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Abstract— Tracking multiple maneuvering targets in a clut-
tered environment is a challenging problem. A combination
of interacting multiple model (IMM) and joint probabilistic
data association (JPDA) has been successfully applied to track
multiple maneuvering targets. In IMM, the motion of a ma-
neuvering target is approximated by a finite number of simple,
distinct kinematic models. However, the exact computation of
the combined approach has the time complexity which is expo-
nential in the numbers of kinematic models and measurements.
When applying JPDA and IMM, the numbers of targets and
kinematic models are known, so we can design a tracking system
suitable for the given numbers of targets and kinematic models.
But the number of measurements is not known in advance,
and it poses a serious problem in computing association
probabilities in JPDA. Hence, for a large problem, we need
to seek for an efficient approximation algorithm. In this paper,
we present a randomized algorithm which finds approximations
of association probabilities with good fidelity and prove that the
time complexity of the algorithm is polynomial in the size of
the problem.

I. INTRODUCTION

The data association problem arises in many applications
such as computer vision, surveillance, clustering, and mobile
robots. In computer vision, the data association problem is
known as the correspondence problem in which the objective
is to determine which observation belongs to which feature
[1], [2]. In target tracking, it is the problem of determining
which observation is generated by which target or clutter [3].

Tracking multiple maneuvering targets in a cluttered en-
vironment is a challenging problem. A combination of in-
teracting multiple model (IMM) [4] and joint probabilistic
data association (JPDA) [3] has been successfully applied to
track multiple maneuvering targets, e.g., IMM-JPDA [5]. In
IMM, the motion of a maneuvering target is approximated
by a finite number of simple, distinct kinematic models. For
survey of IMM, see [6]. However, the exact computation has
the time complexity which is exponential in the numbers of
kinematic models and measurements. When applying JPDA
and IMM, the numbers of targets and kinematic models are
known, so we can design a tracking system suitable for
the given numbers of targets and kinematic models, e.g.,
parallel computing. However, the number of measurements
is not known in advance, and it poses a serious problem in
computing association probabilities in JPDA.

Joint probabilistic data association (JPDA) is developed to
solve the data association problem arises in multiple-target
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tracking [3]. JPDA is a suboptimal single-scan approximation
to the optimal Bayesian filter, in which the associations
between the “known” tracks and the latest observations are
made sequentially. At each time step, instead of finding
a single best association between latest observations and
known tracks, JPDA enumerates all possible associations
between observations and tracks and computes association
probabilities {βjk}, where βjk is the probability that j-th
observation is from k-th track. Given an association, the
state of a target is estimated by a filtering algorithm and
this conditional expectation of state is weighted by the asso-
ciation probability. Then the state of a target is estimated by
summing over the weighted conditional expectations. It has
proved very effective in a cluttered environment compared
with the nearest neighbor approach which finds a single best
association [3].

The exact calculation of association probabilities βjk in
JPDA is NP-hard [7] since the related problem of finding
the permanent of a matrix is #P-complete [8]. To overcome
the complexity of the problem, many approximation algo-
rithms have been proposed. Some heuristic approaches to
approximate JPDA include a “cheap” JPDA algorithm [9],
“suboptimal” JPDA [10] and “near-optimal” JPDA [11]. In
[12], a single-stage data association problem is considered
and a leave-one-out heuristic is developed to avoid the
enumeration of all possible associations. Sampling methods
have been applied before [13], [2]. In [14], Markov chain
Monte Carlo (MCMC) is applied to compute the association
probabilities in JPDA and it is shown that MCMC outper-
forms Fitzgerald’s cheap JPDA. Unfortunately, in all cases,
the performance of an approximation algorithm for JPDA is
measured in experiment only.

This paper presents a randomized algorithm, named
Markov chain Monte Carlo data association (MCMCDA),
for computing association probabilities required for IMM-
JPDA and proves that the time complexity of the algorithm
is polynomial in the number of kinematic models and the
number of measurements. In [15], a general-purpose MCM-
CDA algorithm is developed to track an unknown number of
targets. It has been shown that MCMCDA is computationally
efficient compared to the multiple hypothesis tracker (MHT)
[16] and outperforms MHT with heuristics, such as pruning,
gating, clustering, N -scan-back logic and k-best hypotheses,
under extreme conditions, such as a large number of targets
in a dense environment, low detection probabilities, and high
false alarm rates [15]. The MCMCDA algorithm has been
extended to sensor networks in a hierarchical manner to be
scalable and it has been shown that MCMCDA is robust
against sensor localization error, transmission failures and



communication delays, i.e., out-of-sequence measurements
[17]. In [18], it has been shown that a special case MCMCDA
finds good estimates of association probabilities in polyno-
mial time. This paper extends the results to the problem of
tracking a known number of maneuvering targets.

The remainder of this paper is structured as follows.
We describe a method to estimate states of multiple linear
hybrid systems in Section II and describe the MCMC method
in Section III. The MCMCDA algorithm is presented in
Section IV and analysis about the algorithm is shown in
Section V. We also present an experiment confirming our
results in Section VI.

