block, and because of (approximate) cancellations, Equation (4) could be
approximated arbitrarily well by Equation (5):

Lig,sT") = ——a= (5)
Zs’ e S Mg*,s)

Thus given enough data and a good partitioning, background knowledge

cancels out and has no effect on the inferences that can be made from the table

The only inferences that can be made are those that depend solely on the (-« ¢—
the frequencies of each s’ € S for each g*-block. Therefore to prevent privacy
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breaches, we need to ensure for every g*-block that the £ most-frequent values
of S have roughly the same frequencies. This guarantees that P(s|q*) <1/(¢ +¢€)
for some small € > 0 and for all s€ S and ensures that Alice will be uncertain
about Bob’s true medical condition. This is the essence of ¢-diversity.

All of those arguments relied on the following three assumptions: (a) tuples
with similar nonsensitive attributes values have similar sensitive attributes
values, (b) there is a good partitioning of the data, and (c) there is a large
amount of data so that many similar tuples fall into each partition. Let us
reexamine privacy breaches when these assumptions do not hold.

Recall that Theorem 3.1 allows us to calculate the observed belief of the
adversary. Consider the case of positive disclosures that is, Alice wants to de-
termine that Bob has ¢#[S]=s with very high probability. From Theorem 3.1,
this can happen only when:

UL A Cl DR Il
CUFEIgD T FGlg)

The condition in Equation (6) could occur due to a combination of two factors: (i)
a lack of diversity in the sensitive attributes in the ¢*-block, and/or (ii) strong
background knowledge. Let us discuss these in turn.

Js, Vs’ +#s, (6)

Lack of Diversity. Lack of diversity in the sensitive attribute manifests itself
as follows:

Vs'#Es,  ngs) K Nigs)- (7

In this case, almost all tuples have the same value s for the sensitive attribute
S, and thus B s 7+~ 1. Note that this condition can be easily checked since
it only involves counting the values of S in the published table 7*. We can
ensure diversity by requiring that all the possible values s’ € domain(S) occur
in the ¢*-block with roughly equal proportions. This, however, is likely to cause
significant loss of information: if domain(S) is large, then the g*-blocks will
necessarily be large, and the data will be partitioned into a small number of
g*-blocks. Another way to ensure diversity and to guard against Equation (7) is
to require that a ¢*-block has at least ¢ > 2 different sensitive values such that
the ¢ most-frequent values (in the g*-block) have roughly the same frequency.
We say that such a g*-block is well-represented by ¢ sensitive values.

Strong Background Knowledge. The other factor that could lead to a posi-
tive disclosure (Equation (6)) is strong background knowledge. Even though a
g*-block may have ¢ well-represented sensitive values, Alice may still be able to
use her background knowledge to eliminate sensitive values when the following
is true:

s fs'lg)
EACEY
This equation states that Bob with quasi-identifier £[@]= ¢ is much less likely

to have sensitive value s’ than any other individual in the g*-block. For exam-
ple, Alice may know that Bob never travels, and thus he is extremely unlikely

()
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to have Ebola. It is not possible for a data publisher to reveal some informa-
tion about the data while still guarding against attacks employing arbitrary
amounts of background knowledge (since the revealed information may be pre-
cisely what the adversary needs to recreate the entire table). However, the data
publisher can still guard against many attacks, even without having access to
Alice’s background knowledge. In our model, Alice might know the distribution
f(q,s) over the sensitive and nonsensitive attributes in addition to the con-
ditional distribution f(s|q). The most damaging type of such information has
the form f(s|g)~ 0, for example, men do not have breast cancer, or the form of
Equation (8), for example, Japanese have a very low incidence of heart disease.
Note that a priori information of the form f(s|g)=1 is not as harmful since
this positive disclosure is independent of the published table T*. Alice can also
eliminate sensitive values with instance-level knowledge such as Bob does not
have diabetes.

In spite of such background knowledge, if there are ¢ well-represented sensi-
tive values in a g*-block, then Alice needs ¢ — 1 damaging pieces of background
knowledge to eliminate ¢ — 1 possible sensitive values and infer a positive dis-
closure. Thus, by setting the parameter ¢, the data publisher can determine
how much protection is provided against background knowledge even if this
background knowledge is unknown to the publisher.

Note that Alice may know ¢ pieces of instance-level background knowledge
of the form individual X; does not have disease Y (fori=1...¢), where each X;
is a different individual. However, we have been talking only about eliminating
sensitive values for a single individual. It has been shown [Martin et al. 2006]
that for a specific individual Bob, the worst-case disclosure occurs when X; =
Bob in all the ¢ pieces of information Alice possesses.

Moreover, when inferring information about Bob, knowing the exact sensitive
values of some other individuals in the table is less damaging than statements
of the form Bob does not have cancer. This is because knowing the sensitive
value for some other individual only eliminates from consideration one tuple
that may have corresponded to Bob while the latter statement eliminates at
least one tuple.

Putting these two arguments together, we arrive at the following principle.

Principle 2. (¢-Diversity Principle). A q*-block is ¢-diverse if it contains at
least ¢ well-represented values for the sensitive attribute S. A table is ¢-diverse
if every g*-block is ¢-diverse.

Returning to our example, consider the inpatient records shown in Figure 1.
We present a 3-diverse version of the table in Figure 4. Comparing it with the 4-
anonymous table in Figure 2, we see that the attacks against the 4-anonymous
table are prevented by the 3-diverse table. For example, Alice cannot infer from
the 3-diverse table that Bob (a 31-year old American from zip code 13053) has
cancer. Even though Umeko (a 21-year old Japanese from zip code 13068) is
extremely unlikely to have heart disease, Alice is still unsure whether Umeko
has a viral infection or cancer.

The ¢-diversity principle advocates ensuring ¢ well-represented values for
the sensitive attribute in every g¢*-block, but does not clearly state what
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Non-Sensitive Sensitive
Zip Code| Age | Nationality Condition
1 1305* <40 * Heart Disease
4 1305* < 40 * Viral Infection
9 1305* < 40 * Cancer
10 1305* <40 * Cancer
5 1485* > 40 * Cancer
6 1485* > 40 * Heart Disease
7 1485* > 40 * Viral Infection
8 1485* > 40 * Viral Infection
2 1306* <40 * Heart Disease
3 1306* <40 * Viral Infection
11 1306* <40 * Cancer
12 1306* < 40 * Cancer

Fig. 4. 3-diverse inpatient microdata.

well-represented means. Note that we called it a principle instead of a defini-
tion, we will use it to give two concrete instantiations of the ¢-diversity principle
and discuss their relative trade-offs.

4.2 (-Diversity: Instantiations

In this section, we will give two instantiations of the ¢-diversity principle: en-
tropy ¢-diversity and recursive ¢-diversity. After presenting the basic defini-
tions, we’ll extend them to cases where some positive disclosure is allowed.

The first instantiation of the ¢-diversity principle, and the simplest one to
describe, uses the information-theoretic notion of entropy:

Definition 4.1 (Entropy ¢-Diversity). [Ohrn and Ohno-Machado 1999] A ta-
ble is Entropy ¢-Diverse if, for every g*-block,

- Z DPg+,s) IOg(p(q',S’)) > log(#),
sesS
N(g*,s)
. 8 g*,s")
attribute value equal to s.

where p- s = > is the fraction of tuples in the ¢*-block with sensitive

As a consequence of this condition, every g*-block has at least ¢ distinct values
for the sensitive attribute. Using this definition, Figure 4 is actually 2.8-diverse.

Entropy ¢-diversity was first proposed by Ohrn and Ohno-Machado [1999]
as a way of defending against the homogeneity problem (without considering
the role of background knowledge). Note that entropy ¢-diversity captures the
notion of well represented groups due to the fact that entropy increases as
frequencies become more uniform. We can also capture the role of background
knowledge more explicitly with an alternate definition.

Let sy, ..., sy, be the possible values of the sensitive attribute S in a g*-block.
Assume that we sort the counts n( s,), - . ., R(g*,5,,) in descending order and name
the elements of the resulting sequence ry,...,r,. One way to think about ¢-
diversity is the following: the adversary needs to eliminate at least ¢ —1 possible
values of S in order to infer a positive disclosure. This means that, for example,
in a 2-diverse table, none of the sensitive values should appear too frequently.
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We say that a g*-block is (c, 2)-diverse if ry <c(re + --- + r,,) for some user-
specified constant c¢. For ¢ > 2, we say that a g*-block satisfies recursive (c, £)-
diversity if we can eliminate one possible sensitive value in the g*-block and
still have a (c, £ — 1)-diverse block. This recursive definition can be succinctly
stated as follows.

Definition 4.2 (Recursive (c, £)-Diversity). In a given q*-block, let r; denote
the number of times the ith most-frequent sensitive value appears in that
g*-block. Given a constant ¢, the q*-block satisfies recursive (c, £)-diversity if
ri<c(re +req + -+ - + ). A table T satisfies recursive (c, £)-diversity if ev-
ery q*-block satisfies recursive ¢-diversity. We say that 1-diversity is always
satisfied.

Now, both entropy and recursive ¢-diversity may be too restrictive. To see
why, let us first look at entropy ¢-diversity. Since —x log(x) is a concave func-
tion, it can be shown that if we split a g*-block into two subblocks g; and g;,
then entropy(q*) > min(entropy(q}), entropy(gq;)). This implies that in order for
entropy ¢-diversity to be possible, the entropy of the entire table must be at
least log(¢). This might not be the case, especially if one value of the sensi-
tive attribute is very common, for example, if 90% of the patients have heart
problems as the value for the Medical Condition attribute.

This is also a problem with recursive £-diversity. It is easy to see that if 90%
of the patients have heart problems as the value for the Medical Condition
attribute, then there will be at least one g*-block where heart problems will
have frequency of at least 90%. Therefore, if we choose ¢ <9 in Definition 4.2,
no generalization of the base table will satisfy recursive (c, £)-diversity.

On the other hand, some positive disclosures may be acceptable. For example,
a clinic might be allowed to disclose that a patient has a heart problem because
it is well known that most patients who visit the clinic have heart problems. It
may also be allowed to disclose that Medical Condition = Healthy if this is not
considered an invasion of privacy.

