Redundancy Minimizing Techniques for Robust Transmission in Wireless Networks

Anna Kacewicz and Stephen B. Wicker

Department of Electrical and Computer Engineering
Cornell University

TRUST Fall Conference

November 11, 2008

Cornell University

MOTIVATION

- Wireless networks vulnerable to attacks
- Passive listening
- Denial of service
- Necessary for wireless network to be resilient to malicious nodes
- Reliability in data transmission
- Security in communication
- Topology of Mobile Ad Hoc Networks constantly changing
- Pre-determined routing schemes inadequate
- Important to dynamically determine message dispersion

APPROACH

- Information/Coding theory for robustness against compromised pathways
- Forward error correction coding: MDS codes
- Devise routing scheme based on channel conditions
- Develop exponential and polynomial time algorithms

PROBLEM STATEMENT

- Assumption: There are N paths each with an assigned probability of success
- Goal: Transmit message across these paths to attain desired probability of success
- Question: What is the minimum redundancy needed and optimal symbol allocation to each path to achieve target success probability?

BASIC ASSUMPTIONS AND DEFINITIONS

- N paths and transmit f_{i} symbols down path i, which has probability of success $1-\alpha_{i}$, all independent from one another.
- Each path is like an erasure channel, either the transmitted symbols are received or they are not.

BASIC ASSUMPTIONS AND DEFINITIONS CONT...

- k symbol message which is to be encoded using an MDS code into n symbols using a systematic representation
- WLOG assume $1-\alpha_{1} \geq 1-\alpha_{2} \geq \ldots \geq 1-\alpha_{N}$, implying $f_{1} \geq f_{2} \geq \ldots \geq f_{N}$

BASIC ASSUMPTIONS AND DEFINITIONS CONT...

$$
\begin{equation*}
P_{\text {success }}(\mathbf{f})=\sum_{s \in S} \prod_{i=1}^{N}\left(1-\alpha_{i}\right)^{s_{i}} \alpha_{i}^{1-s_{i}} u(s \cdot \mathbf{f}-k) \tag{1}
\end{equation*}
$$

where $u(\cdot)$ represents the unit step function, and S is the set containing all possible length N combinations of 0 's and 1's.

- Running through all possible combinations of $s \in S$ would result in exponential time algorithm \Rightarrow inefficient.

PROBABILITY OF SUCCESS APPROXIMATION

- Each f_{i} represents the average amount of transmissions attempts to transmit over path i, and in fact follows binomial distribution.
- If we consider all the paths and use the Gaussian approximation, we obtain

$$
\sim \mathcal{N}\left(\sum_{i=1}^{N} f_{i}\left(1-\alpha_{i}\right), \sum_{i=1}^{N} f_{i}^{2} \alpha_{i}\left(1-\alpha_{i}\right)\right)
$$

$$
\begin{equation*}
P_{\text {success }} \approx \frac{1}{2}+\frac{1}{2} \operatorname{erf}\left(\frac{\sum_{i=1}^{N} f_{i}\left(1-\alpha_{i}\right)-k+\frac{1}{2}}{\sqrt{2 \sum_{i=1}^{N} f_{i}^{2} \alpha_{i}\left(1-\alpha_{i}\right)}}\right) \triangleq \hat{P}_{\text {success }} \tag{2}
\end{equation*}
$$

Redundancy and Symbol Allocation Algorithms

- Two algorithms, MRAET and MRAPT (exponential and polynomial time), to make wireless network robust
- Determine minimum redundancy using MDS codes to achieve desired success probability
- Allocate symbols to paths based on path success probabilities

Applications of different codes

- Reed-Solomon codes are MDS codes but have quadratic decoding time
- Fountain codes have an advantage in that they are rateless
- Well constructed fountain codes are almost MDS
- LT codes have decoding running time $O(k \log k)$, where k is number of input symbols
- Raptor codes have running time linear in the message size

SIMULATION RESULTS

SIMULATION RESULTS CONT...

SIMULATION RESULTS CONT...

Figure: Total Codeword size for Different Codes using MRAET

SIMULATION RESULTS CONT...

Figure: Bit Error Rate over Different Codes using MRAET

CONCLUSION

- LT codes have greatest robustness but largest overhead
- MDS codes have lowest overhead but highest bit error rate
- Raptor codes have lowest bit error probability

QUESTIONS

THANKS!

MRAET

$$
P_{\text {success }}^{A}=\sum_{\mathbf{s} \in A} \prod_{i=1}^{N} p_{i}^{s_{i}}\left(1-p_{i}\right)^{1-s_{i}}
$$

Where A is some subset of S. Let,

$$
z_{(i, s)}=\left\{z \in\left\{1, \ldots, 2^{N-(j-2)}\right\} \mid \sum_{l=j-1}^{j-2+i} S_{z, l} \geq s\right\}
$$

for some integers s, i. Where $S_{z, l}$ represents the element of S in the $z^{\text {th }}$ row and $t^{\text {th }}$ column. Part 1:

Step 1: Assign $j=1$ and go to step 2.
Step 2: Let $A=S_{\left(\left(2^{j}+1, \ldots, 2^{N}\right),(1, \ldots, N)\right)}$ and go to step 3 .
Step 3: Calculate $P_{\text {success }}^{A}$.
If $P_{\text {success }}^{A}(\mathbf{f}) \geq p^{*}$ then save j, let
$f_{1}, \ldots, f_{j}=k, f_{j+1}, \ldots, f_{N}=0$
and $\gamma_{\min }=j, P_{\text {temp }}=P_{\text {success }}^{A}$.
Then go to part 2 of the algorithm.
Otherwise let $j=j+1$ and if $j>N$ move on to Part 2, else if $j \leq N$ return to Step 2.

MRAET CONT...

If $j<2$ then we have an optimal allocation and we are done. Otherwise:

Part 2:

Let $i=2$
Step 1: Let $i=i+1$ and if either $i>N$ or $j-2+i>N$ then terminate Part 2, otherwise go to step 2.
Step 2: Let $s=2$
Step 3: If $j-2+\frac{i}{s} \leq \gamma_{\text {min }}$ then
let A denote the subset of matrix S composed of rows whose indices are in $Z_{(i, s)}$ and go to step 4. Otherwise, go to step 6.
Step 4: Calculate $P_{\text {success }}^{A}$
If $P_{\text {success }}^{A} \geq p^{*}$ with $j-2+\frac{i}{s}<\gamma_{\text {min }}$
or
$j-2+\frac{i}{s}=\gamma_{\text {min }}$ and $P_{\text {temp }}<P_{s u c c e s s}^{A}$
then go to step 5 , otherwise go to step 6.
Step 5: Let $P_{\text {temp }}=P_{\text {success }}^{A}, \gamma_{\text {min }}=j-2+\frac{i}{s}$, and
$f_{1}, \ldots, f_{j-2}=k$,
$f_{j-1}, \ldots f_{j-2+i}=\frac{k}{s}$,
$f_{j-1+i}, \ldots, f_{N}=0$.
Go to step 6.
Step 6: Let $s=s+1$. If $s>i$ then go to step 1 , else go to step 3 .