II. STATE ESTIMATION OF MULTIPLE LINEAR HYBRID
SYSTEMS

Let K be the number of targets moving around the
surveillance region R. The state dynamics of target k is
modeled as

xk
t+1 = Ak

t (νk
t )xk

t + Gk
t (νk

t )wk
t (νk

t ), for t = 1, 2, . . . ,
(1)

where xk
t ∈ Rnx is the state of target k at time t, νk

t

denotes the kinematic model representing the motion of
target k at time t; Ak

t (νk
t ) and Gk

t (νk
t ) are matrices with

appropriate sizes; and wk
t (νk

t ) is a white Gaussian process
with zero mean and covariance Qk

t (νk
t ). The evolution of

νk
t is modeled by a finite state Markov chain taking values

from {1, . . . ,M} according to a transition probability matrix
P k

m = [pk
ij ]. This linear hybrid system is also known as a

jump linear system [19] and has been successfully applied
to approximate a class of nonlinear systems [20].

The noisy observation of the state of a target is measured
with a detection probability pd which is less than unity. There
are also false alarms (or outliers) and the number of false
alarms has a Poisson distribution with a parameter λfV where
V is the volume of R and λf is the false alarm rate per unit
time, per unit volume. Let nt be the number of observations
at time t, including both noisy observations and false alarms.
Let yj

t ∈ Rny be the j-th observation at time t for j =
1, . . . , nt. Each target generates a unique observation at each
sampling time if it is detected. The measurement model is

yj
t =

{
Cj

t (νk
t )xk

t + w′j
t (νk

t ) if yj
t is from xk

t

uj
t otherwise,

(2)

where w′j
t (νk

t ) is a white Gaussian process with zero mean
and covariance Rj

t (νk
t ), Cj

t (νk
t ) is a matrix with appropriate

size, and uj
t ∼ Unif(R) are random processes for false

alarms. Notice that, with probability 1 − pd, the target is
not detected and we call this a missing observation. Let
Yt = {yj

t : 1 ≤ j ≤ nt} and Y1:t = {Y1, . . . , Yt}.
For notational convenience, we assume A(·) = Ak

t (·),
G(·) = Gk

t (·), Q(·) = Qk
t (·), C(·) = Cj

t (·), R(·) = Rj
t (·),

and Pm = P k
m , for all k, t, and j. Since we are operating

at the filtering step t, we further simplify our notations by
dropping the subscript t. Let us denote the event {νk

t = i}
by µk

i and let Ω be a set of all feasible joint association
events. For each ω ∈ Ω, ω = {(j, k)}, where (j, k) denotes

an event that j-th observation is associated with target k.
Then the state of target k can be estimated as

E(xk
t |Y1:t) =

M∑
i=1

E(xk
t |µk

i , Y1:t)P (µk
i |Y1:t), (3)

where

E(xk
t |µk

i , Y1:t) =
∑
ω

E(xk
t |ω, µk

i , Y1:t)P (ω|µk
i , Y1:t) (4)

=
nt∑

j=0

E(xk
t |ωjk, µk

i , Y1:t)P (ωjk|µk
i , Y1:t),

where ωjk denotes the event {ω 3 (j, k)} and ω0k denotes
the event that no observation is associated with target k.
Notice that other parameters, such as covariance matrices,
can be computed similarly and interested readers are referred
to [3], [5]. In (4), E(xk

t |ωjk, µk
i , Y1:t) can be computed easily

by considering it as a single target estimation problem where
the current observation is the j-th observation. Hence, the
computation of E(xk

t |µk
i , Y1:t) reduces to the computation

of association probability βjk(i), where

βjk(i) := P (ωjk|µk
i , Y1:t) =

∑
ω:(j,k)∈ω

P (ω|µk
i , Y1:t). (5)

The computation of βjk(i) requires a summation over the
posteriors, hence the enumeration of all joint association
events. JPDA is a method for computing expectations such as
(4) using the association probabilities βjk(i) in the presence
of the identity uncertainty while IMM computes (3) using
model posteriors P (µk

i |Y1:t). As mentioned earlier, the exact
calculation of βjk(i) in JPDA is NP-hard [7] and it is the
major drawback of JPDA. In next sections, we introduce
a randomized algorithm which approximates βjk(i) and
P (µk

i |Y1:t) without the enumerations of all joint association
events and all possible combinations of kinematic models.

III. MARKOV CHAIN MONTE CARLO

Markov chain Monte Carlo (MCMC) plays a significant
role in many fields such as physics, statistics, economics,
and engineering [21]. In some cases, MCMC is the only
known general algorithm that finds a good approximate
solution to a complex problem in polynomial time [22].
MCMC techniques have been applied to complex probability
distribution integration problems, counting problems such
as #P-complete problems, and combinatorial optimization
problems [22], [21].