At this point, one may be tempted to remove tuples with nonsensitive Medical
Condition values, publish them unaltered, and then create an ¢-diverse version
of the remaining dataset. In some cases, this is acceptable. However, there
are three important issues why this suggestion may not be acceptable: the
anonymity of the unaltered tuples, the privacy of the remaining tuples, and the
utility of the resulting published data.

First, publishing unaltered tuples gives an adversary the ability to link them
to external data and identify the corresponding individuals. This may be consid-
ered a privacy breach [Chawla et al. 2005] since it is reasonable for individuals
to object to being identified as respondents in a survey. To avoid this, one could
publish a k-anonymous version of tuples with nonsensitive Medical Condition
values and a ¢-diverse version of the rest of the table.

Second, separating individuals with nonsensitive medical conditions from
the rest can impact the individuals with sensitive medical conditions. As an
extreme case, suppose Medical Condition can only take two values: healthy
and sick. There is no way to achieve 2-diversity on the table of patients that
are sick; if Alice knows Bob is in the table and Bob is not listed as a healthy
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patient, he must then be sick. More generally, separating records with sensitive
values from records with nonsensitive values reduces the possible choices for
the security parameter ¢.

A third issue with partitioning the data into two tables is related to the util-
ity of the data for a researcher. Since each of the tables is smaller than the
whole dataset, to satisfy Z-anonymity and ¢-diversity, the tables might have to
be generalized more than if a single table had been anonymized. For instance,
consider a table reporting the Gender and Medical Condition of 2,000 individ-
uals, where the attribute Medical Condition can take three values: healthy,
cancer, and hepatitis. In this table, there are 1,000 males and 1,000 females.
700 of the 1,000 males are healthy, and the other 300 have Hepatitis. 700 of the
1,000 females are Healthy, while the other 300 have cancer. If the disclosure
of Medical Condition = healthy is not considered an invasion of privacy, then
this table satisfies 2-diversity (and thus requires no further generalizations).
In contrast, if we were to publish the healthy patients separately, we would
need to suppress the gender information of the unhealthy individuals in order
to achieve 2-diversity on the table containing the unhealthy patients. Addition-
ally, if the data is separated, then the two resulting tables are likely to have
different schemas. For example, one table may be generalized so that age ap-
pears as an interval of length 5 (i.e., 30-34) and only the first 4 digits of zip code
are given, while the second table may give the full zip code but may generalize
age to intervals of length 10. Learning from such data is not as straightforward
as learning from a single table.

Thus an alternate approach is needed to handle the case when some of the
values in the domain of the sensitive attribute need not be kept private. To
capture this notion that some positive disclosure is acceptable, let Y be the
set of those sensitive values for which positive disclosure is allowed. We call
Y adon’t-care set. Note that we are not worried about those values being too
frequent. Let s, be the most-frequent sensitive value in the g*-block that is
not in Y, and let , be the associated frequency. Then the g*-block satisfies
¢-diversity if we can eliminate the £ — 2 most-frequent values of S not including
ry, without making s, too frequent in the resulting set. Thus, if we remove the
sensitive values with counts ry,...,7r,_1, then the result is (¢ — y + 1)-diverse.
This brings us to the following definition.

Definition 4.3 (Positive Disclosure-Recursive (c, £)-Diversity). Let Y c S
be a don’t-care set. In a given ¢*-block, let the most-frequent sensitive value not
in Y be the yth most-frequent sensitive value. Let r; denote the frequency of
the ith most-frequent sensitive value in the g*-block. Such a g*-block satisfies
pd-recursive (c, £)-diversity when one of the following holds:

m
— y<{—1landr,<c ) rj,
j=t

y—-1 m
— y>f—1landr,<c ) rj+c > r;
j=0-1 J=y+1

We denote the summations on the right-hand side of both conditions by
tailg(sy).
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Now, note that ifr, =0, then the g*-block only has sensitive values that can be
disclosed and so both conditions in Definition 4.3 are trivially satisfied. Second,
note that if ¢ > 1, then the second condition clearly reduces to just the condition
y >{—1becauser, <r,_;. The second condition states that even though the ¢—1
most-frequent values can be disclosed, we still do not want r, to be too frequent
if £ — 2 of them have been eliminated (i.e., we want the result to be 2-diverse).

To see this definition in action, suppose there are two values for Medical
Condition, healthy and not healthy. If healthy is a don’t-care value, then (c, 2)-
diversity states that the number of sick patients in a g*-block is less than ¢
times the number of healthy patients or, equivalently, at most {5 patients in
a g*-block are sick. Thus if ¢ =0.03, then at most 3% of the patients in any
g*-block are not healthy, and if ¢ =1, then at most half the patients in any
g*-block are not healthy.

Entropy ¢-diversity can also be extended to handle don’t-care sets. The de-
scription of entropy ¢-diversity with don’t-care sets is a bit more involved, so be-
fore we present it, we shall briefly touch upon the subject of negative disclosure.

Until now, we have treated negative disclosure as relatively unimportant
compared to positive disclosure. However, negative disclosure can also be im-
portant. If W is the set of values for the sensitive attribute for which negative
disclosure is not allowed, then, given a user-specified constant ¢y < 100, we re-
quire that each s € W appear in at least co-percent of the tuples in every q*-block,
resulting in the following definition. This is incorporated into ¢-diversity defi-
nitions in a straightforward way:

Definition 4.4 (NPD-Recursive (c1, cg, £)-Diversity). Let W be the set of sen-
sitive values for which negative disclosure is not allowed. A table satisfies neg-
ative/positive disclosure-recursive (c1, co, £)-diversity (npd-recursive (cy, co, £)-
diversity) if it satisfies pd-recursive (c1, £)-diversity and if every s € W occurs in
at least ¢y percent of the tuples in every g*-block.

We conclude this section with a definition of entropy ¢-diversity that uses
don’t-care sets. The extension of entropy ¢-diversity is more complicated than
for recursive ¢-diversity, but the motivation is similar. Let S be a sensitive
attribute. Suppose we have a g*-block g4 where the values of S are sy, s2, ..., s,
with corresponding counts p;, ..., p, (note that, unlike before, we don’t require
the counts to be sorted; thus p; is shorthand for (g, ,)). Furthermore, suppose s;
belongs to the don’t-care set so that we can safely disclose the value of S when it
equals s1. Ifin this hypothetical g*-block, 90% of the tuples have sensitive value
s1, then this block has a low entropy. Now consider a g*-block gg with sensitive
values s1, s, . .., s, With counts p/, ps, ps, ..., p, (Where p} > p1). The block gg
is just like g4 except that there are more tuples with the don’t-care value s;.

Intuitively, since s; is a don’t-care value, gp cannot pose more of a disclosure
risk that g4. Thus if we were free to adjust the value p;, we should expect that
disclosure risk does not decrease when we decrease p1, and disclosure risk does
not increase when we increase p;. Treating p; as a variable, let’s lower it from
its initial setting in g4 to the unique value p* that would maximize the entropy
of the ¢*-block. The original disclosure risk of g4 cannot be any higher than the
disclosure risk at the optimum value p*. We will compute the entropy at this
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optimum value p* and set the disclosure risk of g4 to be this value. In the more
general case (with more than one don’t-care value), we determine what the
maximum entropy is that we would get if we lowered the counts corresponding
to don’t-care values from their initial values. We call this maximum entropy
value the adjusted entropy, and it will serve as the disclosure risk of the g *-block:
ifthe adjusted entropyislarger than log ¢, then the block is considered ¢-diverse.

Before we formalize this, we should note that this type of argument will also
yield our original definition for recursive £-diversity in the presence of don’t-care
sets. One can easily check that if p” is the count of the most-frequent sensitive
value (not in the don’t-care set) and ¢4, . . ., ¢, are the counts of don’t-care values
that appear more frequently, the recursive ¢-diversity procedure for don’t-care
sets lowers the values ¢, ..., ¢, to set them equal to p”, and then checks if the
resulting block satisfies ordinary recursive ¢-diversity.

To formalize the notion of adjusted entropy, we need the following notation.
For nonnegative values x1, ..., x, such that > x; =1, denote the entropy as:

m
H(x1,...,%,)= — in log x;,
i=1

with the understanding that 0log0=0. For arbitrary nonnegative numbers

X1, ..., Xn, denote the normalized entropy as:
1 x; X
H(xq,...,%0)= — . log L . 9)
" I;Z?:lxj 1%

First, we define adjusted entropy, and then show how to compute it.

Definition 4.5 (Adjusted Entropy). Let S be a sensitive attribute with
don’t-care values y1, ..., y, and sensitive values sy, .. ., s,,. Let g4 be a g*-block
where the don’t-care values y; have counts ¢; and the sensitive values s; have
counts p;. The adjusted entropy of g4 is defined as:

sup H(x1,...,%, Pl,--s Pm) (10)
0<x;<¢;; i=1,....,r

The maximizing values of the x; in Definition 4.5 are closely related to the

function i .
M(cy,...,cp) = (Zcilogcl) /Zci,
i=1 i=1

which we call the log-entropic mean of cq,...,c; (because it is the weighted
average of their logarithms).> We show that there exists a unique vector
(c1,c9,...,c) that maximizes Equation (10), and we can characterize it with
the following theorem.

THEOREM 4.1. There is a unique vector (c1,cs, ..., c,) such that the assign-
ment x; =c¢; maximizes Equation (10). Furthermore, let 6 = max({¢; | ¢; = ¢;} U
{0). If ¢; <6, thenc; =¢;.If ¢; > 0, then logc; is the log-entropic mean of the set
{p1, ..., Pn}U{d; | §; =c¢;}, and 0 is the minimum value for which this condition
can be satisfied.

