
CyberRadar: A Regression Analysis Approach to the
Identification of Cyber-Physical Mappings in Process

Control Systems

Julian L. Rrushi
Università degli Studi di Milano and State

University of New York at Binghamton
jrrushi@cs.binghamton.edu

Kyoung-Don Kang
Department of Computer Science

State University of New York at Binghamton
kang@cs.binghamton.edu

ABSTRACT
One of the attack requirements for maximizing physical dam-
age to digitally controlled infrastructures is the identification
of a mapping between program variables in a compromised
control system and physical parameters related to physical
processes or physical equipment. A cyber-physical mapping
is quite critical from the offensive perspective as physical
parameters are affected via modification of the associated
program variables. The difficulty of such a reconnaissance
challenge is acknowledged by control system security ana-
lysts as what they’re presented with during experimental
attacks is comprised of long series of random looking bytes
or variable names. In this paper we provide a formal and
thorough formulation of the cyber-physical mapping prob-
lem, propose a statistical approach to the identification of a
cyber-physical mapping in large sets of scanning data, and
further develop and demonstrate the proposed approach by
applying it on a practical example, namely a network inertial
attack on an electric motor.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Process Control Systems; G.3 [Probability and Statis-

tics]: Correlation and Regression Analysis

General Terms
Security

Keywords
Process control systems, system reconnaissance, applied statis-
tics

1. INTRODUCTION
The cyber attacks’ potential for causing physical damage
to digitally controlled physical infrastructures was demon-
strated by the Idaho National Laboratories (INL) through

an experimental cyber attack referred to as the Aurora gen-
erator test [10]. The experimentation carried out by INL
researchers consisted of attacking the replica of a process
control system [14] monitoring and controlling an electric
power generator in a power plant, with the results being a
violent physical destruction of the generator in question. We
argue that an attack path such as that followed in the Au-
rora generator test on a process control system, and hence
on physical equipment under its control, requires an addi-
tional reconnaissance step if compared to composite attacks
on traditional general purpose computer systems, namely
the identification of mappings between computer program
variables and parameters of a physical process or equipment.
The offensive value of such reconnaissance step is in fact ac-
knowledged from technical discussions among security ana-
lysts researching on ethical hacking of process control sys-
tems.
We say that a computer program variable or computer mem-
ory location x1 in a process control system is mapped to a
parameter x2 of a physical process or equipment if changing
the value of x1 causes a direct change in x2. The aforemen-
tioned reconnaissance step is required both in the case an
attacker acquires the ability to change program variables in
a target process control system by gaining network access
to them, and in the case in which an attacker gains system
level access to the target process control system, and thus to
program variables. With network access to a process control
system we mean the ability of an attacker to send protocol
frames to a target process control system.
Process control systems historically communicated over ded-
icated networks via proprietary communication protocols.
Nevertheless, the process control industry has evolved into
using Ethernet based TCP/IP networks and open industrial
control protocols. As depicted in Figure 1, process control
networks in general are interconnected with external net-
works, such as for example enterprise networks and Inter-
net, via wired, wireless, or modem lines. Although control
of network access into and from process control networks
is enforced by firewalls, not necessarily attackers have been
stopped there [12]. As we will see in the next sections, caus-
ing physical damage to physical equipment via transmission
of malicious protocol frames to process control systems re-
quires a precise specification of computer program variables
that are mapped to critical parameters of this target physi-
cal equipment.
In this paper we provide a statistical technique that may
be potentially employed by an attacker with network access



Figure 1: Setting resembling a process control network.

to a process control system to identify mappings between
computer program variables and parameters of a physical
process or equipment. Such a reconnaissance step may also
result necessary from the perspective of an attacker who has
acquired system access to a process control system. From
that position what an attacker would normally do is replace
or modify the programs that operate on variables, i.e. tags
in Allen Bradley terminology, mapped to parameters of a
physical process or equipment. Unless control system pro-
grammers have added comments in these programs to ex-
plain what tag is mapped to what parameter of a physical
process or equipment, an attacker is required to reverse en-
gineer these programs in order to derive such mappings. In
this paper we focus on identification of these mappings from
a network access perspective, and hence leave reverse engi-
neering of control system programs as a future work.

