
Integration of Clinical Workflows
with Privacy Policies on a Common
Semantic Platform

Jan Werner, Bradley Malin, Yonghwan Lee,
Akos Ledeczi, Janos Sztipanovits
Institute for Software Integrated System
Vanderbilt University, Nashville, TN

presented by Janos Mathe

2nd International Workshop on Model-Based Design of
Trustworthy Health Information Systems

Model Based Design for Clinical Workflows

• Metamodel of a workflow
language

• Description of the
modeling abstractions
eg. Messages, Services
and Composition Rules

• Definition of a workflow
domain

• Model of a workflow

• Representation of
message exchange
patterns, definition of
services and messages
in a clinical setting
eg. Data Provider Service,
Medical Record Message

• Definition of
communication protocol

• Messages in runtime
environment

• Service invocations and
replies with requested
data
eg. Patient record of
‘John Doe’

• Instance of
communication pattern

Model Message exchange

<ns:RetrieveDataResponse>
<ns:return>
<address>not in db yet</address>
<dob>0</dob>
<loginname/>
<mrn>1</mrn>
<realname>John Doe</realname>
<critical>0</critical>
<docId>10</docId>
<unit>0</unit>
</ns:return>
</ns:RetrieveDataResponse>

Metamodel

Describes Describes

Privacy Policies

• Privacy Policies used in this presentation:
– A covered entity may send protected health information to a business

partner for de-identification purposes only if there exists a contractual
agreement between the communicating entities.

– Access to the patient’s medical record should only be granted to
primary care physicians listed in medical record, or in case of
emergency situation access should be provided to any physician
following the “Break Glass” policy

Design of a simple workflow language

Design of a simple workflow language

Model of a workflow

Workflow model

Data provider sends the sensitive data for de-identification. De-identified data is finally stored
in local database

Privacy Policy

Covered Entity sends the Protected Health Information for de-identification to Business
Associate and receives back the de-identified data A covered entity may send protected health
information to a business partner for de-identification purposes only if there exists a
contractual agreement between the communicating entities.

Integration using Structural Semantics Approach

• How to formally represent a domain?

• A domain D is given by
– An alphabet Σ

– A set of n-ary function symbols Υ

– A set of model realizations

– A set of constraints C such that

• Constraints are given as proofs

),(R

DrCrRr ,,

))(,()(xwellformCrrxCr

))(,()(xmalformCrrxCr

Model transformation and interpretation

message('message_id-0066-00000004’).
service('de-identification _id-0066-00000003').
receivemessage('receivemessage_id-0068-00000009').
receivemessage('receivemessage_id-0068-00000009','message_id-
0066-00000004','de-identification_id-0066-00000003').

workflowmodel('workflow_id-0065-00000001').
sendmessage('sendmessage_id-0068-00000002').
contains('sendmessage_id-0068-00000002','workflow_id-0065-
00000001').
(…)

canconn('receivemessage',X,Y) :-
message(X), service(Y).

malform(receivemessage(N,X,Y)):-
receivemessage(N,X,Y), \+canconn('receivemessage',X,Y)

cancontain(X,Y) :-
sendmessage(X), workflowmodel(Y).

malform(purpose(Y,V)) :-
purpose(Y,V), purpose(Y,W), (V \== W).

malform(purpose(Y,V)) :-
purpose(Y,V), \+entityconnection(Y).

(…)

M
e
ta

 le
v
e
l

M
o
d
e
l le

v
e
l

GME Horn domain

Translation of an example workflow metamodel
canconn('receivemessage',X,Y) :-

message(X), service(Y).
malform(receivemessage(N,X,Y)):-

receivemessage(N,X,Y),
\+canconn('receivemessage',X,Y)

cancontain(X,Y) :-
sendmessage(X),
workflowmodel(Y).

malform(purpose(Y,V)) :-
purpose(Y,V),
purpose(Y,W), (V \== W).

malform(purpose(Y,V)) :-
entityconnection(Y,V),
\+message(Y).

Representation of the metamodel using Prolog terms.

Model transformation and interpretation

message('message_id-0066-00000004’).
service('de-identification _id-0066-00000003').
receivemessage('receivemessage_id-0068-00000009').
receivemessage('receivemessage_id-0068-
00000009','message_id-0066-00000004','de-
identification_id-0066-00000003').

workflowmodel('workflow_id-0065-00000001').
sendmessage('sendmessage_id-0068-00000002').
contains('sendmessage_id-0068-
00000002','workflow_id-0065-00000001').
(…)

canconn('receivemessage',X,Y) :-
message(X), service(Y).

malform(receivemessage(N,X,Y)):-
receivemessage(N,X,Y),
\+canconn('receivemessage',X,Y)

cancontain(X,Y) :-
sendmessage(X), workflowmodel(Y).

malform(purpose(Y,V)) :-
purpose(Y,V), purpose(Y,W), (V \== W).

malform(purpose(Y,V)) :-
purpose(Y,V), \+entityconnection(Y).