3Note that the log-entropic mean is the logarithm of a weighted geometric mean of the c;, which
itself belongs to a general class of means called the entropic means [Ben-Tal et al. 1989].
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Algorithm 1: AdjustedEntropy(¢1, ..., ¢r, p1, ..., Pm)

Require: ¢; >0, p; >0
1: foralli=1,...,r do
20 x; <
3: end for
4: fixed < {p1,..., Pm}
5. changeable < {x1, ..., x,}
6: m <« M(fixed)
7: while log(min(changeable)) <m do
8: 1= argminj B e changeableX j
9: fixed =fixed U {x;}
10: changeable =changeable \ {x;}
11: m < M (fixed)
12: end while
13: for all x; € changeable do
14: x; <e™
15: end for
16: return H(xy, ..., %, P1, .., Dm)

The proof of this theorem is rather technical and can be found in Appendix
A. This theorem tells us that some coordinates will achieve their upper bound
¢; (i.e., they will not be lowered from their initial values). We call these the fixed
coordinates. The rest of the coordinates, called the changeable coordinates, will
be adjusted down until their logarithms equal the log-entropic mean of the fixed
coordinates and the counts of the sensitive values (in particular, it means that
if ¢; is the value of an unchangeable coordinate, then log ¢; must be larger than
that log-entropic mean). The theorem also tells us that there is a cutoff value
0 such that all coordinates with upper bound > 6 will be changeable and the
rest will be fixed. Finally, the theorem also tells us that we should choose the
minimum cutoff value for which this is possible.

The computation of adjusted entropy is shown in Algorithm 1. We illustrate
the algorithm with a sample run-through. Suppose there are four don’t-care
values y1, y2, ¥3, and y4 with counts 11, 10, 3, and 2, respectively, and sup-
pose there are two sensitive values s; and s with counts 3 and 4, respectively.
Initially, we compute the log-entropic mean of s; and sg, which is 1.263. Now,
y4 has the smallest count among don’t-care values, and log y4 = 0.693 which is
less than the log-entropic mean. We conclude that y4 is a fixed value, and we
compute the log-entropic mean of {y4, s1, s3}, which is 1.136. Now, y3 has the
next smallest count among don’t-care values. The value log y3 is 1.099, which is
less than the new log-entropic mean. Thus yj3 is also fixed, and we compute the
log-entropic mean of {y4, ys3, s1, S2} which is 1.127. The next value we consider
is y2. Now log ys = 2.30, which is greater than the log-entropic mean. Thus ys
and y; are the changeable values, and the cutoff 8 described by Theorem 4.1
must be 3 (the value of y3). Thus the adjusted entropy should be the normalized
entropy of {e1'127,e1127 y3 v, 51, so).

Clearly the definition of adjusted entropy is consistent with entropy ¢-
diversity when there are no don’t-care values. Thus to verify correctness of
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the algorithm, we just need to prove Theorem 4.1. The interested reader may
find the proof in Appendix A.

4.3 Multiple Sensitive Attributes

Multiple sensitive attributes present some additional challenges. Suppose S
and V are two sensitive attributes, and consider the g*-block with the following
tuples: {(q*, s1,v1), (q@*, s1,V2), (@™, s2, U3), (q@*, s3, v3)}. This g*-block is 3-diverse
(actually recursive (2,3)-diverse) with respect to S (ignoring V') and 3-diverse
with respect to V (ignoring S). However, if we know that Bob is in this block
and his value for S is not s1, then his value for attribute V cannot be v; or vg,
and, therefore, must be v3. One piece of information destroyed his privacy. Thus
we see that a g*-block that is ¢-diverse in each sensitive attribute separately
may still violate the principle of ¢-diversity.

Intuitively, the problem occurred because within the g*-block, V was not well
represented for each value of S. Had we treated S as part of the quasi-identifier
when checking for diversity in V (and vice versa), we would have ensured that
the ¢-diversity principle held for the entire table. Formally, the definition is as
follows.

Definition 4.6 (Multi-Attribute ¢-Diversity). Let T be a table with
nonsensitive attributes @1, ..., @, and sensitive attributes Sy, ..., S,,. We
say that T is ¢-diverse if for all i =1...ms9, the table T is ¢-diverse when S; is
treated as the sole sensitive attribute and {@1, ..., @m,, S1,...,Si—1, Si+1,--+,
S, } is treated as the quasi-identifier.

As the number of sensitive attributes grows, it is not hard to see that we
will necessarily need larger and larger g*-blocks to ensure diversity. This
problem may be ameliorated through tuple suppression, generalization on
the sensitive attributes, and publishing marginals (rather than the full ta-
ble) containing different sensitive attributes. This is a subject for future
work.

4.4 Discussion

Recall that we started our journey into Section 4 motivated by the weaknesses
of Bayes-optimal privacy. Let us now revisit these issues one by one.

—¢-Diversity no longer requires knowledge of the full distribution of the sen-
sitive and nonsensitive attributes.

—¢-Diversity does not even require the data publisher to have as much informa-
tion as the adversary. The parameter ¢ protects against more knowledgeable
adversaries; the larger the value of ¢, the more information is needed to rule
out possible values of the sensitive attribute.

—Instance-level knowledge (Bob’s son tells Alice that Bob does not have dia-
betes) is automatically covered. It is treated as just another way of ruling out
possible values of the sensitive attribute.

—Different adversaries can have different background knowledge leading to
different inferences. ¢-Diversity simultaneously protects against all of them
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without the need for checking which inferences can be made with which levels
of background knowledge.

Overall, we believe that ¢-diversity is practical, easy to understand, and ad-
dresses the shortcomings of Z-anonymity with respect to the background knowl-
edge and homogeneity attacks. Let us now see whether we can give efficient
algorithms to implement ¢-diversity. We will see that, unlike Bayes-optimal
privacy, ¢-diversity possesses a property called monotonicity. We define this
concept in Section 5, and we show how this property can be used to efficiently
generate ¢-diverse tables.

5. IMPLEMENTING PRIVACY-PRESERVING DATA PUBLISHING

In this section we, discuss how to build algorithms for privacy-preserving data
publishing using domain generalization. Let us first review the search space for
privacy-preserving data publishing using domain generalization [Bayardo and
Agrawal 2005; LeFevre et al. 2005]. For ease of explanation, we will combine
all the nonsensitive attributes into a single multidimensional attribute @. For
attribute @, there is a user-defined generalization lattice. Formally, we define a
generalization lattice to be a set of domains partially ordered by a generalization
relation <g (as described in Section 2). The bottom element of this lattice is
domain(®), and the top element is the domain where each dimension of @ is
generalized to a single value. Given a base table T, each domain Dy, in the
lattice defines an anonymized table T* which is constructed by replacing each
tuple ¢ € T by the tuple ¢, such that the value {*[@] € Dy, is the generalization
of the value {[@] € domain(Q). An algorithm for data publishing should find a
point on the lattice such that the corresponding generalized table T* preserves
privacy and retains as much utility as possible. In the literature, the utility of
a generalized table is usually defined as a distance metric on the lattice—the
closer the lattice point is to the bottom, the larger the utility of the corresponding
table 7. Hence, finding a a suitable anonymized table T* is essentially a lattice
search problem. There has been work on search strategies for 2-anonymous
tables that explore the lattice top-down [Bayardo and Agrawal 2005] or bottom-
up [LeFevre et al. 2005].

In general, searching the entire lattice is computationally intractable. How-
ever, lattice searches can be made efficient if there is a stopping condition of
the form: if T* preserves privacy, then every generalization of T* also preserves
privacy [LeFevre et al. 2005; Samarati and Sweeney 1998]. This is called the
monotonicity property, and it has been used extensively in frequent itemset min-
ing algorithms [Agrawal and Srikant 1994]. k-anonymity satisfies the mono-
tonicity property, and it is this property which guarantees the correctness of all
efficient algorithms [Bayardo and Agrawal 2005; LeFevre et al. 2005]. Thus, if
we show that ¢-diversity also possesses the monotonicity property, then we can
reuse these efficient lattice search algorithms to find the ¢-diverse table with
optimal utility. The same cannot be said of Bayes-optimal privacy. The follow-
ing theorem gives a computational reason why Bayes-optimal privacy does not
lend itself to efficient algorithmic implementations.
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q1 q2

s1 | flqi,s1) =15 | f(q2,s1)=.25
Ngr.s) =1 N(gp,s1) = 35
s2 | flq1,s2)=.35 | f(q2,s2)=.25
Nqy.s0) = 1 N(gz.s5) = 15

Fig. 5. Table T.

*

q
51 f(q*7sl):'4

g*.sy) = 36
52 f(q*st) =.6
(g*.sz) = 16

Fig. 6. Table T™.

THEOREM 5.1. Bayes-optimal privacy does not satisfy the monotonicity
property.

Proor. We shall prove this theorem for the p; — ps version of the Bayes-
optimal privacy definition (see Definition 3.3 and Evfimievski et al. [2003]);
the proof can easily be extended to other instantiations. We set p; =0.31 and
p2=0.58, and we will create an example where the prior belief a(, 5) < p1, but
the observed belief is B s 7+) > p2.

First consider Figure 5 which shows a base table T', with two values for @
and two values for S.

Based on this information, we can compute the prior and observed beliefs for
table T':

— Qgy,s) = -3 Bigr,s, 1) = -5,
— Qgy,s) =7, Bigr,s,7) = -5,
— Qgys) = -5, Biga,sr.1) = -7,
— U(gy,s) =D, Blga,s0,1) = -3-
Clearly, publishing 7" does not breach privacy. However, suppose we generalized

T by generalizing both ¢g; and g5 to ¢*, as in Figure 6.
If Bob has nonsensitive value q1, then as before, o, 5,) = .3 < p1. However,

362 __ 135
3642 +16:3 ~ 13.5+9.34

Bigu,s1,1) = > .59 > po.

Thus while publishing T would not cause a privacy breach, publishing 7* would.
This counterexample proves that Bayes-optimal privacy is not monotonic. O

This seemingly counterintuitive result has a simple explanation. Note that
there are many more tuples ¢ with ¢[@]= g2 than there are with {[@]=q;1. This
causes the probabilistic behavior of the g*-block in T* to be heavily influenced
by the tuples with ¢[@]=s; and so it pulls the value of B4, s,,7+) = Bigs,s1,7+) Closer
to B(gs,s,,7) (this can be verified with Equation (1) for observed belief). Since the
prior belief (g, 5,) doesn’t change, and since (g, 5,) and o, ) are very different,
we get a privacy breach from publishing 7* but not from publishing 7T'.
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THEOREM 5.2 (MONOTONICITY OF ENTROPY {-DIVERSITY). Entropy  {-diversity
satisfies the monotonicity property: if a table T* satisfies entropy (-diversity,
then any generalization T* of T* also satisfies entropy ¢-diversity.