2. TECHNICAL BACKGROUND
Without losing generality, in this paper we develop the pro-
posed work as applied to a widely deployed type of pro-
cess control system, namely a programmable logic controller
(PLC) [6, 15]. The internal design of a typical PLC follows a
von Neumann architecture. It is depicted in Figure 2 along
with I/O modules that enable a PLC to receive input from,
and send output to, physical processes usually via genera-
tion of electrical signals. In the actual context with input
we mean measurements of physical process variables, such
as for example the temperature in a closed container, while
with output we mean generation of motion by the means
of equipment that changes process variables, such as for ex-
ample opening a valve to increase the water level in a tank.
Input is received from sensors, i.e. devices that are embed-
ded in physical infrastructures and that translate physical
phenomena into electrical signals.
Output is sent by generating electrical signals in order to

drive actuators, i.e. devices that transform electrical energy
into mechanical energy usually in the form of motion. The
input cards and the output cards of a PLC are connected
through wiring to sensors and actuators, respectively. Some
PLCs, in particular those produced in the recent years, may
also communicate with sensors and actuators via a commu-
nication network referred to as fieldbus according to indus-
trial communication protocols such as DeviceNet [16]. As
shown in Figure 2 there are two kinds of sensors and actua-
tors, namely logical and continuous, which are named after
the kind of data values that they send to, and receive from,
a PLC, respectively. Input and output data are referred to
as logical if they consist of either on or off values. Input
and output data are said to be continuous if they consist of
values that are continuous in the mathematical sense.
Voltage values generated by continuous sensors are referred
to as analog data, and thus are to be converted into a dig-
ital form before being processed by PLC programs. Volt-
age values are periodically sampled, and once acquired are
processed via equations that convert them into numerical
values [5]. Similarly, numerical data that PLC programs re-
quest to send to continuous actuators are to be converted be-
forehand into an analog form, i.e. voltage values, via digital-
to-analog conversion equations. Engineers encode the logic
of how a PLC should monitor and control a physical process
into computer programs that are referred to as logic solving
scan programs. The logic encoded in logic solving scan pro-
grams in general is devised by possibly following principles
of control theory [4, 14], i.e. a discipline based on engineer-
ing and applied mathematics that deals with optimal control
of the behavior of dynamical systems.
At run time logic solving scan programs, input scan pro-
grams, i.e. programs that read input values, output scan
programs, i.e. programs that write output values, and any
other PLC programs, such as for example fault handling



Figure 2: Organization of a typical programable logic controller.

programs, power-up handling programs, etc., are stored in
a part of random access memory (RAM) referred to as pro-
gram memory, as opposed to that part of RAM identified
as variable memory, which is dedicated to storage of com-
putation, input, and output data Figure 2. Logic solving
scan programs are usually written in one or more program-
ming languages of the IEC-61131-3 industrial standard [11],
namely ladder diagram language, function block diagram
language, structured text language, instruction list language,
and sequential function chart language. The C and C++
languages are also commonly used to program PLCs. A
PLC operates by periodically executing a defined sequence
of scan programs known as a control loop. In common PLCs
control loops are comprised of four stages and are executed
a large number of times each second.
In the first stage a PLC executes code that checks the hard-
ware and software of the PLC itself for faults. If no faults
are detected, a PLC proceeds with the second stage in which
it executes input scan programs. Such programs read logical
and continuous input data from logical and continuous in-
put cards, respectively, and copy these data in RAM variable
memory. The memory locations in which logical and con-
tinuous input and output values are stored are designated
preliminarily. A more detailed discussion of these designated
locations is given later on in the next section. In the third
stage a PLC executes logic solving scan programs. These
programs process the input data that were previously re-
ceived from sensors and that were stored in RAM variable