MCMC is a general method to generate samples from
a distribution π by constructing a Markov chain M with
states ω and stationary distribution π(ω). If we are at state
ω ∈ Ω, we propose ω′ ∈ Ω following the proposal distri-
bution q(ω, ω′). The move is accepted with an acceptance
probability A(ω, ω′) where

A(ω, ω′) = min
(

1,
π(ω′)q(ω′, ω)
π(ω)q(ω, ω′)

)
, (6)



otherwise the sampler stays at ω, so that the detailed balance
condition is satisfied, i.e.,

Q(ω, ω′) = π(ω)P (ω, ω′) = π(ω′)P (ω, ω′), (7)

for all ω, ω′ ∈ Ω, where P (ω, ω′) = q(ω, ω′)A(ω, ω′) is
the transition probability from ω to ω′ for ω′ 6= ω. The
described MCMC algorithm is known as the Metropolis-
Hastings algorithm. If M is irreducible and aperiodic, then
M converges to its stationary distribution by the ergodic
theorem [23]. Hence, for a given bounded function f , the
sample mean f̂ of f over the sampled states converges to
Eπf(ω). Notice that (7) requires only the ability to compute
the ratio π(ω′)/π(ω), avoiding the need to normalize π.

An ergodic chain M on state space Ω converges to its sta-
tionary distribution asymptotically. But a practical question
is how fast M becomes close to stationarity. One way to
measure the rate of convergence of M to stationarity is the
“mixing time” of the Markov chain. Let P be the transition
probabilities of M and let P t

x(·) be the distribution of the
state at time t given that M is started from the initial state
x ∈ Ω. If π is the stationary distribution of M, then the total
variation distance at time t with initial state x is defined as

∆x(t) = ‖P t
x − π‖ = max

S⊂Ω
|P t

x(S)− π(S)| (8)

The rate of convergence of M to stationarity can be
measured by the mixing time:

τx(ε) = min{t : ∆x(s) ≤ ε for all s ≥ t}. (9)

One approach to bound τx(ε) of a Markov chain with a
complex structure is the canonical path method [22]. In this
paper, we consider a highly complex Markov chain, hence
we use the canonical path method to bound τx(ε) of the
Markov chain simulated by the MCMCDA algorithm given
in Section IV.

For a finite, reversible and ergodic Markov chain M with
state space Ω, consider an undirected graph G = (V,E)
where V = Ω and E = {(x, y) : Q(x, y) > 0}. For each
ordered pair (x, y) ∈ Ω2, the canonical path γxy is a simple
path from x to y in G. In terms of M the canonical path
γxy is a sequence of legal transitions from x to y in M. Let
Γ = {γxy : x, y ∈ Ω} be the set of all canonical paths. Now
the mixing time of the chain is related to the maximum edge
loading:

ρ̄ = ρ̄(Γ) = max
e

1
Q(e)

∑
γxy3e

π(x)π(y)|γxy|. (10)

If ρ̄ is not so big, i.e., no single edge is overloaded, then
the Markov chain can move around fast and achieve the
rapidly mixing property. The main result for the canonical
path method is as follows [22]:

Theorem 1: Let M be a finite, reversible, ergodic Markov
chain with loop probabilities P (x, x) ≥ 1

2 for all states x. Let
Γ be a set of canonical paths with maximum edge loading ρ̄.
Then the mixing time of M satisfies τx(ε) ≤ ρ̄(log π(x)−1+
log ε−1), for any choice of initial state x.

IV. MCMC DATA ASSOCIATION ALGORITHM

In this section, we describe the MCMC data associa-
tion (MCMCDA) algorithm for efficiently approximating
the association probabilities βjk(i) and model posteriors
P (µk

i |Y1:t).
In JPDA, measurement validation is used to reduce the

number of measurement considered in computation of as-
sociation probabilities. The same measurement validation is
used for MCMCDA but we later find that it is a critical
step to approximate association probabilities in polynomial
time. Let ŷk,i be the predicted observation for target k when
µk

i , i.e., ŷk,i = C(i)E(xk
t |µk

i , Y1:t−1). Suppose there are N
observations and let vk,i

j = yj − ŷk,i for j = 1, . . . , N . The

covariance of vk,i
j is Bk,i = E(vk,i

j vk,i
j

T
|µk

i , Y1:t−1). For
each target k, let Bk = maxi |Bk,i|. The measurement yj is
validated for target k, if and only if, for some i,

vk,i
j

T
(Bk)−1vk,i

j < δ, (11)

where δ is an appropriate threshold. We assume that all
measurements are validated with at least one target. If not,
we can always consider the reduced problem, which consists
of only validated measurements and targets with at least
one validated measurement, and separately estimate states
of targets with no validated measurement.

We encode the feasible joint association events in a graph.
Let G = (Vex, Eex) be a graph with vertex set Vex = W ∪
U ∪ V and edge set Eex = F ∪ E, where W = {µk

i :
1 ≤ k ≤ K, 1 ≤ i ≤ M} is a set of kinematic models,
U = {k : 1 ≤ k ≤ K} is a set of target indices, V =
{yj : 1 ≤ j ≤ N} is a set of observations, F = {(w, u) :
κ(w) = u, w ∈ W,u ∈ U} with κ : W → {1, . . . ,K}
mapping kinematic model w ∈ W to its target index, and
E = {(u, v) : ∃i s.t. (ŷu,i − v)T (Bu)−1(ŷu,i − v) < δ, u ∈
U, v ∈ V }. An edge (u, v) ∈ E represents that observation v
is validated for target u according to (11). An edge (w, u) ∈
F represents that the kinematic model of target u is w. Note
that all kinematic models {µu

i : 1 ≤ i ≤ M} of target u are
only connected to u. For future reference, let Ga = (U, V,E)
and Gm = (W,U, F ); and let ι : W → {1, . . . ,M} be a
mapping from kinematic model w ∈ W to its model index.