Theorem 5.2 follows from the fact that entropy is a concave function. Thus if
the g*-blocks qj, ..., q; from table T* are merged to form the g*-block ¢** of
table T**, then the entropy(q**) > min;(entropy(q;)).

THEOREM 5.3 (MONOTONICITY OF NPD RECURSIVE {-DIVERSITY). The npd recur-
sive (c1, cg, £)-diversity criterion satisfies the monotonicity property: if a table
T™ satisfies npd recursive (c1, ca, £)-diversity, then any generalization T** of T*
also satisfies npd recursive (c1, cg, £)-diversity.

Proor. We shall prove this for the case where T** is derived from T* by
merging two g*-blocks; the general case follows by induction. Let ¢} and g;
be the g*-blocks of T™* that are merged to form the ¢*-block ¢g** of table 7.
The frequencies of the sensitive values in ¢** is the sum of the corresponding
frequencies in q; and g;.

First, let us consider negative disclosures. If every sensitive value s e W oc-
curs in at least ¢y percent of the tuples in g} and g;, then surely s should also
occur in at least a cg percent of the tuples in the ¢**.

Next let us consider positive disclosures. Let Y be the set of sensitive values
for which positive disclosure is allowed. Let s, be the most-frequent sensitive
value in ¢** that does not appear in Y. Let s,, and s,, be the most-frequent
sensitive values in g} and q;, respectively, which are not in Y. Clearly ifr,,r, _,
and r,, are the respective counts, then

Ty =Ty, T Ty,
We also know that the g*-blocks ¢ and g;-block are (c1, £)-diverse (by hypoth-
esis). Hence

ry, < citailg.(s,,)
ry, < citailg(sy,).

We are done if we prove that r, < c;tail;.(s,). Since s,, is at least as frequent
as s, in q; (and similarly for s,,), then by the definition of tail,., we have

tail (s, ) > tailg.(s,,)
tailg; (sy) > tailg(s,,)
taily-(s,) =taily. (s, ) + tailg; (s, ).

Hence

Ty Tye T Ty,
ex(tailys(s,y,) + taily (sy,)
ex(tailys(sy) + taily (s, )

citailg-(sy)

1A IAIA

and so the g*-block ¢** is npd (c1, cg, £)-diverse. O

We can also show that entropy ¢-diversity with don’t-care sets satisfies
the monotonicity property and is therefore amenable to efficient algorithms.
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We will first need the following two results which will let us conclude that

H@E + y)> min(H(X), H(y)).

Lemma 5.1. Letay,...,a, be nonnegative numbers that add up to 1. Let by,
..., b, be nonnegative numbers that add up to 1. Then for any t €[0, 1],

H(tay +(1—8)by, ..., ta,+(1—8)b,) = — Z[tai + (1 —t)b;11oglta; + (1 —t)b;]
i—1

> —t Y —ajloga; —(1—1)) bilogh;
i=1 i=1

= tH(ay,...,an)+ (1 —t)H(by,...,by)

> min(H(aq, ...,a,), Hb,...,by))

with the understanding that 0log0=0.
Proor. This follows immediately from the fact that —x logx is concave. O

CoroLLARY 5.1. Letas,...,a, be nonnegative numbers (at least one of which
is nonzero), and let by, ..., b, be nonnegative numbers (at least one of which is
nonzero). Then

H(ay + b1,a2 + bs, ...,a, + b,) > min(H(ay, ...,a,), Hby, ..., by)).

Proor. Let A=3%7 ;a; and B=)._;b. Then by definition,
H(ai,...,a,)=H(ai/A,...,a,/A4), and H(b,...,b,)=H(b/B,...,b,/B),
and H(ay + b1,...,an + by)=H((a1 + b1)/(A + B),...,(an + by)/(A + B)).
Furthermore, let t = A/(A + B). Then (a; + b;)/(A+ B)=t(a;/A) + (1 — t)(b;/B).
Applying Lemma 5.1, we get

H((a1 +b1)/(A+ B),...,(a, +b,)/(A+ B))
min(H(a1/A, ...,a,/A), H®b1/B, ..., b,/B))
min(H (a1, ...,a,), Hb, ..., by)). 0

H(a1+b1,...,an+bn)

v

THEOREM 5.4 (MONOTONICITY OF ENTROPY ¢-DIVERSITY WITH DON’T-CARE SETS).
Entropy (-diversity with don’t-care sets satisfies the monotone property.
Given a don’t-care set Y, if a table T* satisfies entropy (-diversity, then any
generalization T** of T* also satisfies entropy (-diversity.

Proor. The proof of monotonicity is an easy consequence of the following
result: if g; and g9 are g*-blocks, and if g3 is the ¢g*-block formed by merging g
and g9, then the adjusted entropy of qs is greater than or equal to the minimum
of the adjusted entropies of q; and go. Therefore, this is what we aim to prove.

Let g1 and gs be g* blocks. Let sy, . .., s, be the sensitive values that appear in
g1 and g9, and let a4, .. ., a, be their counts in g1, and b4, .. ., b, be their counts
in go. Let a be the values used to compute the adjusted entropy for g1, and
br be the values used to compute adjusted entropy for q». Note that for all ¢,
a; > a’ and b; > b;. Furthermore a; > a’ or b; > b; only if 5; is a don’t-care value
(by construction). When we merge g; and g9, the new counts are (a; + b;). By
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Corollary 5.1,
H(aj +b},a5+b},...,a;+b;)>min(H(aj,...,a};), H(],...,5})).

Now a; +b; > a’ +b; and a; +b; > a + b} only if 5; is a don’t-care value. Since
the adjusted entropy is the maximum entropy we can achieve by lowering the
counts associated with the don’t-care values, this means that the adjusted en-
tropy for the group with counts a; + b; is at least If(a; +b3,a5+0b5,...,a;+b).
Thus the adjusted entropy of the merged group is larger than or equal to the
minimum adjusted entropy of g1 and q2. O

Thus to create an algorithm for ¢-diversity, we can take an algorithm for
k-anonymity that performs a lattice search, and we make the following change.
Every time a table T™* is tested for k-anonymity, we check for ¢-diversity in-
stead. Since ¢-diversity is a property that is local to each g*-block, and since all
¢-diversity tests are solely based on the counts of the sensitive values, this test
can be performed very efficiently.

We emphasize that this is only one way of generating ¢-diverse tables and it is
motivated by the structural similarities between k-anonymity and ¢-diversity.
Alternatively, one can postprocess a k-anonymous table and suppress groups
that are not ¢-diverse or suppress tuples in groups until all groups are ¢-diverse,
one can directly modify a k-anonymity algorithm that uses suppression into an
¢-diversity algorithm, or one can devise a completely new algorithm.

6. EXPERIMENTS

In our experiments, we used an implementation of Incognito, as described in
LeFevre et al. [2005], for generating k-anonymous tables. We modified this
implementation so that it produces ¢-diverse tables as well. Incognito is imple-
mented in Java and uses the database manager IBM DB2 v8.1 to store its data.
All experiments were run under Linux (Fedora Core 3) on a machine with a
3GHz Intel Pentium 4 processor and 1GB RAM.

We ran our experiments on the Adult Database from the UCI Machine Learn-
ing Repository [Repository] and the Lands End Database. The Adult Database
contains 45,222 tuples from US Census data and the Lands End Database con-
tains 4,591,581 tuples of point-of-sale information. We removed tuples with
missing values and adopted the same domain generalizations as LeFevre et al.
[2005]. Figures 7 and 8 provide a brief description of the data including the
attributes we used, the number of distinct values for each attribute, the type
of generalization that was used (for nonsensitive attributes), and the height of
the generalization hierarchy for each attribute.

Homogeneity Attack. In Figures 9, 10, 11, and 12, we illustrate the homogene-
ity attacks on k-anonymized datasets using the Lands End and Adult databases.
For the Lands End Database, we treated {zipcode, order date, gender, style,
price} as the quasi-identifier. We partitioned the cost attribute into 147 buckets
by rounding to the nearest 100 and used this as the sensitive attribute. For
the Adults database, we used {age, gender, race, marital status, education} as
the quasi-identifier and salary class as the sensitive attribute. For values of
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Attribute Domain | Generalizations | Ht.
size type
1 | Age 74 ranges-5,10,20 4
2 | Gender 2 Suppression 1
3 | Race 5 Suppression 1
4 | Marital Status 7 Taxonomy tree 2
5 | Education 16 Taxonomy tree 3
6 | Native Country 41 Taxonomy tree 2
7 | Work Class 7 Taxonomy tree 2
8 | Salary class 2 Sensitive att.
9 | Occupation 14 Sensitive att.
Fig. 7. Description of Adults database.
Attribute Domain | Generalizations Ht.
size type
1 | Zipcode 31953 Round each digit 5
2 | Order date 320 Taxonomy tree 3
3 | Gender 2 Suppression 1
4 | Style 1509 Suppression 1
5 | Price 346 Round each digit 4
6 | Quantity 1 Suppression 1
7 | Shipment 2 Suppression 1
8 | Cost 147 Sensitive att.

Fig. 8. Description of Lands End database.

k Affected Avg. Gps. | Avg. Tuples
/Total tables Affected Affected
2 8/8 7.38 558.00
5 11/12 3.58 381.58
10 10/12 1.75 300.42
15 7/8 2.12 317.25
20 8/10 1.20 228.20
30 7/10 0.90 215.40
50 5/5 1.00 202.80

Fig. 9. Effect of homogeneity attack on the Adults database.

k Affected Avg. Gps. | Avg. Tuples
/Total tables Affected Affected

2 2/3 123 2537.6

5 2/3 12.3 2537.6

10 2/2 18.5 3806.5
15 2/2 18.5 3806.5
20 1/2 2.5 1750

30 1/2 2.5 1750

50 1/3 0.6 1156

Fig. 10. Effect of homogeneity attack on the Lands End database.

k=2,5,10, 15, 20, 30, 50, we then generated all k-anonymous tables that were
minimal with respect to the generalization lattice (i.e., no table at a lower level
of generalization was k-anonymous).

