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Abstract.  As healthcare organizations (HCOs) migrate to electronic systems, 

they must ensure compliance with complex data protection legislation, such as 

the Health Insurance Portability and Accountability Act (HIPAA).  Legislation 

specifies rules that must be enforced, but regulatory language is often imprecise, 

forcing HCOs to define local policies and procedures, as well as specific 

enforcement technologies.  It is difficult for HCOs to ensure requirements are 

correctly translated across the enterprise, a problem compounded by the 

constant growth and evolution of deployed information technology (IT), such as 

clinical information systems (CISs).  The consequence is HCOs frequently rely 

on ad hoc IT configurations, which are unverified and potentially conflict with 

an HCO‟s policy.  Thus, it is crucial to develop (1) formal and computable 

representations of rules and requirements in data protection legislations, and (2) 

CISs that automatically enforce such specifications. This paper introduces a 

solution to these challenges by integrating HIPAA policy rules with a domain-

specific model-integrated computing suite, tailored to the clinical enterprise.  

We present a detailed description of the policy-modeling process, the 

enforcement mechanism, and illustrate how to implement several policies, 

including mandatory access control and emergency access. All policies are 

formally specified through Prolog, but their enforcement is dependent on when 

their compliance can be evaluated. Static policies are enforced at design-time by 

mapping them to the structural constraints of system models. In contrast, 

dynamic policy rules, enforced at run-time, are loaded into a Prolog-based 

Policy Decision Point and Policy Enforcement Point, our extension to the 

standard SOA execution platform, which controls access to all services reliant 

upon protected health information. All models are sufficiently rich for 

integrating a CIS on a standard Service Oriented Architecture platform.  

1  Introduction 

Healthcare organizations (HCOs) are building and deploying electronic health record 

systems (EHRS) to improve service quality [1], reduce costs [2] and eliminate 

medical errors [3].  As HCOs become increasingly dependent on electronic systems, it 



is necessary to ensure that a patient‟s information can flow between disparate clinical 

enterprise systems.  Yet, the healthcare industry has been slow to adopt clear 

standards, such as DICOM [4] and HL7 [5], thus making interoperability a significant 

challenge. To overcome such limitations, the software engineering community has 

initiated solutions based on the Service-Oriented Architecture (SOA), which aim to 

remove interoperability problems [6].  

SOA-based solutions for the healthcare industry need to comply with varying 

federal and state data protection legislation and, thus, must integrate mechanisms to 

ensure medical records security and privacy.  In the United States, for instance, the 

Privacy Rule of the Health Insurance Portability and Accountability Act (HIPAA) 

defines a base level of protections for patient-specific information, and EHRS in 

general, that must be addressed at administrative and technical levels [7].  Clinical 

information systems (CISs) must provide formal representation and mechanisms for 

compliance verification of privacy requirements, but current implementations are not 

satisfactory to achieve this goal. Traditional access control mechanisms do not cover 

the range of data protection requirements. As a result, various advanced requirements 

and mechanisms have been proposed, including the 4-eyes principle [8], emergency 

access [9], context-based access control [10], and organization-based access control 

[11]. Some approaches, such as the UCON control model [12] and the SECTET 

Security Framework [13, 14] have emerged and have been deployed within model-

based computing environments; however, it is unclear how such mechanisms interfere 

with the execution of medical workflows. 

In this paper, we illustrate that the separation of privacy constraints from business 

logic can lead to unexpected, and potentially harmful, behavior in a CIS. 

Alternatively, we demonstrate that the integration of policy abstractions with 

workflow models enables model verification and CIS correctness. We propose a 

solution for the integration of privacy requirements with CIS workflow models 

through a common semantic platform.  This work integrates the following 

components: (1) Contextual Integrity [16, 17], a conceptual framework for describing 

and reasoning about privacy expectations and their implications; (2) the Model 

Integrated Clinical Information System (MICIS) framework [18], a model-based 

software toolkit with high-level modeling abstractions to represent complex clinical 

workflows in a SOA paradigm; and (3) Structural Semantics of Domain-Specific 

Modeling Languages [15], an approach for representing models and imposing 

constraints on a common semantic platform. We integrate privacy policy abstractions 

directly onto MICIS metamodels, reusing existing workflows, document models, and 

additional elements designed explicitly to represent privacy requirements. Privacy 

policies are enforced at the model-level using a  logic-based model checker. 