We now define a set of feasible events over G. Let Ω be
a set of all feasible events defined over G such that ω =
(ωm, ωa) ∈ Ω with ωm ⊂ F and ωa ⊂ E forms a subgraph
in G. An event ω = (ωm, ωa) ∈ Ω is feasible if ωa is a
matching in Ga and ωm is a k-matching in Gm. Based on the
parametric false alarm model, the posterior of ω ∈ Ω can be
computed as

P (ω|Y1:t) = P (ωa, ωm|Y1:t)
= 1

Z P (ωa|Y1:t−1)P (Yt|ωa, ωm, Y1:t−1)P (ωm|Y1:t−1)
= 1

Z λ
N−|ωa|
f p

|ωa|
d (1− pd)K−|ωa| ∏

(u,v)∈ωa Nu(v;ωm)

×
∏

(w,u)∈ωm P
(
µu

ι(w)|Y1:t−1

)
,

(12)
where Z is a normalizing constant and Nu(v;ωm) is the
Gaussian density function of variable v with mean ŷu,ι(w)

and covariance Bu,ι(w) for (w, u) ∈ ωm. Notice that



Algorithm 1 (Multiple-model) MCMCDA (single step)
Sample U from Unif[0, 1]
if U < 1

2 then
ω′ = ω

else
(ωm, ωa) = ω
Choose e = (u, v) ∈ Eex \ ωm uniformly at random
if e ∈ F then

ω′m = ωm + e− e′, where e′ = (w, v) ∈ ωm

else
if e ∈ ωa then

ω′a = ωa − e
else if both u and v are unmatched in ωa then

ω′a = ωa + e
else if exactly one of u and v is matched in ωa and
e′ is the matching edge then

ω′a = ωa + e− e′

else
ω′a = ωa

end if
end if
ω′ = (ω′m, ω′a)

end if
ω = ω′ with probability A(ω, ω′)

P (µu
ι(w)|Y1:t−1) are computed from the interaction step of

IMM [5].
The MCMC data association (MCMCDA) algorithm is an

MCMC algorithm whose state space is the set of all feasible
events Ω and whose stationary distribution is the posterior
(12). Each step of the MCMCDA algorithm is described in
Algorithm 1, where A(ω, ω′) = min

(
1, π(ω′)

π(ω)

)
and π(ω) =

P (ω|Y1:t) from (12). There are four MCMC moves and we
name them for future reference: (i) a model switch move
proposes ω′m = ωm + e− e′; (ii) an addition move proposes
ω′a = ωa + e; (iii) a deletion move proposes ω′a = ωa − e;
and (iv) a switch move proposes ω′a = ωa + e− e′.

Now suppose that Algorithm 1 is repeated for S steps
and let ωs be the state of the chain at step s. Let µ̂k

i =
1
S

∑S
s=1 I((µk

i , k) ∈ ωm
s ), β̂jk(i) = 1

Sµ̂k
i

∑S
s=1 I((k, yj) ∈

ωa
s, (µ

k
i , k) ∈ ωm

s ) for µ̂k
i > 0 and β̂jk(i) = 0 for µ̂k

i = 0,
where I is an indicator function. If the Markov chain is
ergodic, by the ergodic theorem [23], β̂jk(i) → βjk(i) and
µ̂k

i → P (µk
i |Y1:t) almost surely as S → ∞. In the next

section, we show that the Markov chain simulated by Algo-
rithm 1 is ergodic and analyze the rate of this convergence.
If the chain converges to its stationary distribution fast, we
can find good approximations with small S.

V. ANALYSIS

Let M be the Markov chain simulated by Algorithm 1.
Since the self-loop probability is nonzero, M is aperiodic.
It can be easily seen that M is irreducible, i.e., all states
communicate, for example via the empty matching. In ad-
dition, the transitions described in Algorithm 1 satisfy the

detailed balance condition (7) so M is reversible. Hence,
by the ergodic theorem, the chain converges to its stationary
distribution [23].

We first establish few facts. In (12), the normalizing
constant is

Z =
∑
ω∈Ω

P (ωa|Y1:t−1)P (Yt|ωa, ωm, Y1:t−1)P (ωm|Y1:t−1).

(13)

We can bound each likelihood term as L ≤ Nu(v;ωm) ≤
L̄, for all (u, v) ∈ Ea and ωm, where

L̄ = max
1≤k≤K,1≤i≤M

{(
(2π)ny |Bk,i|

)− 1
2
}

L = min
1≤k≤K,1≤i≤M

{(
(2π)ny |Bk,i|ec(k,i)δ

)− 1
2
}

.

Here, Bk,i are positive definite matrices and c(k, i) =
λmax((Bk,i)−1)/λmin((Bk)−1), where λmax(A) and λmin(A)
are the maximum and minimum eigenvalues of matrix A,
respectively. We assume that targets are maintained by co-
variance control and c(k, i) < c̄ for some constant c̄. Notice
that the lower bound L is due to the measurement validation.