Figures 9 and 10 show an analysis of groups in k-anonymous tables that are
completely homogeneous in the Adults and Lands End databases, respectively,
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k Affected Avg. Gps. | Avg. Tuples
/Total tables Affected Affected
2 8/8 20.50 13574.5
5 12/12 12.67 13328.3
10 12/12 7.83 10796.5
15 8/8 8.88 12009.4
20 10/10 7.10 11041.0
30 10/10 5.50 11177.0
50 5/5 5.80 8002.0
Fig. 11. Effect of 95% homogeneity attack on the Adults database.
k Affected Avg. Gps. | Avg. Tuples
/Total tables Affected Affected
2 2/3 13.0 2825.33
5 2/3 13.0 2825.33
10 2/2 19.5 4238.00
15 2/2 19.5 4238.00
20 1/2 3.0 2119.00
30 1/2 3.0 2119.00
50 1/3 1.0 1412.66

Fig. 12. Effect of 95% homogeneity attack on the Lands End database.

while Figures 11 and 12 show a corresponding analysis of groups in k-
anonymous tables that are nearly homogeneous (i.e., the most frequent sen-
sitive value s in a group appears in at least 95% of the tuples in the group).
Both cases should be avoided since an adversary would believe, with near cer-
tainty, that an individual in a homogeneous or nearly homogeneous group has
the sensitive value s that appears most frequently. Note that the minority (i.e.,
< 5%) of the individuals in nearly homogeneous groups whose sensitive values
are not s are also affected even though the best inference about them (that they
have s) is wrong. As a concrete example, consider the case when s=AIDS. An
individual that values privacy would not want to be associated with s with near
certainty regardless of whether the true value is s. In the four tables shown
in Figures 9, 10, 11, and 12, the first column indicates the value of k. The
second column shows the number of minimal %2-anonymous tables that have
groups that are completely homogeneous (Figures 9 and 10) or 95% homoge-
nous (Figures 11 and 12). The third column shows the average number of such
groups per minimal k2-anonymous table. The fourth column shows the average
number of tuples per minimal £-anonymous table that were affected by the two
homogeneity attacks. As we can see from Figures 9, 10, 11 and 12, the homo-
geneity attack is a real concern, affecting a very large fraction of both datasets.
Even for relatively large values of £ (such as 30 and 50), many tables still had
nearly homogeneous groups.

Note that the average number of affected groups, average number of affected
tuples, etc., are not strictly decreasing functions of k. In particular, tables with
small values of affected tuples are sometimes close to each other in the lattice of
k-anonymous tables and may be generalized to the same table when % increases
(thus reducing the total number of “safe” tables).
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Fig. 14. Lands End database.

Performance. In our next set of experiments, we compare the running times
of entropy ¢-diversity and k-anonymity. The results are shown in Figures 13
and 14. For the Adult database, we used occupation as the sensitive attribute,
and for Lands End we used cost. We varied the quasi-identifier size from 3
attributes up to 8 attributes; a quasi-identifier of size j consisted of the first
J attributes of its dataset as listed in Figures 7 and 8. We measured the time
taken to return all 6-anonymous tables and compared it to the time taken to
return all 6-diverse tables. In both datasets, the running times for £-anonymity
and ¢-diversity were similar. Sometimes the running time for ¢-diversity was
faster, which happened when the algorithm pruned parts of the generalization
lattice earlier than it did for 2-anonymity.

Utility. The next set of experiments compare the utility of anonymized ta-
bles which are k-anonymous, entropy ¢-diverse or recursive (3, £)-diverse. We
use the Adults database in all the experiments with sensitive attribute occu-
pation. For the purposes of comparison, we set 2 =¢ and experimented with
the following values of ¢ (and hence k): 2, 4, 6, 8, 10. The sensitive attribute
occupation takes only 14 values. Hence, there is no table which can be more
than 14-diverse for any reasonable definition of diversity. Since some of the val-
ues appeared very infrequently, we found that there is no generalization of the
Adults database that is recursive (3, £)-diverse for £ =12. We also found that
the marginal distribution of the sensitive attribute is entropy 10.57-diverse.
This means that no generalization of the Adults database can be more than
entropy 10.57-diverse unless the entire dataset is suppressed.
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The utility of a dataset is difficult to quantify. As a result, we used four
different metrics to gauge the utility of the generalized tables—generalization
height, average group size, discernibility, and KL-divergence. The first metric,
generalization height [LeFevre et al. 2005; Samarati 2001], is the height of an
anonymized table in the generalization lattice; intuitively, it is the number of
generalization steps that were performed. The second metric is the average size
of the q*-blocks generated by the anonymization algorithm. The third metric is
the discernibility metric [Bayardo and Agrawal 2005]. The discernibility metric
measures the number of tuples that are indistinguishable from each other.
Each tuple in a g*-block B; incurs a cost |B;|, and each tuple that is completely
suppressed incurs a cost |D| (where D is the original dataset). Since we did not
perform any tuple suppression, the discernibility metric is equivalent to the
sum of the squares of the sizes of the ¢*-blocks.

Neither generalization height, average group size, or discernibility take
the data distribution into account. For this reason, we also use the KL-
divergence, which is described next. In many data-mining tasks, we would
like to use the published table to estimate the joint distribution of the at-
tributes. Now, given a table T with categorical attributes Ai,..., A,,, we can
view the data as an independent and identically-distributed sample from an
m-dimensional distribution F'. We can estimate this F with the empirical dis-
tribution F', where F(x1,...,xn) is the fraction of tuples ¢ in the table such
that t. Ay =x1,...,t.A,, =x,,. When a generalized version of the table is pub-
lished, the estimate changes to £'* by taking into account the generalizations
used to construct the anonymized table 7* (and making the uniformity assump-
tion for all generalized tuples sharing the same attribute values). If the tuple
t =(x1,...,%y)is generalized to ¢* = (x7, ..., x;,), then F*(x1, ..., x,)is given by

I{t* e T*}|
|T*| x area(t*)’

F (e, ..., xm) =

where, area(x;, ..., x;) = [T2, l{x; € A; | x; is generalized to x}}|.
To quantify the difference between the two distributions F and F*, we use
the Kullback-Leibler divergence (KL-divergence) which is defined as

Y Fmlog F@)

—’
X€A1x-xAp, F*(X)

where 0log 0 is defined to be 0. The KL-divergence is nonnegative and is 0 only
when the two estimates are identical.

In Figures 15, 16, 17, and 18, we show the minimum generalization height,
average group size, and discernibility of 2Z-anonymous, entropy ¢-diverse, and
recursive (3, ¢)-diverse tables for ¢ =k =2,4,6, 8,10, while Figures 19 and
20 show our results for KL-divergence. For each graph in Figures 15, 16,
17, 18, and 19, we performed the anonymizations on a 5% subsample of the
original data, while Figure 20 shows results for anonymization of the entire
dataset.

Before explaining why it was necessary to subsample the data, we should first
note that, in general, the graphs show that ensuring diversity in the sensitive
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Fig. 15. Adults database. Q = {age, gender, race}.

attribute does not require many more generalization steps than for £-anonymity
(note that an ¢-diverse table is automatically £-anonymous); the minimum gen-
eralization heights for identical values of £ and ¢ were usually identical. Nev-
ertheless, we found that generalization height was not an ideal utility metric
because tables with small generalization heights can still have very large group
sizes. For example, using full-domain generalization on the Adult database with
the quasi-identifier {age, gender, race, marital status, education}, we found min-
imal (with respect to the generalization lattice) 4-anonymous tables that had
average group sizes larger than 1,000 tuples. The large groups were caused
by data skew. For example, there were only 114 tuples with age between 81
and 90, while there were 12,291 tuples with age between 31 and 40. So if
age groups of length 5 (i.e., [1-5], [6-10], [11-15], etc) were generalized to age
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Fig. 16. Adults database. Q = {age, gender, race, marital_status}.

groups of length 10 (i.e., [1-10], [11-20], etc), we would end up with very large
q*-blocks.*

Thus, to better understand the loss of utility due to domain generalization,
we chose to study a subsample of the Adults database with a lesser data skew
in the age attribute. It turned out that a 5% Bernoulli subsample of the Adult
database suited our requirements, that is, most of the age values appeared in
around 20 tuples each, while only a few values appeared in less than 10 tuples
each. The second and third graphs in each of Figures 15, 16, 17, and 18 show

4Generalization hierarchies that are aware of data skew may yield higher quality anonymizations.
This is a promising avenue for future work because some recent algorithms [Bayardo and Agrawal
2005] can handle certain dynamic generalization hierarchies.
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Fig. 17. Adults database. Q = {age, gender, race, marital_status, education}.

the minimum average group size and the discernibility metric cost, respectively,
of k-anonymous and ¢-diverse tables for £, £ =2, 4, 6, 8, 10. Smaller values for
utility metrics represent higher utility. We found that the best £-anonymous and
t-diverse tables often (but not always) had comparable utility. It is interesting
to note that recursive (3, ¢)-diversity permits tables which have better utility
than entropy ¢-diversity. Recursive (c, £)-diversity is generally less restrictive
than entropy ¢-diversity, because the extra parameter, ¢, allows us to control
how much skew is acceptable in a g*-block. Since there is still some residual
skew even in our 5% subsample, the entropy definition performs worse than
the recursive definition.

In Figures 19 and 20, we compare k-anonymous and {¢-diverse tables us-
ing the KL-divergence utility metric. Figure 19 shows our results for a 5%
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subsample of the table and Figure 20 shows our results on the entire Adults
database. In each of the graphs, we wish to publish a table from which the
joint distribution @ x S can be estimated. In all the cases S = occupation.  is
the multidimensional attribute {age, gender, race}, {age, gender, marital_status,
race} and {age, education, gender, marital _status, race}, respectively.