memory, and hence produce output data that they store also
in RAM variable memory in their corresponding designated
locations. In the last stage a PLC executes output scan
programs to propagate logical and continuous output values
from RAM variable memory into logical and continuous ac-
tuators, respectively.
The principal objectives of attacks on process control sys-
tems include causing physical damage to physical equipment
and sabotaging physical processes under their control. For
instance, one such attack could perturb the operation pa-
rameters of an electric power generator in order to cause se-
vere mechanical faults and hence destroy it, or manipulate
the flow rate of water pumps in order to severely destabilize
the parameters of a physical process in which preserving a
defined water level within a container is critical to the stabil-
ity and safe operation of a whole digitally controlled facility.
Depending on equipment specifications and the physics be-
hind physical processes, there is a variety of ways in which an
attacker could manipulate process control systems to cause
physical damage. A taxonomy of these attacks is provided
by Larsen in [12]. An inertial attack consists of speeding up
or slowing down at high rates heavy equipment.
An inertial attack has the potential of forcing heavy equip-
ment to fail as in general such equipment is not tolerant
to abrupt speed changes. An exclusion attack takes place
when a process control system violates functional depen-
dencies between various physical equipment, while a wear
attack manipulates a process control system so as to con-



sume certain equipment components and hence reduce the
life span of the equipment itself. Small variations of con-
tinuous process parameters such as electric current or fluid
flow are recorded in a wave that is kept in other parts of a
system. This circumstance is exploited by a resonance at-
tack, which consists of continuously causing small variations
of continuous process parameters for the purpose of increas-
ing the size of this wave beyond acceptable limits. A surge
attack is mounted by exceeding defined process parameter
limits by amplitudes that go well beyond the maximal values
that continuous control systems are capable of handling.
A latent abilities attack exploits latent features in off-the-
shelf physical equipment. An example of a latent abilities
attack provided by Larsen is to force a servomotor to run
in the reverse direction, although such an action may not
be part of its intended operation in a given physical infras-
tructure. Note that these attacks represent techniques for
maximizing physical damage once an attacker has acquired
network access to a process control network or system. A
number of publicly known attack techniques such as those
based on memory corruptions or firewall rule circumventions
for system and network access, respectively, may be applied
by attackers to gain access to process control systems and
networks. These attack techniques come from knowledge
of hacking general purpose computer systems and networks,
and thus are out of the scope of this paper.

3. PROBLEM STATEMENT
If we think of offensive actions that lead to causation of phys-
ical damage to digitally controlled physical infrastructures
as an ordered list of discovery and attack operations, our
work addresses a discovery challenge which stands between
attacks that enable an attacker to acquire access to a process
control system or network, and attacks such as those pro-
posed in [12] that are designed to maximize physical damage
to physical processes and equipment. Once an attacker has
gained network or system access to a PLC, he/she needs
to have in hand what in our work we refer to as a cyber-
physical mapping in order to be able to perform the attacks
described in [12]. A cyber-physical mapping is a one-to-one
correspondence between program variables that hold logi-
cal or continuous I/O values in RAM variable memory and
physical process parameters or parameters that characterize
the operation of physical equipment.
Consider for a moment a PLC that controls the flow of fluid
in a pipe through a solenoid controlled valve. Let’s suppose
that this valve is a 2-way normally closed valve, i.e. the valve
is closed when unenergized and opens when gets energized.
This PLC will have a program variable stored in RAM vari-
able memory, say coil54, which holds a logical value, namely
0 or 1, and which is associated with the valve in question.
If coil54 is set to 1 while the valve is closed, then an output
scan program in the PLC will energize the valve during the
forth stage of a control loop and consequently will open it.
Similarly, if the valve is open and coil54 is set to 0, then
the output scan program will unenergize the valve and con-
sequently will close it. Thus, an attacker may control the
flow of fluid in the pipe by setting the coil54 variable to 1 or
0 depending on whether he/she wants to allow or not allow
the fluid to flow in the pipe, respectively.
In order to control the flow of fluid in the pipe an attacker
needs to know that, if there are 65536 variables in a com-
promised PLC holding logical values, say (coil0, coil1, coil2,