Additionally, runtime enforced policies are generated from models and enforced by a 

Policy Enforcement Point. 

The remainder of the paper is organized as follows. Section 2 provides an 

overview of research related to security and privacy in healthcare systems. Section 3 

describes the system architecture and integration of the verification methods. Section 

4 presents the methods, as well as several examples of healthcare-specific privacy 

policies within our solution. Finally, Section 5 concludes, discusses potential 

applications of our solution, and future work.  



2  Background and Related Work 

In this section, we review the applicability of existing solutions for capturing and 

enforcing privacy and security requirements in electronic healthcare environments. 

Specifically, we discuss standard access control models, present the SECTET 

framework for Model Driven Security, and the MICIS framework, the basis of this 

work. More detailed assessments and analysis of the access control models can be 

found in [14] and [19]. 

Access Control  

Standard access control models are inappropriate for point-of-care healthcare 

environments. Some models, such as Discretionary Access Control (DAC) [20], are 

an ill-fit because health data does not exhibit the clear ownership required for its 

implementation. Other models, such as Mandatory Access Control (MAC) [20], are 

theoretically feasible, but their static nature and administrative overhead (e.g., 

management of extensive access control lists) in a dynamic environment, such as 

large academic medical centers, is impractical for every day usage.  The most well-

known approach, Role Based Access Control (RBAC) leverages the fact that “roles” 

are a normal abstraction of the clinical environment. RBAC is robust and supports 

many schemas, including DAC and MAC [21], and has been successfully applied in 

specialized healthcare domains [22]; however, RBAC does not gracefully address all 

the complex use cases that manifest in healthcare environments, such as rights 

delegation. 

To overcome the aforementioned deficiencies, a new breed of access control 

models, such as Context-Aware Access Control [10] and Organization Based Access 

Control [11], have been proposed. These models extend RBAC with the concepts of 

organization, context, and contextual constraints. In addition, they provide a more 

fine-grained authorization mechanism. Though more suitable for dynamic healthcare 

environments than standard access control models, they are not sufficiently expressive 

to address advanced access control use cases. For instance, the “break glass” policy 

[25] allows for system users to elevate their access privileges when the need arises 

(e.g., in emergency cases) and such actions are subsequently audited by an HCO‟s 

policy officials. Yet, there is no clear approach for integrating this mechanism with 

the proposed access control models. 

Model-Based Security  

From a model-based perspective, the SECTET framework for Model Driven Security 

[26] is a platform for modeling and deploying secure inter-organizational workflows.  

Modeling is supported through a domain-specific language based on UML, whereas 

security requirements are represented in a predicative OCL-based language. The 

SECTET framework has been successfully applied in various domains,  including e-

government [27] and e-health [28], which validates the appropriateness for a model-

based approach extended with privacy and security constraints. 

The SECTET tool suite was recently extended to support the UCON security 

model, and currently provides the most comprehensive framework for modeling and 



deploying secure workflows. The UCON framework [12] extends access control 

models with the concept of usage control. It provides mechanisms to control access 

during the action execution and on runtime attribute changes. The base concepts of 

UCON are authorizations, obligations, and conditions. The UCON model relies on 

trust between the server and the client, and enforcement of certain behaviors on the 

client-side using reference monitors. This mechanism allows for creating complex 

static and dynamic policies using UCON constraints. Nevertheless, the integration of 

privacy policies with the workflow models in SECTET lacks the foundations for 

formal verification. 

Policy Specification 

A theoretical framework for describing workflows and privacy requirements was 

recently proposed by Barth et al. [17]. This framework formalizes certain concepts of 

Contextual Integrity [16], using temporal logic to describe and reason about 

communication norms. The approach provides sound verification methods, but it is 

restricted in its workflow descriptions, which limits its application within real, 

complex healthcare environments and CIS implementations.  

