
Techniques for Quantitative
Information-flow Measurement

Stephen McCamant, James Newsome,
Michael D. Ernst, and Dawn Song

UC Berkeley, CMU, and MIT



Example: image transformation

Policy: reveal at most 3k (1%) of information about my

face.

Our tool measures: top two satisfy policy



Example: image transformation

Policy: reveal at most 3k (1%) of information about my

face. Our tool measures: top two satisfy policy



Goal: information security

Confidentiality or integrity policy: keep
secret data in or malicious data out

Information flow: account for all influences
through a program, not just direct copying

How much information flows?

Number of bits gives a mathematical limit
on inferences or attacker influence



Example 2: attacking a network server

A server is influenced by clients:
A. Good clients request one of several legal

operations
B. Bad clients might force the server to jump to

an attacker-chosen address

Goal: reliably distinguish A from B (avoid
false negatives and false positives)

Influence is 3.3 bits in A (benign), 32 bits in
B (exploitable)



Example 2: attacking a network server

A server is influenced by clients:
A. Good clients request one of several legal

operations
B. Bad clients might force the server to jump to

an attacker-chosen address

Goal: reliably distinguish A from B (avoid
false negatives and false positives)

Influence is 3.3 bits in A (benign), 32 bits in
B (exploitable)



Example 3: Battleship game



Example 3: Battleship game



Example 3: Battleship game



Example 3: Battleship game

Want to minimize ship location information revealed



Outline

Introduction to information flow

Upper bounds via maximum flow

Lower bounds via a decision procedure

Case studies

Conclusion



Start with: tainting

Dynamic
execution
graph

Secret inputs

Tainted outputs

Track which values might be transitively
influenced by secret inputs

In other words, graph reachability



Challenge 1: implicit flows

if (age > 50)

salary = salary + 10000;

Indirect influence via control flow, array
indexes, and pointers
Solution: annotations that bound the
side-effects of secret-dependent code

Added by hand or via automatic analysis



Challenge 2: tainting imprecision

Many pieces of tainted data may carry the
same information

Copying multiplies taint but not information

Solution: model information as a finite
substance, compute maximum flow

Graph algorithms with program-sensitive
compression for efficiency



Implementation: Flowcheck

Based on the Valgrind dynamic analysis
framework

For x86/Linux binaries (scales to: X server,
KDE apps)

GPLed and available for download:
http://people.csail.mit.edu/smcc/

projects/secret-flow/

http://people.csail.mit.edu/smcc/projects/secret-flow/
http://people.csail.mit.edu/smcc/projects/secret-flow/


Outline

Introduction to information flow

Upper bounds via maximum flow

Lower bounds via a decision procedure

Case studies

Conclusion



A complementary approach

Flowcheck scales well, but gives no
guarantee about precision: upper bound
might be too conservative

Alternative approach: verify specific
possible outputs

Can give lower bounds and approximations
with statistically bounded error



Decision procedure approach

Convert program or trace into logical
formula giving output in terms of inputs

Give formula to decision procedure to
determine which outputs can be produced

Can find smallest or largest possible output,
enumerate examples, or check random
sample outputs



Decision procedure implementation

Built using BitBlaze infrastructure: TEMU
whole-system dynamic tracing, Vine
instruction-level static analysis

Used STP bitvector decision procedure

Works with COTS binary applications and
severs, on both Windows and Linux



Outline

Introduction to information flow

Upper bounds via maximum flow

Lower bounds via a decision procedure

Case studies

Conclusion



Image transformation #1

me.ppm: 375120 bits

(125 � 125 � 24+ 120)

% convert me.ppm \
-resize 5x5 \
-sample 125x125

1464 bits leaked

(5 � 5 � 48+ 264)



Image transformation #2

me.ppm: 375120 bits

(125 � 125 � 24+ 120)

% convert me.ppm \
-swirl 720

375120 bits leaked

(= file size)



Image transformation #2

me.ppm: 375120 bits

(125 � 125 � 24+ 120)

% convert me.ppm \
-swirl 720 \
swirl.ppm

375120 bits leaked

(= file size)

% convert swirl.ppm \
-swirl -720



Attacks on network servers
Samba file server uses network input to
choose a function pointer

Leads to false positives in previous tainting
systems
Our tool measures the exact influence:
log2 10 = 3:3 bits

Another jump pointer in Microsoft DCOM
server can be influenced by network input

Our tool measures influence of [27:5; 32:0] bits
True positive: vulnerability exploited by the
Blaster worm



Running KBattleship
% kbattleship

0 bits leaked

...

8 bits leaked

...

16 bits leaked

...

24 bits leaked

Eight bits per round seems like too much. . .

Previously unknown bug: protocol includes type of ship on

non-fatal hit.



Running KBattleship
% kbattleship

0 bits leaked

...

8 bits leaked

...

16 bits leaked

...

24 bits leaked

Eight bits per round seems like too much. . .

Previously unknown bug: protocol includes type of ship on

non-fatal hit.



Outline

Introduction to information flow

Upper bounds via maximum flow

Lower bounds via a decision procedure

Case studies

Conclusion



Summary

Quantitative information-flow policies allow
for precise distinctions

Instruction-level analysis can give accurate
measurements for real software
New techniques:

Upper bounds using maximum network flow
Lower bounds using a decision procedure



Thank you



Enclosure annotations

Enclosure leverages static information to
bound behavior of alternate executions

Similar: RIFLE [VBC+’04], [MPL’04], Trishul
[NSCT’07], [CF’08], etc.

Sufficient for soundness: one big region
around whole program

For precision: infer via static analysis, or
annotate by hand



Enclosure region details

Annotations written in source, appear at
machine level

Cause flow edges from branch conditions
to region outputs

Most annotations can be found with a
simple analysis

Uncommon, easy to add by hand (average
10/program)



Blur details

ImageMagick -resize
5x5 Interpolation

(Hand) lower bound:
600 bits

Upper bound:
1720 bits

ImageMagick -blur
Gaussian kernel

convolution
(Hand) lower bound:

3456 bits
Upper bound:

375120 bits

Custom blur
Square kernel

convolution
(Hand) lower bound:

375120 bits
Upper bound:

375120 bits



KBattleship bug


	Introduction to information flow
	Upper bounds via maximum flow
	Lower bounds via a decision procedure
	Case studies
	Conclusion