..., coil65535), then it is precisely the coil54 variable that is
associated with this solenoid controlled valve. In this pa-
per we provide a statistical approach to the identification of
cyber-physical mappings from the perspective of an attacker
who has acquired remote network access to a PLC, i.e. an at-
tacker is able to transmit in a process control network proto-
col frames that are processed by a target PLC. Furthermore,
the PLCs considered in our problem domain communicate
over a process control network via a byte-oriented protocol.
In this paper we develop our work as applied to PLCs whose
communications are based on the Modbus industrial proto-
col.
Modbus is an application layer messaging protocol that en-
ables control systems to communicate with each other in a
client-server configuration within possibly different types of
buses and networks [13]. The Modbus data model defines
four categories of variables that hold logical or continuous
I/O values. Discrete input variables hold read only single-
bit data provided by logical sensors. Coil variables hold read
and write single-bit data that are provided by, or are des-
tined for, logical sensors and logical actuators, respectively.
Input register variables hold read only 16-bit data that are
provided by continuous sensors. Holding register variables
hold read and write 16-bit data that are provided by, or are
destined for, continuous sensors and continuous actuators,
respectively.
Modbus defines its own addressing model in which each one
of the variables of the four categories described previously
is assigned an address from 0 to 65535. Modus applications
maintain a mapping between addresses of program variables
as defined by the Modbus addressing model and addresses
of locations in RAM variable memory where these variables
are stored. These mappings are vendor specific. A Modbus
protocol data unit (PDU), i.e. a protocol frame conveying
information that a sending device wants a receiving device
to process, is comprised of two fields, namely a function code
field and a data field. Function codes indicate an operation
on Modbus variables, such as write single register variable,
read coil variable, etc. Function codes are encoded in one
byte. Their valid values lie in the 1 to 255 range in decimal
representation. The data field in a request PDU sent from
a client to a server contains additional information such as
Modbus addresses and the number of variables that are to
be handled.
In some defined requests the function code field alone is suf-
ficient for a server to perform a required task, therefore in
these requests the data field is of zero length. The data field
in a response PDU sent from a server to a client contains
the data that the client had preliminarily requested via a re-
quest PDU. For example, if a master computer A controlled
by human operators needs to acquire the values of four dis-
crete input variables that are generated by logical sensors
and that are stored contiguously in the RAM variable mem-
ory of a PLC B, then A sends to B a request PDU in which
it specifies a function code of 0x02, which according to the
protocol specification stands for read discrete input variable,
a starting address in the 0x0000 to 0xFFFF range, which in
this example will be the address of the first discrete input
being asked to be read, and the number of discrete inputs
that A is asking to read, namely four in this example.
In a regular transaction device B will derive from the func-
tion code the action to perform, namely read discrete input
variables, will use the starting address and the number of



discrete inputs that A is asking to read for the purpose of
determining the address of each one of these discrete input
variables, will read their values from RAM variable memory,
and will place them in the data field of a response PDU,
which it then sends to device A. After acquiring network ac-
cess to a PLC that communicates via the Modbus protocol,
the ultimate goal of an attacker is to send one or more PDUs
to a target PLC in order to manipulate logical or continu-
ous output values. Referring to the example given earlier in
this section, in order to open the solenoid controlled valve,
and hence allow the fluid to flow in the pipe, an attacker
would send to the target PLC a PDU with a function code
of 0x05, i.e. write single coil, and a data field comprised of
the Modbus address of variable coil54, namely 53 in decimal
or 0x35 in hexadecimal1, and an output value of 0xFF00 2,
i.e. the value which indicates whether the coil should be set
to 0 or 1.
In order to perform attacks that maximize physical damage
such as those described in [12] by sending malicious PDUs
over the network to a target PLC, an attacker will try to
identify the cyber-physical mapping that is in place at this
target PLC. A series of Modbus scanner tools such as Mod-
Scan [3, 17] have been developed for security assessments,
and some of them are publicly available. These tools enable
an attacker to acquire the values of discrete input variables,
coil variables, input register variables, and holding register
variables, that are stored in the RAM variable memory of a
target PLC. Furthermore, most of the aforementioned tools
also enable an attacker to send attack frames that attempt
to write to logical or continuous variables once he/she has
identified the cyber-physical mapping. Modbus variables in
a target PLC may be scanned several times, a process that
normally produces a large set of data. The challenge consists
in analyzing these data to identify cyber-physical mappings,
and it is this challenge that we attack in this paper.