Model-Integrated Clinical Information Systems 

MICIS [18] is a framework for the rapid development of experimental CISs. MICIS 

consists of two principle components: (1) a Model Integrated Platform for building 

workflow, document, organization, and policy models, as well as generating computer 

interpretable executables from the models; and (2) a Component Integration Platform 

for deploying clinical workflows. The Domain Specific Modeling Language (DSML) 

for MICIS allows for building workflow, document, organization and policy models 

that are tailored to the healthcare environment. These models are translated into 

executables, such as service descriptions, Business Process Execution Language 

(BPEL) workflows, deployment descriptions, and policy descriptions.  These 

constructs are set up on a reference SOA platform with policy enforcement 

mechanisms. Privacy policies in MICIS are composed with workflows in the form of 

policy models and enforced in runtime using extensions of the reference platform. 

The MICIS modeling platform provides a base for formal verification of the 

integration of privacy policies with the workflow logic. This paper extends MICIS 

with precise representations of privacy requirements and sound verification 

procedures of the resulting framework.  

3 Methods 

In this section, we describe the integration of privacy policies with system models. 

We specify the language composition that enables the verification of the resulting 

integrated workflow models. We present the formalization of DSML Structural 

Semantics and show how this method can be applied to represent and verify privacy 

policies in CIS models.  

Structural Semantics 



Structural Semantics is an approach for formalizing the structural semantics of a 

DMSL [15]. In this approach, a metamodel is translated into set of domain 

constraints, such that additional requirements can be directly injected into the 

resulting interpretation of the metamodel. This formalization allows for the formal 

analysis of such models.  Models, the instances of the metamodel, are translated into a 

set of terms, which are verified using the domain constraints to prove model 

correctness. 

In this work, we borrow the notation and definitions of [29] and define a domain 

as a formalization of a DMSL‟s rich syntax.  A domain utilizes extended Horn logic 

to represent the constructs and invariants of modeling artifacts.  Let f(•) denote an 

unary function over an universe that satisfies no additional equalities.  We define ∑ as 

an infinite alphabet of constants.  A term is either a constant drawn from ∑ or an 

application of some uninterpreted function of arbitrary arity on elements of the 

alphabet or other terms.  A signature Υ is a finite set of n-ary function symbols.  A 

term algebra ΤΥ(∑) is an algebra where all symbols from the signature are 

uninterpreted.  Functions are one-to-one with disjoint images and may be applied to 

all terms. 

Syntactic rules are captured using Horn clauses defined over ΤΥ(∑). A Horn 

clause is a pair (h, T), where the head h is a term with variables and the tail T is a set 

of terms with variables. Semantics of Horn clauses are an evaluation of the set of 

clauses Θ over the set of terms T as follows: for each clause, variables in the tail are 

matched with the terms from T and if the valid substitution can be found, the head is 

added to the set of terms. 

Formally, we define a domain as a structure D = {Υ, ∑, Θ}. This definition allows 

for specifying well-formed and malformed domain realizations using the malform(•) 

and wellform(•) invariants.  A realization of the domain is well-formed if any 

wellform(•) term can be derived from the realization.  Similarly, a model instance is 

well-formed if no malform(•) term can be derived from the realization.  We use the 

notion of positive and negative domains, where positive domains instances derive the 

wellform(•) term, and negative domains do not derive any malform(•) term.  

Integration of Privacy Policies in Terms of Structural Constraints 

We now show how to define the workflow metamodel with privacy policy constraints. 

SOA provides a rich basis for mapping model abstractions and building inter-

organizational workflows. The modeling language is constructed to reflect multiple 

elements of SOA, including services, messages, control, and dataflow. To represent 

privacy policies, the language is extended with abstractions that map message type, 

purpose of communication, and relations between the entities responsible for services. 

The metamodel of a simple workflow language is depicted in Figure 1.  



