
UNIVERSITÀ DEGLI STUDI DI MILANO

Facoltà di Science Matematiche, Fisiche e Naturali

DOTTORATO DI RICERCA IN INFORMATICA

XXI CICLO

SETTORE SCIENTIFICO DISCIPLINARE INF/01 INFORMATICA

Composite Intrusion Detection in Process Control
Networks

Tesi di: Julian L. Rrushi

Relatore: Prof. Carlo Bellettini

Coordinatore del Dottorato: Prof. Ernesto Damiani

Anno Accademico 2007-2008

Composite Intrusion Detection in Process Control
Networks

A dissertation presented

by

Julian L. Rrushi

to

Department of Computer Science

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Computer Science

Università degli Studi di Milano

Milano, Italy

January 2009

c©2009 - Julian L. Rrushi

All Rights Reserved.

Abstract

An intrusion detection ensemble, i.e. a set of diverse intrusion detection algo-

rithms employed as a group, has been shown to outperform each one those diverse

algorithms employed individually. Moving along this line, we have devised an in-

trusion detection ensemble that inspects network packets that flow across the pro-

cess control network of a digitally controlled physical system such as a power plant.

Such process control specific intrusion detection ensemble is comprised of a statistical

anomaly intrusion detection algorithm called the Estimation-Inspection (EI) algo-

rithm, a physical process aware specification-based approach, a theory of deception

for intrusion detection that we call mirage theory, and an alert fusion technique in

the form of a Bayesian theory of confirmation. In this research we leverage evolutions

of the content of specific locations in the random access memory (RAM) of control

systems into means of characterizing the normalcy or abnormality of network traffic.

The EI algorithm uses estimation methods from applied statistics and probability

theory to estimate normal evolutions of RAM content. The physical process aware

specification-based approach defines normal evolutions of RAM content via specifi-

cations developed manually through expert knowledge. Mirage theory consistently

introduces deceptive evolutions of RAM content, and hence employs communicating

finite state machines to detect any deviations caused by malicious network packets.

The alert fusion technique also leverages evolutions of RAM content to estimate the

degrees to which network traffic normalcy and abnormality hypotheses are confirmed

on evidence. In this dissertation we provide a detailed discussion of these intrusion

detection algorithms along with a detailed discussion of the alert fusion technique.

We also discuss an empirical testing of the proposed intrusion detection ensemble in a

small testbed comprised of Linux PC-based control systems that resemble the process

iii

Abstract iv

control environment of a power plant; and in the case of the EI algorithm, a prob-

abilistic validation via stochastic activity networks with activity-marking oriented

reward structures.

Contents

Title Page . i
Abstract . iii
Table of Contents . v
List of Tables . viii
List of Figures . ix
Citations to Published Material . xi
Acknowledgments . xii
Dedication . xiv

1 INTRODUCTION 1

2 BACKGROUND 7
2.1 Digital Control of Physical Processes 7

2.1.1 Distributed Control Systems 7
2.1.2 Sensors and Actuators . 9
2.1.3 Programmable Logic Controllers 9
2.1.4 ModBus Communication Protocol 12

2.2 Computer Network Attacks on Process Control Systems 14
2.2.1 Array Overflows . 15
2.2.2 Buffer Overflows . 15
2.2.3 Format String Vulnerabilities 17
2.2.4 Integer Overflows . 18
2.2.5 Dangling Pointers . 19
2.2.6 Control-Application Specific Memory Corruptions 20

2.3 Computer Network Attacks on Physical Systems 22
2.3.1 Attacks on Physical Equipment 22
2.3.2 Attacks on Physical Processes 24

2.4 Intrusion Detection . 24

3 RELATED RESEARCH 26
3.1 Applied Statistics for Intrusion Detection 26

v

Contents vi

3.2 Developing Specifications of Normal Behavior for Intrusion Detection 33
3.3 Related Research on Applied Deception 36
3.4 Other Related Research on Intrusion Detection in Process Control Net-

works . 40
3.5 Intrusion Alert Fusion . 43

4 PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 46
4.1 Introduction . 46
4.2 A Statistical Approach to Anomaly Intrusion Detection 48