(…)

M
e
ta

 le
v
e
l

M
o
d
e
l le

v
e
l

GME Horn domain

Verification of model wellformedness

no_entity_mapping(S,R) :-
R = entitymapping(_,S,_),
\+entitymapping(X,S,_).

malform(service(S),R) :- service(S),
no_entity_mapping(S,R).

Additional constraints
Services have to be mapped to the
organizations

Malformed model

Additional constraints
Services have to be mapped to the
organizations

Verification of model wellformedness

Malformed model

no_entity_mapping(S,R) :-
R = entitymapping(_,S,_),
\+entitymapping(X,S,_).

malform(service(S),R) :- service(S),
no_entity_mapping(S,R).

Privacy policy as model constraint

no_entity_connection(E1,E2,R) :-
R = entityconnection(_,E1,E2), (E1\==E2),
\+ entityconnection(X,E1,E2).

malform(message(M),R) :- message(M),
sendmessage(MF,S1,M), receivemessage(MF2,M,S2),
entitymapping(EM1,S1,E1), entitymapping(EM2,S2,E2),
no_entity_connection(E1,E2,R).

Additional constraints – privacy
policy

Covered entity(E1) may send protected health
information (M) to business partner (E2) for de-
identification only if there exist partner link
(EntityConnection) between the entity (E1) and
business partner (E2)

Malformed model

Privacy policy as model constraint

no_entity_mapping(S,R) :-
R = entitymapping(_,S,_),
\+entitymapping(X,S,_).

malform(service(S),R) :- service(S),
no_entity_mapping(S,R).

no_entity_connection(E1,E2,R) :-
R = entityconnection(_,E1,E2), (E1\==E2),
\+ entityconnection(X,E1,E2).

malform(message(M),R) :- message(M),
sendmessage(MF,S1,M), receivemessage(MF2,M,S2),
entitymapping(EM1,S1,E1), entitymapping(EM2,S2,E2),
no_entity_connection(E1,E2,R).

Additional constraints

Wellformed model

Design of the policy language

Top level container of
the workflow model and
the policy document

Pointer to messages and
message contents in the
workflow model

Model of the policy with
the policy description
and policy document

Policy document

Separation of policies
for requests and replies

Definition of the
relationships
between data
objects

MICIS workflow model

• Workflow model of service providing patient’s medical records

• Outgoing message privacy policy:
• Access to the patient’s medical record should only be granted to primary care physicians

listed in medical record, or in case of emergency situation access should be provided to
any physician following the “Break Glass” policy

Generation of runtime enforced policies

M
o
d
e
l

G
e
n
e
ra

te
d

d
o
c
u
m

e
n
ts

Policy Description:

Service identifier

Type of the policy (incoming /
outgoing)

Description of fields from request
required to evaluate the policy

Information on the state of the
Decision Engine

Obligations executed upon the
service invocation

Policy Document:

:- dynamic break_glass/1.
:- dynamic treats/2.
:- dynamic critical/2.
:- dynamic retrievedata/2.
retrievedata(RecordNo,DocId):-

treats(RecordNo, DocId);
break_glass(RecordNo).

break_glass(RecordNo):-
critical(RecordNo,X), X>0.

Workflow documents

BPEL workflow description

WSDL Web Services
description

Deployment Configuration

MICIS architecture

Policy Decision and Enforcement Point

• Invocation of protected services is guarded by the Web Service
message interceptor implementing Policy Enforcement Point

• Policy Enforcement Point is driven by the configuration generated
from the models (Policy Description).

• Decision Point loads the Policy Documents deployed from the policy
models (Policy Store) and the saved state(State Information)

Web Service Container
(Axis2 running on Tomcat)

Modeling Integration Platform (MICIS-MIP)

Model
Transformation

Layer
P

o
lic

y
Tr

an
sl

at
o

r

Modeling
Environment

Model
Editor

Policy
Models

Data
Models

Workflow
Models

Policy Decision Point
(PDP)

P
o

lic
y

Se
t

Policy

Decision Engine

P
o

lic
y

En
fo

rc
em

en
t

P
o

in
t

 (
P

EP
)

C
o

n
te

xt
 H

an
d

le
r

Web
Service

Web
Service

Policy
Description

Web
Service

Web
Service

State
Information

Step by step enforcement of a dynamic policy
1. Parse the service invocation (Req)

2. Using the service ID and the Policy
Description (PD) find corresponding policies
[Px,…, Py]

3. Based on the service ID initialize the
appropriate state of the Decision Engine

4. Load policies into the Decision Engine

5. Based on PD indentify and load the
arguments from the Req into the Decision
Engine(Prolog)

6. Invoke the Decision Engine to decide on
access to protected service

7. Save the new state of Decision Engine

8. Execute the obligations (if specified in PD)

Parse service
invocation /

response

Allow
execution

Abort
execution

Initialize PDP

Load
arguments

Load
arguments

Invoke
PDP

Find
policy

Results

• Framework that unifies description of workflows and policies
on common semantic platform

• Prolog Based tool for verification of the models integrated in
GME modeling environment

• Policy Enforcement Engine integrated in a Service-Oriented
Architecture platform

Future Work

• Classification of HIPAA rules to represent them using
Structural constraints on the models

• Generation of the workflow models based on the set of rules
and policies