According to the  metamodel in Figure 1, Services are connected through Messages 

using SendMessage and ReceiveMessage.  Services relate to Entities using 

EntityMappings and Entities are connected using the EntityConnections. Each 

Message contains two attributes: Type and Purpose.  This language is a frame for 

embedding privacy constraints represented as well-formedness rules.  We use the 

Structural Semantics approach to describe the rich syntax of the language, describe 

privacy policies and verify and enforce the policies.  This metamodel can be encoded 

using the following signature: 

Υ = {workflowModel(•), sendMessage(•,•), receiveMessage(•,•), service(•), 

message(•), type(•,•), purpose(•,•), entityMapping(•,•),  entityConnection(•,•), 

entity(•), type(•,•), purpose(•,•)} 

For verification and enforcement of privacy policies, we examine the workflow 

language as a negative domain such that any policy violation should invalidate the 

model.  The policies are represented as a set of malform(•) terms denoting syntactical 

constraints of the language.  The malformedness rules, malform(•), are denoted in 

Horn clause syntax.  Two simple constraints stating that a model is malformed if (1) 

there is no message in the model (2) the message is not originated from the service; 

are presented below. 

(1) malform(message(X)):- \+ message(X). 

(2) malform(message(X)):- message(X), \+ sendMessage(Y, X) 

Figure 1 Simplified workflow language metamodel describing workflow abstraction 



We depict an example model realization in Figure 2. This model can be encoded using 

the set of terms: 

M = {service(Data Provider),  

 service(De-Identification), 

message(Message), 

 type(PHI record, phi), 

 purpose(PHI record, de-identification), 

 entity(Covered Entityentity(Business Associate),  

sendMessage(sm1, Data Provider, PHI record),  

receiveMessage(rm1, PHI record, De-Identification engine),  

entityMapping(em1, Data Provider, Covered Entity),  

entityMapping(em2, De-Identification engine, Business Associate),  

entityConnection(ec1, Business Associate, Covered Entity) } 

This set of terms represents the structure of the model and form a basis for verification 

of the privacy policies. To prove the well-formedness of this model and, 

consequently, its compliance with privacy policies, no malfrom() term defined for this 

domain should be derivable from the set of terms M. 

A set of constraints imposed on the model should guarantee workflow utility (e.g., 

message is sent from valid origin to valid destination) and privacy (e.g., message 

should not reach unauthorized entity).  We can prove that a workflow achieves the 

utility goal: a message is sent from a data provider to a data receiver; however it does 

not satisfy the privacy goal (e.g., data receiver should not receive a message). 

 

Figure 2 Workflow model, instance of the language presented in Figure 1 



Similarly we can construct a model that satisfies the privacy requirements, but fails to 

achieve the utility goal. Integration of the business logic with the privacy 

requirements allows for analysis of both goals simultaneously and building correct 

models. 

Integration of Privacy Policies Enforced in runtime 

Privacy policies often depend on the specific contents of a message, such that their 

enforcement requires analyzing message instances.  This analysis cannot be 

performed in the modeling phase.  To address the problem of representation and 

enforcement of runtime evaluated privacy policies, we have extended the syntax of 

the workflow modeling language presented in [18] with the abstractions that are used 

to generate policy documents.  To enforce these policies in runtime, we built an 

extension to the Web Service container Axis2 [30].  Our solution allows for 

evaluation of the policies using the contents of the messages and the history of the 

workflow executions.  Furthermore, additional conditions may be fulfilled on the 

server side using obligations defined for the policy. 

Obligations define additional actions executed upon the policy decision.  The 

policy language associated with the workflow and document model allows for 

describing policies using Horn logic and for relating exchanged messages.  A policy 

model defined with the metamodel is depicted in Figure 3.  This model stores the 

policy document in the Annotation variable, relations using typeRef elements of 

document model connected with AttributeMappings, and configurations of the 

policy enforcement point.  Policy documents stored in annotations are in the form of 

Prolog rules. 