4. CYBER-PHYSICAL MAPPING DISCOV-
ERY

4.1 General Approach
The values assumed by continuous program variables in PLCs
at least in part depend on two factors that are unreachable
via a network access to a target PLC. The former factor is
control logic that engineers encode into logic solving scan
programs, while the latter comprises physical parameters
of internal architecture or configuration of physical equip-
ment. Without information on these factors it appears as
difficult to tell which continuous program variables are the
ones of interest in large sets of data produced by scanning the
RAM variable memory of target PLCs over a network. We
have found persistent statistical relations between program

1In the Modbus addressing model coil variables are ad-
dressed starting at zero. Thus, the address of the first coil
variable is 0, the address of the second coil variable is 1,
and so on. Note that we’re assuming that the hypothetical
variable coil54, which might as well have been called v1 or
p286, is the 54th coil variable in the RAM variable memory
block dedicated to storage of coil variables.
2In Modbus the output value 0x0000 requests the coil to be
0 (off), while the output value 0xFF00 requests the coil to
be 1 (on).

variables, and hence indicate that these statistical relations
are a potential mechanism that an attacker may leverage to
identify program variables of interest, and thus derive their
Modbus addresses. More precisely, if a linear association be-
tween program variables of interest is in place, we propose
the degree of linear association as an instrument for identi-
fying these variables of interest.
Our first movement consists of finding out whether a pro-
gram variable of interest in a testing PLC is linearly corre-
lated with other program variables that are acquirable via
network scanning. The investigation proceeds with assess-
ing whether the program variable of interest and candidate
program variables, i.e. program variables that the program
variable of interest may be potentially linearly correlated
with, follow a Gaussian distribution [8]. If that is the case,
then we apply the least squares regression [2] method to
estimate the regression line that characterizes the linear re-
lationship between these program variables. More precisely,
we estimate the intercept and slope of this regression line,
and hence build the regression line itself along with a scatter
plot displaying values of the program variables under inves-
tigation, i.e. a set of data acquired from the RAM variable
memory of a testing PLC. We then use the regression line
and the scatter plot to characterize the degree of linear as-
sociation between these program variables, namely estimate
their linear regression coefficient.
When it comes to conducting an experimental attack, we
employ a protocol scanner such as ModScan to acquire val-
ues of program variables from the RAM variable memory of
a target PLC over a network. We then estimate the degrees
of linear association between all program variables, which
is, we estimate their linear regression coefficients. The iden-
tification of a program variable of interest in a target PLC
takes place when defined program variables are found to
have a regression coefficient equal to the regression coeffi-
cient between the program variable of interest and candidate
program variables as preliminarily estimated on the testing
PLC.

4.2 A Practical Example: Network Inertial At-
tack on an Electric Motor

Our experimentation objective is to carry out a network in-
ertial attack on an alternating current (AC) induction mo-
tor [9] that is controlled by a PLC. For such a purpose we
need to find out which program variable in the RAM vari-
able memory of the target PLC is mapped to a physical
parameter that is used to set the speed of this AC induction
motor. The AC induction motor is comprised of a rotating
center that is referred to as a rotor, and a fixed external part
that is known as a stator. The stator of an AC induction
motor has a number of windings that form multiple poles,
i.e. pairs of windings, and may use permanent magnets to
set up an opposing magnetic field. As AC polyphase current
passes through windings on the stator, it creates a rotating
magnetic field in the stator.
This rotating magnetic field induces currents in the rotor
conductors. These currents in turn interact with the rotat-
ing magnetic field in the stator, with the result being the
creation of a torque that rotates the rotor. Our target PLC
uses a continuous sensor, namely a battery powered strobo-
scopic tachometer, to measure the rotational speed of the
rotor. For currents to be induced in rotor conductors, the
magnetic field in the stator must rotate relative to these ro-