To prove Theorem 2, we need the following lemmas. Note
that the omitted proofs are given in Appendix.

Lemma 1: For any ω0, ω1, ω2 ∈ Ω, if ωm
0 = ωm

1 =
ωm

2 and ω1 = ω0 − e0, for some edge e0 ∈ ω0,
and ω2 = ω1 − e1, for some edge e1 ∈ ω1, then
π(ω0)/π(ω1) ≤ C, π(ω0)/π(ω2) ≤ C2, π(ω1)/π(ω0) ≤ D,
and π(ω2)/π(ω0) ≤ D2, where C = pdL̄

λf(1−pd) and D =
λf(1−pd)

Lpd
.

Lemma 2: Suppose that P
(
µk

i |Y1:t−1

)
≥ µ for all 1 ≤

i ≤ M and 1 ≤ k ≤ K. For any ω1, ω2 ∈ Ω, if ωa
1 = ωa

2

and ω1 = ω2 − e2 + e1 for edges e1 ∈ ω1 and e2 ∈ ω2 with
e1 and e2 sharing a common vertex, then π(ω1)

π(ω2)
≤ H , where

H = L̄/(µL).

Lemma 3: Suppose that P
(
µk

i |Y1:t−1

)
≥ µ for all 1 ≤

i ≤ M and 1 ≤ k ≤ K. Let R = max{1, C, D, H},
where C and D are defined in Lemma 1 and H is defined in
Lemma 2. Then the maximum edge loading of the Markov
chain M is bounded as ρ̄ ≤ 6R4K2(N + M).

Remark 1: In Lemma 3, we have assumed that
P

(
µk

i |Y1:t−1

)
≥ µ for all i and k. If P

(
µk

i |Y1:t−1

)
< µ,

then the contribution from model i for target k is small in
(3) and its contribution can be safely ignored. Thus, one
strategy is to ignore models whose priors are less than the
threshold µ. It can be seen as “model validation” similar to
the measurement validation in JPDA. Hence, from now on,
we assume that P

(
µk

i |Y1:t−1

)
≥ µ for all 1 ≤ i ≤ M and

1 ≤ k ≤ K.

For Theorem 2 below, define m1 = max{1, L̄}, m2 =



min{1, L},

m3(K, N) = max
0≤k≤K

{λN−k
f pk

d (1− pd)K−k},

m4(K, N) = min
0≤k≤K

{λN−k
f pk

d (1− pd)K−k}, and

m5(K, N) = K log
m1

m2

M

µ
+ log

m3(K, N)
m4(K, N)

+
K+1∑
k=1

log k +
N∑

n=1

log n.

Theorem 2: Suppose that λf > 0 and 0 < pd < 1. Then
the mixing time of the Markov chain M is bounded by
τx(ε) ≤ 6R4K2(N+M)(m5(K, N)+log ε−1) for all x ∈ Ω.

Remark 2: Let τ̄(ε) be the upper bound found in Theo-
rem 2. Since m5(K, N) is polynomial in K and N , τ̄(ε) is
polynomial in the number of kinematic models K and the
number of measurements N . If we assume that both K and
M are fixed, τ̄(ε) = O(N(N log N + log ε−1)).

Let p(ω) be the distribution of the states of M after
simulating Algorithm 1 for at least τ̄(ε) steps. Then the total
variation distance satisfies ‖p − π‖ ≤ ε. Hence, for a given
bounded function f : Ω → R, we can estimate Eπf by the
sample mean f̂ = 1

S

∑S
s=1 f(ωs), where {ωs} are sampled

from p. However, there is a small bias in our estimates since
we are not sampling from π. The following theorem from
[18] gives an upper bound on the number of samples needed
for finding good estimates.

Theorem 3: Let 0 < ε1, ε2 ≤ 1 and 0 < η < .5. Suppose
that ‖p−π‖ ≤ ε for ε ≤ ε1ε2/8. If f : Ω → [0, 1], then, with
a total of 504ε−2

1 ε−1
2 dlog η−1e samples from p, we can find

estimates f̂ for Eπf with probability at least 1 − η, such
that, for Eπf ≥ ε2, f̂ estimates Eπf within ratio 1 + ε1,
i.e., (1 − ε1)Eπf ≤ f̂ ≤ (1 + ε1)Eπf , and, for Eπf < ε2,
f̂ ≤ (1 + ε1)ε2.

Following Remark 2, for fixed K and M , τ̄(ε) =
O(N(N log N + log ε−1)). Combining this fact with The-
orem 3, the time complexity of the overall procedure is
S = O(ε−2

1 ε−1
2 log η−1N(N log N + log(ε−1

1 ε−1
2 ))). Hence,

with a total of S samples, Algorithm 1 finds estimates f̂ for
Eπf with probability at least 1−η, such that, for Eπf ≥ ε2,
f̂ estimates Eπf within ratio 1 + ε1, and, for Eπf < ε2,
f̂ ≤ (1+ε1)ε2. We can simplify further by letting ε0 = ε1ε2.
Then the time complexity is O(ε−2

0 log η−1N(N log N +
log(ε−1

0 ))).
Hence, we can estimate P (µk

i |Y1:t) by letting f(ω) =
I((µk

i , k) ∈ ωm). The association probability βjk(i) can be
estimated by f̂1/f̂2 where f1(ω) = I((k, yj) ∈ ωa, (µk

i , k) ∈
ωm) and f2(ω) = I((µk

i , k) ∈ ωm). As long as f̂2 ≥ ε′ for
some ε′ > 0, we can find a good approximation of βjk(i)
with a small number of samples. Again, when P (µk

i |Y1:t) is
small, the contribution from model i for target k is small in
(3), hence its contribution can be safely ignored. Thus, it is
beneficial to apply the model validation method discussed in
Remark 1 when computing βjk(i) and eventually (3).