Each of the graphs shows a baseline (the bar named “base”) that corre-
sponds to the KL-divergence for the table where all the attributes in @ were
completely suppressed (thus the resulting table had only one attribute, the
sensitive attribute). This table represents the least-useful anonymized table
that can be published. The rest of the bars correspond to the KL-divergence to
the best k-anonymous, entropy ¢-diverse, and recursive (3, £)-diverse tables for
k=¢=2,4,6,8, 10, respectively.
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Fig. 19. Comparing KL-divergence to k-anonymous and ¢-diverse versions of a sample of the
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{age, education, gender, marital status, race}, respectively.

In the experiments run on the full Adults dataset, we see that the KL-
divergence to the best ¢-diverse table (entropy or recursive) is very close to the
KL-divergence to the best k-anonymous table for 2 = ¢ =2, 4, 6. As expected, for
larger values of ¢, the utility of ¢-diverse tables is lower. The best tables for the
entropy and recursive variants of the definition often have similar utility. When
a sample of the Adults database table was used, some of the sensitive values
with small counts were eliminated. Hence, for ¢ =8, 10, the best tables were
very close to the baseline. For ¢ =6, the recursive definition performs better
than the entropy definition since recursive (3, ¢)-diversity allows for more skew
in the sensitive attribute.
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Fig. 20. Comparing KL-divergence to 2Z-anonymous and ¢-diverse versions of the Adults database.
From left to right, @ = {age, gender, race}, {age, gender, marital status, race} and {age, education,
gender, marital status, race}, respectively.

7. RELATED WORK

There has a been a lot of research on individual data privacy in both the com-
puter science and the statistics literature. While a comprehensive treatment is
outside the scope of this article, we provide an overview of the area by discussing
representative work. Most of the work can be broadly classified depending on
whether or not the data collector is trusted. We first discuss the trusted data
collector scenario, of which our work is an example, in Section 7.1. We then
discuss the untrusted data collector scenario in Section 7.2.
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7.1 Trusted Data Collector

In many scenarios, the individuals providing the data trust the data collector
not to breach their privacy. Examples of such data collectors are the Census
Bureau, hospitals, health insurance providers, etc. However, these data collec-
tors want to share data with third parties for enhancing research. It is required
that such sharing does not breach the privacy of the individuals. Methods used
by the data collectors can be broadly classified into four classes (a discussion of
each follows):

—publish public-use microdata (e.g., the approach taken in this article);

—allow third parties to query the data, and only allow queries which do not
lead to disclosures (as statistical databases);

—share data only with authorized third parties;

—do not share data but provide support for collaborative computations which
disclose no information beyond the final answer.

7.1.1 Publishing Public-use Microdata. This article proposes new pri-
vacy definitions for the model of publishing public-use microdata. The Census
Bureau provides data as public-use microdata (PUMS). They use a variety of
sanitization techniques to ensure privacy and utility in the dataset. Hence,
there is a huge amount of research on data sanitization in the statistics com-
munity. Here again, there are many techniques which provide some utility
guarantees but do not give theoretical guarantees for privacy.

Census data literature focuses on identifying and protecting the privacy of
sensitive entries in contingency tables, tables of counts which represent the
complete cross-classification of the data ([Fellegi 1972; Cox 1980; 1982; 1987,
Dobra and Feinberg 2003; 2000; Slavkovic and Feinberg 2004]). A nonzero ta-
ble entry is considered sensitive if it is smaller than a fixed threshold which is
usually chosen in an ad-hoc manner. Two main approaches have been proposed
for protecting the privacy of sensitive cells: data swapping and data suppres-
sion. The data swapping approach involves moving data entries from one cell
in the contingency table to another so that the table remains consistent with
a set of published marginals [Dalenius and Reiss 1982; Diaconis and Sturm-
fels 1998; Duncan and Feinberg 1997]. In the data suppression approach [Cox
1980; 1995], cells with low counts are simply deleted. Due to data dependencies
caused by marginal totals that may have been previously published, additional
related cell counts may also need to be suppressed. An alternate approach is to
determine a safety range or protection interval for each cell [Dobra 2002], and
to publish only those marginals which ensure that the feasibility intervals (i.e.,
upper and lower bounds on the values a cell may take) contain the protection
intervals for all cell entries.

Computer science research has also tried to solve the privacy-preserving
data publishing problem. Sweeney [2002] showed that publishing datasets for
which the identifying attributes (keys) have been removed is not safe and may
result in privacy breaches. In fact, the paper shows a real-life privacy breach
using health insurance records and voter registration data. To better protect
the data, Sweeney [2002] advocates the use of a technique called k-anonymity
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[Samarati and Sweeney 1998] which ensures that every individual is hidden in
a group of size at least & with respect to the nonsensitive attributes. The problem
of k-anonymization is NP-hard [Meyerson and Williams 2004]; approximation
algorithms for producing %2-anonymous tables have been proposed [Aggarwal
et al. 2004].

Prior to this, there had been a lot of study in creating efficient algorithms
for k-anonymity by using generalization and tuple suppression techniques.
Samarati and Sweeney [1998] proposed a technique, using binary search for
ensuring k-anonymity through full-domain generalization techniques. Bayardo
and Agrawal [2005] modeled k-anonymization as an optimization problem be-
tween privacy and utility and proposed an algorithm similar to a frequent-
itemset mining algorithm. LeFevre et al. [2005] extended the approach of
full-domain generalization and proposed an algorithm for returning all valid
k-anonymous tables. It also used techniques very similar to frequent-itemset
mining. Zhong et al. [2005] showed how to compute a k-anonymous table with-
out the requirement of a trusted data collector. Ohrn and Ohno-Machado [1999]
used Boolean reasoning to study the effect of locally suppressing attributes on
a per-tuple basis. They introduced a notion called relative anonymization to
counter the effects of homogeneity in the sensitive attribute. One of the in-
stantiations of relative anonymization corresponds to the definition which we
named entropy ¢-diversity. In a preliminary version of this paper, Machanava-
jjhala et al. [2006] first introduced ¢-diversity which, unlike 2-anonymity, was
aware of the distribution of values of the sensitive attributes and of the effects
of background knowledge.

The condensation-based approach to ensure 2-anonymity [Aggarwal and Yu
2004] treats the data as points in a high-dimensional space, and the technique
tries to condense £ nearby points into a single point.

Chawla et al. [2005] proposes a formal definition of privacy for published
data based on the notion of blending in a crowd. Here privacy of an individual
is said to be protected if an adversary cannot isolate a record having attributes
similar (according to a suitably chosen distance metric) to those of a given in-
dividual without being sufficiently close (according to the distance metric) to
several other individuals; these other individuals are the crowd. The authors
propose several perturbation and histogram-based techniques for data saniti-
zation prior to publication. The formalization of the notion of privacy presents
a theoretical framework for studying the privacy-utility trade-offs of the pro-
posed data sanitization techniques. However, due to the heavy reliance on an
intertuple distance measure of privacy, the proposed definition of privacy fails
to capture scenarios where identification of even a single sensitive attribute
may constitute a privacy breach. Also note that this privacy definition does not
guarantee diversity of the sensitive attributes.

Miklau and Suciu [2004] characterize the set of views that can be pub-
lished while keeping some query answer secret. Privacy here is defined in the
information-theoretic sense of perfect privacy. They show that to ensure perfect
privacy, the views that are published should not be related to the data used to
compute the secret query. This shows that perfect privacy is too strict as most
useful views, like those involving aggregation, are disallowed.
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Finally there has been some work on publishing XML documents and en-
suring access control on these documents [Miklau and Suciu 2003; Yang and
Li 2004]. Miklau and Suciu [2003] use cryptographic techniques to ensure that
only authorized users can access the published document. Yang and Li [2004]
propose publishing partial documents which hide sensitive data. The challenge
here is that the adversary might have background knowledge which induces
dependencies between branches, and this needs to be taken into account while
deciding which partial document to publish.

7.1.2 Statistical Databases. The third scenario in the trusted data collec-
tor model is hosting a query answering service. This is addressed by the statis-
tical database literature. In this model, the database answers only aggregate
queries (COUNT, SUM, AVG, MIN, MAX) over a specified subset of the tuples in
the database. The goal of a statistical database is to answer the queries in such
a way that there are no positive or negative disclosures. Techniques for statis-
tical database query answering can be broadly classified into three categories,
thatis, query restriction, query auditing, data and output perturbation. Though
the literature proposes a large number of techniques for ensuring privacy, but
only a few of the techniques are provably private against attacks except in
restricted cases. Adam and Wortmann [1989] provide a very good literature
survey.

The techniques in the query restriction category specify the set of queries
that should not be answered to ensure that privacy is not breached. None of
the answers to legal queries are perturbed. All of these techniques focus on the
case where a query specifies an aggregate function and a set of tuples C over
which the aggregation is done. The query set size control technique [Fellegi 1972;
Schlorer 1975] specifies that only those queries which access at least |C| > & and
at most |C| < L — k tuples should be answered. Here % is a parameter, and L
is the size of the database. However, it was shown that snooping tools called
trackers [Denning et al. 1979] can be used to learn values of sensitive attributes.
The query set overlap control technique [Dobkin et al. 1979] disallows queries
which have a large intersection with the previous queries.

Query auditing in statistical databases has been studied in detail. The query
monitoring approach [Dobkin et al. 1979; Chin 1986] is an online version of the
problem where the (¢ + 1) th query is answered or not depending on the first ¢
queries asked. The decision is based only on the queries and not on the answers
to those queries. Pure SUM queries and pure MAX queries can be audited
efficiently but the mixed SUM/MAX problem is NP-hard. In the offline auditing
problem [Chin and Ozsoyoglu 1981; Chin 1986], the queries are presented all at
once and the problem is to choose the maximum number of queries that can be
answered. Kleinberg et al. [2000] considers auditing SUM queries over Boolean
attributes and shows that it is co-NP hard to decide whether a set of queries
uniquely determines one of the data elements. More recently, Kenthapadi et al.
[2005] studied the problem of simulatable auditing. This is a variant of the
query monitoring approach where the decision to disallow a query can depend
on the answers to the previous queries as well. The main challenge in this model
is that if a query answer is denied, information could be disclosed. Hence, the
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solutions proposed are such that any decision (to allow or deny a query) that is
made by the database can also be simulated by the adversary.