IR[16] IR[53] IR[18] IR[69] HR[19685] HR[20008] HR[18610] HR[65530]
702.5 1884.0 1205.3 685.2 63.9 36.5 42.1 49.6
803.8 1977.0 903.9 679.2 55.4 39.2 41.6 52.4
901.8 1782.0 1306.9 722.4 55.8 38.3 45.2 62.3
904.1 1608.0 1004.8 763.2 67.3 45.8 48.6 60.1
1004.7 1884.0 1407.8 735.6 57.8 48.1 46.3 59.2
903.1 1977.0 1409.4 796.8 58.1 49.3 51.4 57.3
1004.9 1782.0 1408.3 868.8 61.8 51.5 57.4 57.9
809.6 1608.0 1598.3 817.2 48.9 58.3 53.1 61.4
1208.8 1782.0 1203.9 890.2 38.9 61.8 59.1 63.8
803.5 1608.0 957.5 945.6 48.6 47.5 63.8 65.0

Table 1: Excerpt from the data set acquired through ModScan from a target PLC.

tor conductors. If the rotor rotates with a rotational speed
that is equal to the rotational speed of the magnetic field in
the stator, then the magnetic field in the stator won’t rotate
relative to the rotor conductors, and hence no currents will
be induced in the rotor conductors and no torque will be
created.
Consequently the rotational speed of the rotor has to be dif-
ferent, i.e. usually smaller, than the rotational speed of the
magnetic field in the stator. The former speed is referred to
as actual rotational speed, while the latter speed is referred
to as synchronous speed. In this paper we use ω and τ to
denote the actual rotational speed of an AC induction motor
and the synchronous speed of such motor, respectively. The
difference between the synchronous speed and the actual ro-
tational speed of an AC induction motor is referred to as
magnetic slip, which in this paper we denote with δ. From
the physics behind the operation of an AC induction motor
we know that the actual rotational speed of an AC induc-
tion motor is controlled via the applied voltage frequency,
which in this paper we denote with γ. Taking into account
that the actual rotational speed of the AC induction motor
as reported by the tachometer is a continuous input value,
by referring to the Modbus specification we derive that the
target PLC will use an input register variable to hold ω in
RAM variable memory.
Furthermore, since the applied voltage frequency is a contin-
uous output value, we derive that the PLC will use a holding
register variable to hold γ. The equation that relates γ with
τ is:

γ =
pτ

120
(1)

where p is the number of poles in the AC induction mo-
tor. Furthermore, when defining the magnetic slip we stated
that:

τ = ω + δ (2)

If load is a torque that opposes to the rotation of the rotor,
then with ν we denote the nameplate speed at full load [9].
The magnetic slip is related to the nameplate speed at full
load according to the following equation:

p ω τ l ν δ γ

4 1246.3 1884.0 0.9 1175.4 637.7 62.8
4 1255.6 1977.0 0.9 1175.4 721.4 65.9
4 1236.1 1782.0 0.9 1175.4 545.9 59.4
4 1218.7 1608.0 0.9 1175.4 389.3 53.6
4 1205.8 1479.0 0.9 1175.4 273.2 49.3
4 1178.8 1209.0 0.9 1175.4 30.2 40.3
4 1203.7 1458.0 0.9 1175.4 254.3 48.6
4 1222.6 1647.0 0.9 1175.4 424.4 54.9
4 1197.7 1398.0 0.9 1175.4 200.3 46.6
4 1186.0 1281.0 0.9 1175.4 95.0 42.7

Table 2: A sample of values of physical parameters

that characterize the operation of an AC induction

motor studied in laboratory settings.