 
Figure 3 Metamodel of the privacy policy constructs, integrated with the MICIS modeling 

language 



This approach allows for building very expressive rule-based policies; however, 

it requires knowledge of the Prolog syntax by the policy implementer.  Variables from 

the Document Model are used to configure the Policy Enforcement Point to extract 

the necessary information from the passing message and provide it to the Policy 

Decision Point (PDP) for policy evaluation.  Additional options specify the point of 

the policy enforcement (e.g., inbound or outbound message), information of the 

workflow execution history, and the obligations.  The policy translator generates the 

policy documents and policy descriptions from workflow, document, and policy 

models.  

Policy documents, along with the policy descriptions are deployed in the Web 

Service Container that hosts the protected services.  The deployment architecture is 

based on Web Service protocols and standards.  In Figure 4, we depict details of the 

architecture extension and relationship to the modeling environment.  The set of Web 

services that implement the workflow logic is protected using the Context Handler, 

which intercepts all incoming and outgoing SOAP messages.  The Policy 

Enforcement Point (PEP) is located above the Web Service security layer, which 

handles the basic security requirements, including confidentiality, integrity and 

availability.  The Context Handler first intercepts the service invocation and loads the 

policy description that instructs how to handle the message.  If the policy should be 

applied to the incoming message, then the PEP extracts the message context and 

prepares the request for the PDP.  The PDP restores the saved state (if such state has 

been stored), loads the policy document and evaluates the access request.  Based on 

the decision from the PDP, the PEP executes the obligations and passes the invocation 

to the service or drops the message if the access has been denied by the PDP.  A 

similar procedure is executed for the service response; however, for the outbound 

message, the PDP may access both the SOAP request and reply, and base the decision 

on the results provided by the service.  

 
Figure 4 System Architecture 



4 Results 

We present the results of the integration of the workflow models with the privacy 

policies represented as structural constraints. We present two examples, one based on 

the HIPAA Privacy Rule policy of data sharing for de-identification purposes and one 

based on the “break-glass” emergency access scenario. 

Compliance at Modeling Scenario: De-identification via Business Relations 

The policy presented in this example is derived from section 164.502.d of HIPAA , 

which specifies the conditions of uses and disclosure of de-identified Protected Health 

Information (PHI). The plaintext rule is presented in Appendix 1. The meaning of the 

rule can be described as follows: 

A covered entity may send protected health information to a business 

partner for de-identification purposes only if there exists a contractual 

agreement between the communicating entities. 

The model depicted in Figure 2 represents a communication instance satisfying the 

requirements of the rule. The Medical Record Database, which belongs to the 

Covered Entity, sends a message that includes PHI record with attributes 

representing the purpose and type of the message (not shown on the figure), to the De-

Identification engine, which belongs to the Business Partner.  There exists an entity 

connection between the Covered Entity and Business Partner, which represents the 

existing relation between these two entities.  The workflow model is represented as a 

negative domain, so to prove compliance of the modeled system with the privacy 

policy, it should be impossible to derive the malform(•) rule.  The privacy policy is 

described as the following malformedness rule in Horn clause form: 

no_connection(E1, E2) :- \+ entityConnection(X, E1, E2) 

malform(message(M)) :-  message(M),sendMessage(MF, S1, M),  

receiveMessage(MF2, M, S2),entityMapping(EM1, S1, E1), 

entityMapping(EM2, S2, E2),type(M,'phi'), no_connection(E1, E2). 

 

To derive the malform clause, all of the terms in the tail must be satisfied.  The model 

needs to connect two services with the message with attribute type equal to „phi‟, 

which denotes that the message contains protected health information, and the entities 

containing communicating services may not be connected.  The constraint 

(no_connection) is an example of negation as a failure extension of Horn logic.  This 

constraint is only satisfied when there are no terms that can be substituted for 

variables X, E1, E2 in the rule no_connection(X, E1, E2). In other words, the system 

invalidates the workflow if the communicating entities have not established a formal 

business relationship.  The verification of the model proves that the malform() term 

cannot be derived and, consequently, the model is classified as complying with the 

privacy policy.  