Data perturbation. techniques maintain a perturbed version of the
database and answer queries on the perturbed data. However, most of these
techniques suffer from the problem of bias [Matloff 1986], that is, the expected
value of the query answers computed using the perturbed data is different from
the actual query answers computed using the original data. Fixed-data pertur-
bation techniques [Traub et al. 1984] perturb the data by adding zero-mean
random noise to every data item. Such techniques have the worst problems
with bias. The randomized response scheme proposed in Warner [1965] avoids
this bias problem for COUNT queries on categorical attributes. Yet another
technique is to replace the data with synthetic data drawn from the same em-
pirical distribution.

Output perturbation. techniques evaluate the query on the original data
but return a perturbed version of the answer. Techniques include returning
answers over a sample of the database [Denning 1980], rounding the answers
to a multiple of a prespecified base b [Dalenius 1981], and adding random noise
to the outputs [Beck 1980]. More recently, Dinur and Nissim [2003] proved that
in order to protect against an adversary who is allowed to ask arbitrarily many
queries to a database, the random noise added to the answers should be at
least Q(,/n), with n as the number of tuples in the database. On the positive
side, they also showed a technique that provably protects against a bounded
adversary who is allowed to ask only 7 (n) > polylog(n) queries by using additive
perturbation of the magnitude O(+/7 (n)). Building on this result, Blum et al.
[2005] proposed a framework for practical privacy called the SuL@ framework
where the number of queries an adversary is allowed to ask is sublinear in the
number of tuples in the database.

7.1.3 Sharing with Authorized Parties. Hippocratic databases [Agrawal
et al. 2002] are a proposed design principle for building database systems which
regulate the sharing of private data with third parties. Such a solution requires
both the individuals who provide data and the databases that collect it to specify
privacy policies describing the purposes for which the data can be used and the
recipients who can see parts of the data. The policies are specified using a policy
specification language like APPEL [M. Langheinrich 2001], which satisfies the
P3P standard [M. Marchiori 2002]. A Hippocratic database also needs other
functionality, like support for maintaining audit trails [Agrawal et al. 2004],
query rewriting for disclosure limitation [LeFevre et al. 2004], and support for
data retention.

[Snodgrass et al. 2004] proposes schemes for auditing the operations of a
database such that any tampering with the audit logs can be detected. Such a
solution can guard against the database’s manipulation of the audit logs, thus
giving assurance of eventual postbreach detection.

7.1.4 Private Collaborative Computation. Private collaborative computa-
tion has been very well studied in the form of secure multiparty computation
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[Goldreich et al. 1987; Ben-Or et al. 1988; Chaum et al. 1988]. The problem
of secure multiparty computation deals with n parties computing a common
function on private inputs. Such a protocol should not disclose to the partici-
pants any information other than what is disclosed by the answer itself. Most of
the early work focused on building solutions for general functions by expressing
a function as a Boolean circuit. However, general solutions are perceived to be
communication inefficient (of the order of the square of the number of parties
involved for each gate in the Boolean circuit under evaluation).

Thus there has been a lot of research proposing solutions to secure multiparty
computations for specific functions. [Du 2001] proposes various specific (secure)
two-party computations problems. The commodity server model [Beaver 1997,
1998] has been used for privately computing the scalar product of two vectors
[Du and Zhan 2002]. In the commodity server model, the two (or more) parties
involved in the multiparty computation protocol employ the services of an un-
trusted third party to provide some randomness [Beaver 1997] or to help with
some computation [Du and Zhan 2002]. It is assumed that this untrusted third
party does not collude with the players involved in the multiparty computation.
Most of these techniques employ randomization to guarantee privacy.

Agrawal et al. [2003] employ commutative encryption techniques for infor-
mation sharing across private database. Their techniques can be used to cal-
culate the intersection and equijoin of two databases while disclosing only the
sizes of each database. Clifton et al. [2002] describes methods to implement
basic operations like secure sum, secure set union, secure set intersection, and
secure scalar product using both encryption and additive randomization in the
secure multiparty computation setting. These primitives are used in various
application scenarios to build multiparty protocols for private association rule
mining in horizontally-partitioned data [Kantarcioglu and Clifton 2002], pri-
vate association rule mining in vertically-partitioned data [Vaidya and Clifton
2002], and private EM clustering.

One drawback which permeates the literature discussed is that there is no
clear characterization of how much information is disclosed by the output of
the protocol about the sensitive inputs.

7.2 Untrusted Data Collector

In the case where the data collector is not trusted, the private information of
the individuals should be kept secret from the data collector. Though this is
not the model dealt with in this article, definitions of privacy can be common
across the trusted and the untrusted data collector model. The individuals pro-
vide randomized versions of their data to the data collector who then uses it for
data mining. Warner [1971] proposed one of the first techniques for randomiz-
ing categorical answers to survey questionnaires. Recent work in the privacy-
preserving data mining literature also fits this model. Agrawal and Srikant
[2000] propose randomization techniques that can be employed by individuals
to mask their sensitive information while allowing the data collector to build
good decision trees on the data. This work, however, does not give theoretical
guarantees for privacy. Subsequent work proposes metrics for quantifying the
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information lost and the privacy guaranteed by privacy-preserving data mining
techniques. One privacy metric [Agrawal and Aggarwal 2001] is based on the
conditional differential entropy between the original and perturbed data. How-
ever, this privacy metric measures average-case behavior, so that a perturbed
distribution can leave a lot of uncertainty about the original values in most of
the domain, leave very little uncertainty in a small part of the domain (therefore
causing a privacy breach), and yet still be considered satisfactory based on its
conditional differential entropy. [Evfimievski et al. 2003; 2002] propose random-
ization techniques for privacy-preserving association rule mining and give the-
oretical guarantees for privacy. They define a privacy breach to be the event that
the posterior probability (of certain properties of the data) given the randomized
data is far from the prior probability. These techniques deal with categorical at-
tributes only. Extensions to continuous data that allow the data collector to run
OLAP-style queries on the data have also been proposed ([Agrawal et al. 2004]).

On the negative side, Kargupta et al. [2003] show that randomizing the data,
especially by adding zero-mean random variables, does not necessarily preserve
privacy. The techniques provided in the paper exploit spectral properties of
random matrices to remove the noise and recover the original data. Thus the
data collector could breach privacy. Huang et al. [2004] show that the correlation
between attributes is the key factor behind the attacks proposed in Kargupta
et al. [2003]. The paper goes on to propose two techniques based on Principle
Component Analysis (PCA) and the Bayes Estimate (BE) to reconstruct the
original data from the randomized data. On a positive note, the paper shows
that randomization schemes where the correlations in the noise are similar to
the correlations in the data can protect against these attacks.

8. CONCLUSIONS AND FUTURE WORK

In this article, we have shown theoretically and experimentally that a k-
anonymized dataset permits strong attacks due to lack of diversity in the
sensitive attributes. We have introduced ¢-diversity, a framework that gives
stronger privacy guarantees. We have also demonstrated that ¢-diversity and
k-anonymity have enough similarity in their structure that 2-anonymity algo-
rithms can be modified to work with ¢-diversity.

There are several avenues for future work. First, we want to extend our initial
ideas for handling multiple sensitive attributes, and we want to develop meth-
ods for continuous sensitive attributes. Second, although privacy and utility are
duals of each other, privacy has received much more attention than the utility
of a published table. As a result, the concept of utility is not well understood.

APPENDIX
A. CORRECTNESS OF ENTROPY ¢-DIVERSITY WITH DON'T-CARE SETS

In this section, we will prove Theorem 4.1. Recall that we defined normalized
entropy as:

j=1%j

Hep oot = -3 =5 qog ). (11)
Bt == ) s g(z
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First, we note that as a function of xi,...,x,, the normalized entropy
H(x1,...,x,) is concave. However, if we fix some of the variables, then
H is neither concave nor convex in the other variables. As an example,
consider f(x)=H(x, 100). We see that f(400)=.5004, f(800)=.3488, and
f(600)=.4101. Thus f(600)= f(3-400+ 1-800) < 17(400)+ 1 £(800) show-
ing that the normalized entropy is not concave. However, f(75)=.6829,
f(125)=.6870, and f(100)=.6931 Thus f(100)= f(% -5+ % -125) > %f(75)+
% f(125), and so it is not convex either. Therefore we cannot use convexity ar-
guments to prove uniqueness in Theorem 4.1.

We begin by looking at the first-order partial derivatives of H and finding

the general unconstrained maximum 9f H(x1,...,%, pi, ..., pm) Where the p;
are constants. Define f(x1,...,x.) = H(x1,...,%-, p1,..., Ppm). Then,
Xi
flxy,...,x ]og
ZZ] lx]+ZJ 1b Z] lx]+2] 1Dj

Di
log
ZZ; 1x1+ZJ 1P (ZJ 1%+ 1PJ>

and simple manipulation shows that

flxq,...,

x,) = log x;
ZZ] 1% +ZJ =1Dj

1 i
ZZJ 1%j +ZJ 1P o8 b
+ 10g (ij —}—ij>
j=1 j=1

Using the fact that the first derivative of x logx is 1 + logx:

of 1+ logx; N x5 log xs
% - r‘_ X i + m_ 7 r 2
: Lj1%i+ 21 P (Zj:l x4+ Pj>
I X logxi _
i#s (Z;’:l xj+ 3 p;)
m
pi log p; 1
+ Z 2 2 5 —+ Zr X+ Zm D
. r m P ] —
i=1 (Zj:lxj +Y pj> j=1%] j=1Dj
. log x4 N x5 log xg
rA_ x; + r.n_ . 2
Zo %t R P (5w 4 T )
D izs Xi 10g X Y iwy pilog p;

2 2
(Z;:l xj 420 pj) (Z;:l xj 420 pj)
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__(Ciax+ Y pi)logxs xg log xs
- = 2 2
(Zj:l X+ pj) (Zj:l X+ Pj)
Dizs Xi log x; >t pilog pi

r m 2 r m 2
<Zj=1xj +Zj:1Pj> (Zj:lxj +Zj:1pj>
> iss(ailogxi — x; log xc) + Y/ (pi log p; — pi log )

= 5 , (12)
(Z5as + X7 p))
and so we see that 9f/9x; = 0 when
. x;logx; + ;’i ; log p;
logx, — Dizs Xiloga; + 3, pilogp _ (13)

PIIIIETE D BRY ¥

We will denote the value of the right-hand side of Equation (13) by c¢*. From
Equation (12), it is easy to see that 9f/9x; < 0 when log(x,) > ¢* (when x; > e“*)
and 9f/9xs > 0 when log(x;) < c* (when x; <e®). Combining this with the fact
that f is continuous at x; =0 (to rule out a maximum at x, =0), we get that,
given pq,..., pn and for fixed x1, ..., %s_1, X541, ..., %, there is a unique value
of x; that maximizes H. This brings us to the first theorem.