δ = l (τ − ν) (3)

where l denotes the load. Plugging of equation (3) into equa-
tion (2) yields:

τ = ω + l (τ − ν) (4)

Plugging equation (4) into equation (1) yields:

γ =
pl (τ − ν)

120
+

p

120
ω (5)

In order to manipulate the speed of the AC induction motor
we need to know the Modbus address of the holding register
variable that holds γ. As we know that ω is held by an in-
put register variable and γ lies in a holding register variable,
we use ModScan to acquire the values of all input register
variables and holding register variables. Table 1 provides an
excerpt from the full scan of the target PLC. For the sake
of clarity, IR and HR stand for input register variable and
holding register variable, respectively. The Modbus address
of each scanned variable is given in square brackets. By hav-
ing used in equation (5) each scanned input register variable



as a possible ω, and each scanned holding register variable
as a possible γ, we would have reached a match between the
holding register variable that is mapped to γ and the input
register variable that is mapped to ω. Nevertheless, as we’re
operating via a network we have no visibility into the phys-
ical parameters p, δ, τ , ν, and l. Consequently equation (5)
is not directly applicable to the identification of a holding
register variable that is mapped to γ by trying to correlate
its values with values of ω.
We now describe the proposed statistical approach as ap-
plied to identification of the Modbus address of a holding
register variable that is mapped to the applied voltage fre-
quency in a target PLC, which in turn controls an AC in-
duction motor. In laboratory settings we study an AC in-
duction motor characterized by values of physical parame-
ters p, δ, τ , ν, and l, chosen randomly among those avail-
able. Our thesis is that, although the internal architecture
and configuration of a testing AC induction motor may be
totally different than the internal architecture and config-
uration of an AC induction motor controlled by the target
PLC, some program variables that are mapped to physical
parameters such as applied voltage frequency and actual ro-
tational speed exhibit hidden but calculable statistical rela-
tions. Furthermore, these statistical relations are persistent
among electric motors, even though their internal architec-
tures and configurations may differ to large degrees.

We pilot our analysis towards identification of statistical re-
lations between the holding register variable that is mapped
to γ and the input register variable that is mapped to ω.
More precisely, we are interested in their degree of linear
association as measured by a linear correlation coefficient
denoted with r. In laboratory settings we use ModScan to
acquire values of γ and ω over a defined period of time from
a testing PLC that controls an AC induction motor. Given
that we have installed and configured the testing PLC along
with the AC induction motor, we know the Modbus address
of the holding register variable and the Modbus address of
the input register variable that are mapped to γ and ω, re-
spectively. Scanned values of γ and ω along with values of
p, δ, τ , ν, and l of the AC induction motor in laboratory set-
tings are given in Table 2. Let’s analyze the values of γ and
ω in Table 2 through linear regression [1, 7] by first checking
whether these values follow a Gaussian distribution [8].
Let γ̄ and ω̄ denote the mean average of γ and the mean
average of ω, respectively. We have:

γ̄ =

 

P

10

i=1
γ

10

!

= 52.41 (6)

ω̄ =

 

P

10

i=1
ω

10

!

= 1215.13 (7)

The normal density curves for γ and ω are depicted in Fig-
ure 3. In our analysis we consider γ as a dependent variable,
and ω as an independent variable. Note that we are not as-
suming causality between these two program variables in
this order. Let a and b denote the intercept and slope, re-
spectively, in the linear relation between γ and ω. Then we
have:

γ = a + b ω (8)

where a and b are estimated via least squares regression [2]
as shown in the following equations:

b =

 

P

10

i=1
((ωi − ω̄) (γi − γ̄))
P

10

i=1
(ωi − ω̄)2

!

= 0.33 (9)

γ̄ = a + b ω̄ ⇒ a = γ̄ − b ω̄ = −352.6 (10)

Thus, the linear relation between γ and ω is represented by:

γ = (−352.6) + 0.33 ω (11)

The scatter plot and linear regression line for this relation
are depicted in Figure 4. Let γ̂ denote the values of γ esti-
mated by the linear regression line of Figure 4. The correla-
tion coefficient r measuring the degree of linear association
between γ and ω is estimated by the following equation:

r =

 
s

P

10

i=1
(γ̂i − γ̄)2

P

10

i=1
(γi − γ̄)2

!