VI. SIMULATION RESULTS

In this section, we compare the performance of
MCMCDA-based IMM algorithm against JPDA-based IMM
algorithm for tracking multiple maneuvering targets. There
are 8 targets and each target has three kinematic models
based on the discrete-time linear dynamics (1):

(Model 1) Second-order kinematic model:

A(νk
t = 1) =


1 δ 0 0
0 1 0 0
0 0 1 δ
0 0 0 1



G(νk
t = 1) =


δ2/2 0

δ 0
0 δ2/2
0 δ


and Q(νk

t = 1) = diag(0.83, 0.83), where δ is the sampling
period. The state vector is x = (x1, ẋ1, x2, ẋ2)T . This model
assumes that the variation in a velocity component is a
discrete time white noise acceleration [24].

(Model 2) Third-order kinematic model:

A(νk
t = 2) =


1 δ δ2/2 0 0 0
0 1 δ 0 0 0
0 0 1 0 0 0
0 0 0 1 δ δ2/2
0 0 0 0 1 δ
0 0 0 0 0 1



G(νk
t = 2) =


δ2/2 0

δ 0
1 0
0 δ2/2
0 δ
0 1


and Q(νk

t = 2) = diag(13.22, 13.22). The state vector is
x = (x1, ẋ1, ẍ1, x2, ẋ2, ẍ2)T . This is a third-order kinematic
model with accelerations modeled as a discrete time Wiener
process [24].

(Model 3) Third-order kinematic model: The same third-
order kinematic model used in (model 2) but Q(νk

t = 3) =
diag(0.83, 0.83).

In all cases, the measurement model (2) is used with

C =
[

1 0 0 0
0 1 0 0

]
and R = diag(0.83, 0.83).

The trajectories of 8 targets are shown in Figure 1. There
were about 200 measurements per each scan including false
alarms. In this example, λf = .0002, pd = .998, and the
model transition matrix is

Pm =

 .6 .2 .2
.2 .6 .2
.2 .2 .6

 .

The initial distributions of kinemetic models are P (νk
0 =

1) = .4, P (νk
0 = 2) = .3 and P (νk

0 = 3) = .3. The



Fig. 1. A scenario used in simulation - trajectories of 8 targets (initial
positions are circled)

Fig. 2. Comparison between MCMCDA against JPDA

average velocity is about 20 unit length per sampling time.
This example shows high levels of maneuvers and difficulties
in data association when targets move close by or cross
over each other. Without good initial position estimates,
tracking is not possible in this cluttered environment. Both
JPDA and MCMCDA have maintained tracks and this shows
the robustness of Bayesian formulation used in JPDA and
MCMCDA against clutter. In Figure 2, the performance
of MCMCDA-based IMM is compared against JPDA-based
IMM. The overall root-mean-square error of MCMCDA
was 3.49 and it was slightly higher than JPDA’s 3.39 (see
Figure 3). But MCMCDA outperformed in terms of the algo-
rithm running time. The overall running time of MCMCDA
was 60.92s while it was 269.11s for JPDA (see Figure 4).
Hence, MCMCDA saved more than 75% of computation
time compared to JPDA while achieving about the same level
of performance.

VII. CONCLUSION

Tracking multiple maneuvering targets in a cluttered en-
vironment is a challenging problem. A combination of IMM
and JPDA has proved very effective for solving this problem.
However, the exact computation of the combined approach
has the time complexity which is exponential in the numbers

Fig. 3. Average estimation error

Fig. 4. Total running time

of kinematic models and measurements. In this paper, we
have presented an efficient approximation algorithm for
tracking multiple maneuvering targets based on Markov
chain Monte Carlo data association (MCMCDA) and proved
that the time complexity of the algorithm is polynomial in
the size of the problem.

APPENDIX

Proof of Lemma 1
ω0 and ω1 are identical except that ω1 is missing the edge

e0 ∈ E. So |ω0| = |ω1|+ 1. If e0 = (u, v) and k = |ωa
0|,

π(ω0)/π(ω1) =
λN−k

f pk
d (1− pd)K−k

λ
N−(k−1)

f pk−1
d (1− pd)K−(k−1)

Nu(v; ωm
0 )

=
pd

λf(1− pd)
Nu(v; ωm

0 ) ≤ C.

On the other hand,

π(ω1)/π(ω0) =
λ

N−(k−1)

f pk−1
d (1− pd)K−(k−1)

λN−k
f pk

d (1− pd)K−k

1

Nu(v; ωm
0 )

=
λf(1− pd)

pd

1

Nu(v; ωm
0 )

≤ D.