 

Compliance Evaluation at Runtime Scenario: Break-Glass 
We present the enforcement of the runtime policies using the following example: 



Access to the patient’s medical record should only be granted to primary 

care physicians listed in medical record, or in case of emergency situation 

access should be provided to any physician following the “Break Glass” 

policy. 

This policy requires a fine-grained access control for description of the relationship 

between patient and physician, as well as arbitrary conditions for application of the 

“Break Glass” [25] policy.  This policy is represented in SOA terms as follows.  The 

RetrieveData service may provide the medical record to the requestor if the request is 

issued in an emergency context or if the response of the service contains the list of 

physicians that includes the credentials of the physician from the request. 

Additionally, if the request was allowed using the break-glass policy, the PEP should 

create an audit trail, executed as an obligation, for administrative review.  We built a 

model of a service providing medical records, and introduced the privacy policy, that 

regulates access to the service (See Figure 5). This model is translated using the 

model interpreters to the pair of documents presented below – policy description 

[configuration for the Policy Enforcement Point]:  

<PolicyList> 

    <PolicyDescription> 

       <methodName>RetrieveData</methodName> 

       <query>retrievedata(MRN,DocID)</query> 

       <policyDbName>'C:/Policy/factsdb.pl'</policyDbName> 

       <inPolicy>False</inPolicy> 

       <outPolicy>True</outPolicy> 

       <requestFields>MRN, critical </requestFields> 

       <replyFields>DocID, </replyFields> 

       <relations>is_critical(MRN ,critical), treats(MRN,PCP)</relations> 

      <dbUpdates> accessed(DocID, MRN)</dbUpdates> 

      <classname> edu.vanderbilt.isis.bpeltools.logCriticalAccess</classname>                

      <obligationMethod>obligationmethod</obligationMethod> 

   </PolicyDescription> 

</PolicyList> 

and the policy document 

 

Figure 5 Sample model of a service presenting workflow and dataflow with attached 

privacy policy evaluated after the service invocation. 



%% definition of helper symbols 

    :- dynamic treats/2. 

    :- dynamic critical/2. 

%% access rule 

    :- dynamic retrievedata/2. 

%% define break glass rule allow access in emergency context. 

    break_glass(RecordNo):- is_critical(RecordNo, X), X>0. 

%% access control rules for the record 

%% only physicians who treats the patient can access his record 

%%access is provided if patient is marked as in critical state 

    retrievedata(RecordNo,DocId):-  treats(RecordNo, DocId);break_glass(RecordNo). 

The presented policy contains only positive permissions (i.e., access is granted if the 

query retrievedata(MRN,DocID) can be deduced); however, representation of the 

policies in the form of Prolog rules allows for an arbitrary policy composition.  The 

policy designer can employ multiple strategies to resolve possible conflicts between 

the policies, as well as include negative polices that deny access for specific 

conditions. 

5 Conclusion and Further Research 

In this paper we proposed how to integrate formal logical representations of privacy 

policies with workflow models through a common semantic platform.  We 

demonstrated how a Structural Semantics approach can be applied to formalize and 

verify privacy requirements within this framework.  Technically, we showed that a 

domain-specific model integrated computing framework, the Model Integrated 

Clinical Information System, can be leveraged to develop clinical information systems 

that comply with privacy legislation in a verifiable manner.  We illustrated how to 

apply this approach through several examples specific to well-known regulatory 

requirements.  We offered an extension to the Service-Oriented Architecture platform 

that allows for enforcing privacy policies in runtime.  We are currently working on 

classifying HIPAA rules that can be represented and enforced using Structural 

Semantics approach.  In future work, we plan to evaluate overhead introduced by the 

runtime policy enforcement and applicability in large-scale distributed environments. 

we hope to develop tools for model generation that synthesize clinical workflow 

models using the specification of requirements and policies 
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Appendix 1: HIPAA privacy rule 164.502.d: 

Standard: Uses and disclosures of de-identified protected health information  

(1) Uses and disclosures to create de-identified information. A covered entity may use 

protected health information to create information that is not individually identifiable 

health information or disclose protected health information only to a business 

associate for such purpose, whether or not the de-identified information is to be used 

by the covered entity.  