TuEOREM A.1. Let py,..., pymbeconstantsandletxy,...,%s 1, %511, ...,% be
fixed. Then H(p1,..., Pm, X1, ..., %) (when treated as a function of xs) is maxi-
mized when

Zi;és x;logx; + > pilog p;
Zj;és xXj + Z?:l Dj

Furthermore, the maximum is unique and H is decreasing for x; > e and in-
creasing for xs < e®*.

logxs =c* =

CoroLLARY A.1. Let p1,..., pm be constants and let x1, ..., %Xs 1, X511, ..., %
be fixed. Let ¢ >0. Then H(p1, ..., Pm, X1, ..., %) (when treated as a function
of x5) is maximized subject to the constraint xs < ¢s when

> izs Xiloga; + 371 pilog p;
Zj;ﬁs xj+ Z;‘n=1 pj

= miﬂ(lOg(p, M(xl, cee 3 Xg—1, Xg41y o v o5 Xpy P1y - vy pm))

log x4 min (log os,

Proor. If x; cannot obtain the optimal value specified in Theorem A.1,
it must be because ¢ <e®*. Since dH /0x; > 0 for x; <e*, the maximum con-
strained value must occur at x; = ¢,. O

Our next step is to find the unconstrained maximum of H over x1, ..., x,. A
necessary condition for the maximum is that all first partial derivatives are 0.
From Equation (13), we have:

m m
(ij +Zp]> logxs = in logXi+Zpi10gpi
i# = is =
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r m r U
(ij+2pj) logxs = inlogxi+zpi10gpi,
=1 j=1 i=1 i=1

and since the right-hand side is independent of s, and since the equality is true
for any s, it follows that for s # ¢:

<§ X+ Y Pj)lngs = <§ X+ ) pj>logxt (14)
Jj=1 Jj=1 j=1 j=1
X = X (15)

Thus there is only one critical point and, at the critical point, x; = x93 = -- - = x,..
To find out what this value is, we go back to Equation (13) and replace the x;
by their common value x:

(r — Dxlogx + )", pilog p;

lo =
g% r—Dx+ Y7, p

(r — Dxlogx + ij logx = (r — Dxlogx + Zpi log p;

j=1 i=1
x — > iy pilog p;
Z;‘n=1 bpj ’
and we see that this is the log-entropic mean of the p;.
THEOREM A.2. f(x1,...,x.) = H(p1,..., Pm,%1,...,%) achieves its unique
maximum when logx; = logxy = --- =logx, = % =c*.

Proor. We have already shown that this is the unique point where all first
partial derivatives are 0 at this point. We still have to show that it is a global
maximum. First note that a maximum cannot occur when any of the x; are 0
(this follows directly from Theorem A.1).

Now suppose the point (e®*,...,e°*) is not a unique global maxi-
mum. Then there exist positive numbers &1, &s,...,&. (not all equal to c*)
such that f(&,&s,...,&)> f(e®,...,e*). Let L=min{py,..., pm,&1,...,&}
and let U= max{pi,..., pm, &1,...,&}. Consider the compact hypercube
C={(z1,...,2,): Vie{l,...,r}, U>z;>L}.Cis compact, [ is continuous, and
f achieves its maximum on C. Hence, there exists a point (6, ...,6,) €C such
that f(601,...,0.)=sup, .. f(z2)> f(&1,...,&)> f(e,...,e) and that not all
0; are equal to c*.

Now, the 6; cannot satisfy Equation (13) (with the x; replaced by the
6;) for all i because otherwise we will have a second point where all the
partial derivatives are 0 (a contradiction). Without loss of generality, sup-
pose 601 does not satisfy Equation (13). By Theorem A.1, there exists a
6* such that log6* is a weighted average of the log p; and log6; so that
min(p1, ..., Ppm,01,...,0,) <0* < max(pi, ..., pm,01,...,06,). This implies that
(6%, 09, ...,06,) eC. Furthermore, by Theorem A.1, f(6*,0s,...,0,)> f(01,...,6.),
which contradicts the fact that f (64, ..., 6,) is maximal on C. Therefore, there
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do not exist any nonnegative real numbers &1, &, .. ., & (not all equal to ¢*) such
that f(&1,8,...,&)> f(e,...,e"™). O

Now that we know what the unconstrained maximum looks like, we are ready
to characterize the constrained maximum. We will need the following simple
results about weighted averages.

LEmma A.1. Let cq,...,c, be nonnegative numbers and let w1, ...,w, be
nonnegative numbers such that wic; >0 for some i. Let d and v be any posi-
tive numbers.

(1) If d equals the weighted average of the c; (i.e., d =(3_; c;w;)/(}_; w;)), then
including d in that weighted average does not change its value (i.e., d = (vd +
Yoicw)/ w4+ w)=0"; cw) /O wi)).

@) If d > ;cw)/(Q;w;),
thend > (vd + Y ; c;w)/w + Y, wi) > (X, ciwi)/(X; wi).

(3) If d <O ;ciw)/(Q; w;),
thend <(vd + Y ; c;w)/w + Y, wi) < (X, ciwi)/(X; wi).

4) If d >d’ and d > (X, ciw;) /(Y wy),
thend > @wd' + ), c;w;)/(v+ Y, w;).

5) If d > (vd + ), ciw)/w + D w;),
then d > (3", ciw;)/(X; wi).

Proor. First we show (1).
vd + 3w vd +d Y w _d(v+Ziwi)_d D ciw;
v+ w v+ w v+ w o Y wi

To prove (2), let d* =3, c;w;)/(3_; w;), then

de vd +d Y w;  vd + Y cwi vd*+ ) cw Y ciw;
N U+Ziwi g U+Ziwi g U+Ziwi B Ziwi’
and (3) is proven the same way. (4) is an easy consequence of (2). To prove (5),
multiply by (v + ), w;) and cancel dv from both sides. O

Now we can prove the correctness of Algorithm 1 by proving Theorem 4.1,
which we now restate.

TurorEM A.3. Let pi,...,Pm,P1,...,¢, be positive numbers. Then the
following are true.

(1) There is a unique vector (c1, co, . .., ¢.) such that the assignment x; = ¢; max-
imizes H(x1,...,%y, D1, ..., Pm) subject to the constraints 0 < x; < ¢;.

(2) Let 0 = max({¢; | ¢; =¢;} U{0}). If ¢p; <O then c; =¢;. If ¢p; >0, then logc;
is the log-entropic mean of the set {p1, ..., pm} U {®; | ¢; =c;}, and 0 is the
minimum value for which this condition can be satisfied.

Proor. First we must show that a maximum exists, and this follows from
the fact that H is continuous and that the set {(x1,...,x,) | Vi,0<x; <} is
compact. Note that uniqueness of the maximum follows from the minimality
condition for 6 in (1). Therefore if we prove (2) then (1) follows.
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Let (&1, ..., &) be a point at which the maximum occurs. As a result of Corol-
lary A.1, fors=1,...,r, we must have
log%'s = mln(logqb, M(Sl’ ey Ss—l’ §S+1’ ey Sr’ P1, .-, pm)) (16)

Nowlet W={i: & <¢;}and V ={i : & =¢;}. We claim that:

izs Eilog&i + 317, pilog pi -y &logg + Y, pilog pi
VseW, log%‘s:Z#é g&i+2. i pilogpi 3 véiloghi+3 p g pi

e i+ 21 P YievEi XD an
The first equality follows from Equation (16) and the second follows from
Theorem A.2 for the unconstrained maximum of H as a function of x, for s € W.
Now we are ready to prove that there exists a cutoff value 6 € {¢1, ..., ¢,, 0}
such that ¢; <6 implies that j €V (ie., x; =¢;) and ¢; >0 implies j e W (i.e,,
x; is the log-entropic mean of the p; and the x,; for se V). If either V or W is
empty, then this is trivially true. Otherwise, assume by way of contradiction
that there is no cutoff so that we can find an s, ¢ such that ¢; > ¢; butt € W and
s € V. This implies that

]'Og‘i:s = 10g¢s > 10g¢t > loggt = M(El) R Etfla ét+17 sy ér’ P1, .-, pm))
and by Lemma A.1, parts (4) and then (5), we have:

logés > M(&1,...,&, P1,.. Pm))
and

IOgés >M(&, ..., 61, T TR S 3 RN pm))
However, this violates the condition on optimality described in Equation (16),
which is a contradiction, and so there exists a cutoff 6.

All that remains to be shown is that for the optimal solution, 6 is the min-
imum value €{¢1,..., .} such that ¢; >0 implies j €W (i.e., x; is the log-
entropic mean of the p; and the x; for s € V). Suppose it is not minimal. Then
there exists a 0’ € {¢1,...,¢,,0} with 0’ <0, aset V' ={i | ¢; <0’} and a vector
(w1, ...,w,) such that when i € V', then w; =¢;, and when i ¢ V’, then w; is
the log-entropic mean of the p; and the ws for s€ V’. Now clearly V' C V so
whenever w; = ¢;, then & = ¢;. However, if we fix x; = ¢; for i € V', then the un-
constrained maximum of H over the variables {x; | i ¢ V'} occurs precisely when
x; = w;, by Theorem A.2 because w; equals the log-entropic mean of the p; and
the w; for s € V'. Since the variables x; for s € V' will be fixed for any choice of
cutoff 6 (remember that by definition 6 > 6’), and the unconstrained maximum
over the rest of the variables is unique and achievable, the vector (@, ..., ®,)
that is determined by the minimal cutoff ¢’ is indeed the unique constrained
maximum we are looking for. O
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