Since π(ω0)/π(ω2) = π(ω0)/π(ω1) × π(ω1)/π(ω2), by
repeating the above argument twice, we get π(ω0)/π(ω2) ≤
C2. Similarly, we have π(ω2)/π(ω0) ≤ D2.



Proof of Lemma 2

Suppose that e1 = (w1, k) and e2 = (w2, k) and let i1 =
ι(w1) and i2 = ι(w2). Since ωa

1 = ωa
2,

π(ω1)
π(ω2)

=
P

(
µk

i1
|Y1:t−1

)
P

(
µk

i2
|Y1:t−1

) P (Yt|ω1, Y1:t−1)
P (Yt|ω2, Y1:t−1)

. (14)

Now at most one observation is connected to the vertex
k. If there is an observation connected to k, likelihoods
P (Yt|ω1, Y1:t−1) and P (Yt|ω2, Y1:t−1) differ only for this
observation. Hence, the likelihood ratio in (14) is bounded
above by L̄/L. Notice that L̄/L ≥ 1. Since P

(
µk

i2
|Y1:t−1

)
≥

µ, π(ω1)
π(ω2)

≤ H .

Proof of Lemma 3

For X, Y ∈ Ω, the canonical path γXY is defined as
follows. Consider the symmetric differences Xm ⊕ Y m and
Xa⊕Y a, where X⊕Y = (X−Y )∪(Y −X). Xm⊕Y m is a
disjoint collection of paths in Gm, each of which has edges
that belong to Xm and Y m alternately. Xa⊕Y a is a disjoint
collection of paths in Ga including closed cycles, each of
which has edges that belong to Xa and Y a alternately. We
first fix ordering on simple paths in Gm followed by simple
paths in Ga. For paths in Ga, designate a “start vertex” to
each of the paths, which is arbitrary if the path is a closed
cycle but must be an endpoint otherwise. This gives a unique
ordering P1, P2, . . . , Pm on the paths in Xm ⊕Y m followed
by Pm+1, Pm+1, . . . , Pn on the paths appearing in Xa⊕Y a.
The canonical path from X to Y involves “unwinding” each
of the Pi in turn as follows. We need to consider three cases:

(i) Pi is a path in Xm⊕Y m. Pi contains three vertices since
each target is connected to a single model. Let Pi consist of
the sequence (w1, k, w2). Perform the switch move replacing
(w1, k) with (w2, k).

(ii) Pi is a path in Xa ⊕ Y a and Pi is not a cycle. Let
Pi consist of the sequence (v0, v1, . . . , vl) of vertices with
the start vertex v0. If (v0, v1) ∈ Y , perform a sequence of
switching moves replacing (v2j+1, v2j+2) by (v2j , v2j+1) for
j = 0, 1, . . ., and finish with an addition move if l is odd. If
(v0, v1) ∈ X , remove (v0, v1) and proceed as before for the
reduced path (v1, . . . , vl).

(iii) Pi is a path in Xa ⊕ Y a and Pi is a cycle. Let Pi

consist of the sequence (v0, v1, . . . , v2l+1) of vertices, for
l ≥ 1, where v0 is the start vertex, and (v2j , v2j+1) ∈ X for
j = 0, . . . , l, with remaining edges belonging to Y . We first
remove the edge (v0, v1). Now we are left with an open path
O with endpoints v0, v1, with the start vertex vk of O, for
k ∈ {0, 1}. Then we unwind O as in (i) above but treating
v1−k as the start vertex to identify that it was a cycle.

Let q be an arbitrary edge in the Markov chain M, i.e., a
transition from ω to ω′ 6= ω. Let cp(q) = {(X, Y ) : γXY 3
q} be the set of canonical paths that use q. We define a
function ηq : cp(q) → Ω as follows:

ηq(X, Y ) =

8>>>>><
>>>>>:

X ⊕ Y ⊕ ω,
if q is a model switch move;

X ⊕ Y ⊕ (ω ∪ ω′)− eXYq ,
if q is a switch move and

the current path is a cycle;
X ⊕ Y ⊕ (ω ∪ ω′), otherwise,

where eXYq
is the edge in X adjacent to the start vertex that

was removed first in (iii) above. Notice that ηq(X, Y ) ∈ Ω
and an injective function. Since |F | = MK,

Q(q) = Q(ω, ω′) = π(ω)P (ω, ω′) (15)

=
1

2(|E|+ (M − 1)K)
min{π(ω), π(ω′)}.

Next, we bound π(X)π(Y ) and we need to consider five
cases:

(i) q is a model switch move. We have ω′ = ω + e − e′

and ω ∪ ηq(X, Y ) and X ∪ Y are identical when viewed as
multisets. Hence,

π(X)π(Y ) = π(ω)π(ηq(X, Y ))

=
2(|E|+(M−1)K)Q(q)

min{π(ω),π(ω′)} π(ω)π(ηq(X, Y ))

= 2(|E|+ (M − 1)K)Q(q)max
n

1,
π(ω)
π(ω′)

o
π(ηq(X, Y ))

≤ 2H(|E|+ (M − 1)K)Q(q)π(ηq(X, Y ))
≤ 2R(|E|+ (M − 1)K)Q(q)π(ηq(X, Y )),

where we used (15) in the second equality and Lemma 2 in
the first inequality.