= 1 (12)

Armed with a quantification of a statistical relation between
γ and ω we return to our problem in Table 1, namely how
to identify the Modbus address of a holding register variable
that is mapped to physical parameter γ in the target PLC.
The solution to our problem consists of measuring the degree
of linear association between each holding register variable
and each input register variable in Table 1. The holding
register variable mapped to γ and the input register variable
mapped to ω will be those whose correlation coefficient r is
1. Table 3 provides the correlation coefficients of holding
register variables and input register variables measured upon
data that were gathered from scanning the target PLC. From
these estimations we can see that the Modbus address of
the holding register variable that is mapped to γ is 18610.
Further, the Modbus address of the input register variable
that is mapped to ω is 69.3

5. CONCLUSION AND FUTURE WORK
The degree of linear association among continuous program
variables that follow a Gaussian distribution proves to be a
viable mechanism for identifying a cyber-physical mapping.
In this paper we provide an applied regression analysis ap-
proach for revealing a cyber-physical mapping in large sets

3Their correlation coefficient is slightly less than 1, namely
0.99, due to a series of roundings of numbers that were per-
formed during the mathematical estimations.



Figure 3: Normal density curves for applied voltage frequency γ and actual motor rotational speed ω, left and

right respectively, in which the standard deviation of γ is 8.46751 and the standard deviation of ω is 25.40254

IR[16] IR[53] IR[18] IR[69]
HR[19685] -0.41 0.16 -0.05 -0.54
HR[20008] 0.64 -0.36 0.43 0.71
HR[18610] 0.4 -0.54 0.05 0.99
HR[65530] 0.49 -0.66 0.1 0.72

Table 3: Measurements of the degree of linear as-

sociation between values of holding register vari-

ables and values of input register variables that were

scanned from the memory of a target PLC.

of scanning data. We also demonstrate the efficiency of the
proposed approach by applying it in the form of a network
inertial attack on an AC induction motor. A cyber-physical
mapping challenge holds also for system level access in ad-
dition to network level access. In this regard we are investi-
gating on the potential of the proposed approach along with
symbolic execution techniques for identifying cyber-physical
mappings in PLC programs written in one of the PLC pro-
gramming languages of the IEC 61131-3 standard. Further-
more, given the potential of linear correlation coefficients for
being used as a reconnaissance mechanism in malicious cy-
ber attacks on digitally controlled physical infrastructures,
we are also investigating on deception algorithms to leverage
malicious use of regression analysis into a malicious activity
sensing mechanism.

Acknowledgments
This work was supported in part by NSF grant CNS-0614771.
Julian L. Rrushi was supported in part on a doctoral schol-
arship from Università degli Studi di Milano, and in part on
a research scholarship from (ISC)2. Opinions, findings, and
conclusions expressed in this paper are those of the authors
only.

6. REFERENCES
[1] R. Berk. Regression Analysis: A Constructive

Critique. Sage Publications, 2004.

Figure 4: Scatter plot and linear regression line for

the statistical relation between γ and ω.

[2] A. Bjorck. Numerical Methods for Least Squares

Problems. SIAM, 1996.

[3] M. Bristow. ModScan: A SCADA MODBUS Network
Scanner. DEFCON 16.

[4] W. Brogan. Modern Control Theory. Prentice Hall,
1990.

[5] M. Demler. High-Speed Analog-to-Digital Conversion.
Academic Press, 1991.

[6] K. Erickson. Programmable Logic Controllers: An

Emphasis on Design and Application. Dogwood Valley
Press, 2005.

[7] D. Freedman. Statistical Models: Theory and Practice.
Cambridge University Press, 2005.

[8] R. Herrnstein and C. Murray. The Bell Curve:

Intelligence and Class Structure in American Life.



Free Press, 1994.

[9] A. Hughes. Electric Motors & Drives. Newnes, 2005.

[10] IBM Internet Security Systems. X-Force Threat
Insight Monthly. IBM Website.

[11] International Electrotechnical Commission. IEC
61131, Programmable controllers - Part 3:
Programming languages. IEC Website.

[12] J. Larsen. Breakage. Blackhat Federal 2008.

[13] Modbus Organization. Modbus Application Protocol
Specification. June 2004.

[14] N. Nise. Control Systems Engineering. Wiley, 2007.

[15] F. Petruzella. Programmable Logic Controllers. Career
Education, 2004.

[16] Rockwell Automation. DeviceNet Adaptation of CIP.

[17] WinTECH Software. ModScan Tool. WinTECH

website.


