
1

BitBlaze: Binary Analysis for
Computer Security

Dawn Song

Computer Science Dept.
UC Berkeley

2

Malicious Code---Critical Threat on the Internet

• Diverse forms
– Worms, botnets, spyware, viruses, trojan horses, etc.

• High prevelance
– CodeRed Infected 500,000 servers
– 61% U.S. computers infected with spyware [National Cyber

Security Alliance06]
– Millions of computers in botnets

• Fast propagation
– Slammer scanned 90% Internet within 10 mins

• Huge damage
– $10billion annual financial loss [ComputerEconomics05]

3

Defense is Challenging
• Software inevitably has bugs/security vulnerabilities

– Intrinsic complexity
– Time-to-market pressure
– Legacy code
– Long time to produce/deploy patches

• Attackers have real financial incentives to exploit them
– Thriving underground market

• Large scale zombie platform for malicious activities
• Attacks increase in sophistication

• We need more effective techniques and tools for defense
– Previous approaches largely symptom & heuristics based

4

The BitBlaze Approach
• Semantics based, focus on root cause:

Automatically extracting security-related properties from binary code
(vulnerable programs & malicious code) for effective defense

• Automatically create high-quality detection & defense mechanisms
– Automatic generation of vulnerability signatures to filter out exploits
– Automatic detection and classification of malware

» Spyware, keylogger, rootkit, etc.
– Automatic detection of botnet traffic

• Able to handle binary-only setting
– Important for COTS & malicious code scenarios

5

The BitBlaze Research Foci
1. Design and develop a unified binary analysis platform for

security applications
– Identify & cater common needs of different security applications
– Leverage recent advances in program analysis, formal methods,

binary instrumentation/analysis techniques to enable new
capabilities

2. Introduce binary-centric approach as a powerful arsenal
to solve real-world security problems
• COTS vulnerability discovery, diagnosis & defense
• Malicious code analysis & defense
• Other security applications: network decoding, etc.

6

Patch Tuesday
• Given a patch release, how can we protect vulnerable

hosts & networks who have not patched yet?

• #1: patch release creates serious threat
– Automatic patch-based exploit generation can generate exploits

in minutes

• #2: automatic vulnerability signature generation provides
instant protection

7

Running Example

• All integers unsigned 32-bits
• All arithmetic mod 232

• Motivated by real-world vulnerabilityif input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

8

Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P input = 232-2

232-2 % 2 == 0

s := 0 (232-2 + 2 % 232)

ptr := realloc(ptr,0)

Using ptr is a problem

9

Running Example

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P Integer Overflow when:
s < input

10

Running Example

I didn’t think
about overflow!

Safe inputsAll 32-bit integers

Exploits:
232-3,
232-2,
232-1

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

11

Safe InputsProgram
Inputs

Input Validation Vulnerability
• Programmer fails to sanitize inputs
• Large class of security-critical vulnerabilities

– “Buffer overflow”, “integer overflow”, “format string vulns”, etc.
• Responsible for many, many compromised computers

12

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P
if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch leaks

1. Vulnerability point (where in code)

2. Vulnerability condition (under what conditions)

Patch

Overflow when
s < input

13

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

if input % 2==0

read input

s := input + 3 s := input + 2

ptr := realloc(ptr, s)

TF

P

Exploits for P are inputs that fail
vulnerability condition at vulnerability point

(s > input) = false

14

if input % 2==0

read input

s := input + 3 s := input + 2

if s > input

TF

P’

ptr := realloc(ptr, s)

TF

Error

Patch

Exploit Generation
1. Diff P and P’ to identify

candidate vuln point and
condition

2. Create input that satisfy
candidate vuln condition in P’

– i.e., candidate exploits
3. Check candidate exploits on P

Our Approach for Patch-based Exploit Generation (I)

15

Our Approach for Patch-based Exploit Generation (II)

• Diff P and P’ to identify candidate vuln point and condition
– Currently only consider inserted sanity checks
– Use binary diffing tools to identify inserted checks

» Existing off-the-shelf syntactic diffing tools
» BinHunt: our semantic diffing tool

• Create candidate exploits
– i.e., input that satisfy candidate vuln condition in P’

• Validate candidate exploits on P
– E.g., dynamic taint analysis (TaintCheck)

16

Create Candidate Exploits
• Given candidate vulnerability point & condition
• Compute Weakest Precondition over program paths

– Using vulnerability condition as post condition
– Construct formulas representing conditions on input

» Whose execution path included
» Satisfying the vulnerability condition at vulnerability point

• Solve formula using solvers
– E.g., decision procedures
– Satisfying answers are candidate exploits

17

Different Approaches for Creating Formulas

• Statically computing formula
– Covering many paths (without explicitly enumerating them)
– Sometimes hard to solve formula

• Dynamically computing formula
– Formula easier to solve
– Covering only one path

• Combined dynamic and static approach
– Covering multiple paths
– Tune for formula complexity

• Experimental results
– Different approach effective for different scenarios

• Other techniques to make formulas smaller and easier
to solve

18

Experimental Results
• 5 Microsoft patches

– Mostly 2007
– Integer overflow, buffer overflow, information disclosure, DoS

• Automatically generated exploits for all 5 patches
– In seconds to minutes
– 3 out of 5 have no publicly available exploits
– Automatically generated exploit variants for the other 2

• Diffing time
– A few minutes

19

Exploit Generation Results

0.140.263.78N/A4.79Solver
104.1413.3125.29N/A6.72 Forumla
104.2813.5729.07N/A11.51Combined

N/AN/A21.42N/A81.15Solver
N/AN/A4.99N/A2.32Formula

N/AN/A26.41N/A83.47Static
Total

N/AN/A0.016.930.17Solver
N/AN/A10.334.645.51Formula

N/AN/A10.3411.575.68Dynamic
Total

PNGIGMPGDIASPNet
_Filter

DSA_SetItemTime (s)

20

When could technique fail?
– Decision procedure cannot solve C
– Exploit depends on several conditions in P’

(works in some cases)
– etc.

However, security design must
conservatively estimate attackers

capabilities

21

Unique IP’s contacting Windows Automatic Update
[GKPV06]

North America
Asia

Fast worms: ~10 minutes to infect all hosts [2003]

We generate exploits in seconds to minutes

+
=

Patch release can create serious threats

22

BitBlaze Binary Analysis Platform

• Binary analysis infrastructure for security applications:
– Novel fusion of static, dynamic analysis techniques, and

program verification techniques
– Whole system analysis (including OS kernel)
– Handling packed/encrypted/obfuscated code

Vine:
Static Analysis

Component

TEMU:
Dynamic Analysis

Component

Rudder:
Mixed Execution

Component

BitBlaze Binary Analysis Platform

23

Conclusion
• Automatically extracting security related properties from

binary programs using binary analysis provide a sound
approach to many security problems

– Vulnerability diagnosis and signature generation
– In-depth malware analysis
– Deviation Detection
– Network protocol reverse engineering

• BitBlaze
– Identify common needs across different security applications
– Fusion of dynamic, static, formal analysis techniques to provide

a unified framework for binary analysis for security applications
• http://bitblaze.cs.berkeley.edu

24

Contact

• http://bitblaze.cs.berkeley.edu

• dawnsong@cs.berkeley.edu

• BitBlaze team:
David Brumley, Juan Caballero, Ivan Jager, Cody Hartwig,
Min Gyung Kang, Zhenkai Liang, James Newsome,
Pongsin Poosankam, Prateek Saxena, Heng Yin