(ii) q is a deletion move. We have ω′ = ω − e and
ηq(X, Y ) = X ⊕ Y ⊕ (ω ∪ ω′). Since ω ∪ ηq(X, Y ) and
X ∪ Y are identical when viewed as multisets,

π(X)π(Y ) = π(ω)π(ηq(X, Y ))

= 2(|E|+ (M − 1)K)Q(q)max
n

1,
π(ω)
π(ω′)

o
π(ηq(X, Y ))

≤ 2R(|E|+ (M − 1)K)Q(q)π(ηq(X, Y )),

where we used 15) in the second equality and Lemma 1 for
the last inequality.

(iii) q is an addition move. We have ω′ = ω + e and
ηq(X, Y ) = X ⊕ Y ⊕ (ω ∪ ω′). Since ω ∪ ηq(X, Y ) and
X ∪ Y are identical when viewed as multisets, using the
arguments from (i),

π(X)π(Y ) ≤ 2R(|E|+ (M − 1)K)Q(q)π(ηq(X, Y )).

(iv) q is a switch move and the current path is a cycle.
Suppose ω′ = ω+e−e′. Let ω1 = ω+e. Then ω′ = ω1−e′.
Since π(ω)

π(ω′) = π(ω1)
π(ω′)

π(ω)
π(ω1)

, by Lemma 1, π(ω)
π(ω′) ≤ CD ≤ R2.

Since ηq(X, Y ) = X ⊕ Y ⊕ (ω ∪ ω′)− eXYq
, the multisets

ω ∪ ηq(X, Y ) differs from X ∪ Y only in that e and eXYq

are missing from it. Hence, by Lemma 1,

π(X)π(Y ) ≤ C2π(ω)π(ηq(X, Y ))

= 2C2(|E|+ (M − 1)K)Q(q)max
n

1,
π(ω)
π(ω′)

o
π(ηq(X, Y ))

≤ 2R4(|E|+ (M − 1)K)Q(q)π(ηq(X, Y )).

(v) q is a switch move and the current path is not a cycle.
This case is similar to (iii) but the multisets ω ∪ ηq(X, Y )
differs from X ∪Y only in that e is missing from it. Hence,
by Lemma 1,

π(X)π(Y ) ≤ Cπ(ω)π(ηq(X, Y ))

= 2C(|E|+ (M − 1)K)Q(q)max
n

1,
π(ω)
π(ω′)

o
π(ηq(X, Y ))

≤ 2R3(|E|+ (M − 1)K)Q(q)π(ηq(X, Y )).

In summary, we have

π(X)π(Y ) ≤ 2R4(|E|+ (M − 1)K)Q(q)π(ηq(X, Y )).

Thus, for any transition q,
1

Q(q)

∑
γXY 3q π(X)π(Y )|γXY |

≤ 2R4(|E|+ (M − 1)K)
∑

γXY 3q π(ηq(X, Y ))|γXY |
≤ 6R4K(|E|+ (M − 1)K)

∑
γXY 3q π(ηq(X, Y ))

≤ 6R4K(|E|+ (M − 1)K))
≤ 6R4K2(N + M)



where the second inequality follows from the fact that the
length of any canonical path is bounded by 3K, the third
equality is due to the fact that ηq is injective and π is a
probability distribution, and the last inequality follows from
|E| ≤ KN . Hence, ρ̄ ≤ 6R4K2(N + M).

Proof of Theorem 2

M is a finite, reversible, ergodic Markov chain with loop
probabilities P (x, x) ≥ 1

2 for all states x (see Section IV).
Hence, by Theorem 1, we have

τx(ε) ≤ ρ̄(log π(x)−1 + log ε−1). (16)

The upper bound for ρ̄ is computed from Lemma 3. Now
we just need to find the upper bound for π(x)−1. From (13),

Z ≤
∑
ω∈Ω

mK
1 m3(K, N)

= mK
1 m3(K, N)|Ω|

From [18], for fixed ωm,

|{ω ∈ Ω : ωm ⊂ ω}| ≤
K∑

k=0

(
K

k

)
N !

(N − k)!
.

Since the number of different ωm can be at most MK ,

|Ω| ≤ MK
K∑

k=0

(
K

k

)
N !

(N − k)!
.

Hence,

Z ≤ mK
1 m3(K, N)MK

K∑
k=0

(
K

k

)
N !

(N − k)!

≤ mK
1 m3(K, N)MK(K + 1)!N !,

Although this bound on Z is not tight, it will serve our
purpose. For any ω ∈ Ω, π(ω) ≥ 1

Z mK
2 m4(K, N)µK so

1
π(ω)

≤ Z

mK
2 m4(K, N)µK

≤
(

m1

m2

M

µ

)K
m3(K, N)
m4(K, N)

(K + 1)!N !.

Hence,

log 1
π(ω) ≤ log

((
m1
m2

M
µ

)K
m3(K,N)
m4(K,N) (K + 1)!N !

)
= m5(K, N).

Putting all together, we have τx(ε) ≤ 6R4K2(N +
M)(m5(K, N) + log ε−1) for all initial state x ∈ Ω.
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