4.2.1 Mathematical Modeling and Underlying Thesis 48
4.2.2 Estimating the Statistical Parameters of Ordinal and Dichoto-

mous Logistic Models . 53
4.2.3 The Estimation-Inspection Algorithm 60
4.2.4 Payload Coverage . 62

4.3 Discussion on Inductive Machine Learning in a DCS 65
4.3.1 Generating the Learning Data Set 65
4.3.2 Handling Black Swan Events 70

4.4 Probabilistic Validation . 72
4.4.1 Stochastic Activity Networks with Activity-Marking Oriented

Reward Structures . 75
4.4.2 Construction and Solution of Validation Models based on Stochas-

tic Activity Networks . 77

5 PROCESS AWARE SPECIFICATION-BASED DETECTION 84
5.1 Introduction . 84
5.2 Semantic Analysis of Network Traffic 86
5.3 Specifications of Control Network Traffic 90
5.4 Activity Network Modeling of Detection Specifications 92
5.5 Concrete Activity Network Models 95

5.5.1 Supervisory Control Specifications 95
5.5.2 Automatic Control Specifications 104

5.6 Discussion . 107

6 MIRAGE THEORY FOR DECEPTION-BASED DETECTION 110
6.1 Introduction . 110
6.2 Conducting Defensive Deception for Intrusion Detection 113
6.3 Real-Time Deceptive Event Generation 118

6.3.1 Continuous Simulation of Physical Processes and Equipment . 118
6.3.2 Deceptive Emulation via Network Traffic Mirroring 124

6.4 Analysis of Deception Capabilities in Mirage Theory 130

Contents vii

6.4.1 Reconnaissance for a Computer Network Attack on an Electric
Motor . 131

6.4.2 Empirical Quantification of Deception Effects 139

7 A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 145
7.1 Introduction . 145
7.2 Problem Statement . 146
7.3 Estimating the Hypothesis-based Probabilities of Evidence 151

7.3.1 Developing Incomplete-data Spaces and the Associated Sym-
bolic Analyzers . 153

7.3.2 Algorithmic Approach . 156
7.4 Estimating Prior Probabilities of Normalcy and Abnormality 162
7.5 Bayesian Comparison of the Normalcy and Abnormality Hypotheses . 165

8 EXPERIMENTAL EVALUATION 169
8.1 Testbed . 169
8.2 Test Vulnerabilities and Exploitations 170
8.3 Empirical Results . 171

9 CONCLUSIONS 177

Bibliography 181

List of Tables

6.1 A sample of values of physical parameters that characterize the oper-
ation of an AC induction motor studied in laboratory settings. 133

6.2 Excerpt from the data set acquired through ModScan from a target
PLC. 138

6.3 Measurements of the degree of linear association between holding reg-
ister variables and input register variables that were scanned from the
memory of a target PLC. 138

8.1 The gain in probability of detection in the case the EI algorithm is
made subject to detection failure injection. 173

8.2 The gain in probability of detection in the case the physical process
aware specification-based approach is made subject to detection failure
injection. 174

8.3 The gain in probability of detection in the case mirage theory is made
subject to detection failure injection. 174

8.4 The gain in false alarms rate in the case the EI algorithm is made
subject to detection failure injection. 175

8.5 The gain in false alarms rate in the case the physical process aware
specification-based approach is made subject to detection failure injec-
tion. 175

8.6 The gain in false alarms rate in the case mirage theory is made subject
to detection failure injection. 176

viii

List of Figures

2.1 Typical architecture of a Distributed Control System. 8
2.2 Organization of a typical Programable Logic Controller. 10
2.3 Organization of an attack packet payload that exploits faulty mappings

in ModBus applications. 22

4.1 Typical architecture of a SAN model developed for testing a set of
stochastic vectors produced by a probability mass function. 82

5.1 Schematic representation of the application of process-aware intrusion
detection specifications. 87

5.2 Schematic diagram of supervised thermal power increase via network
packets that withdraw control rods. 98

5.3 Excerpt from an activity network model that checks whether defined
network traffic induces high stresses in the walls of the reactor pressure
vessel. 100

5.4 Schematic diagram of an automatic corrective withdrawal of a control
rod that is conducted via a network packet in response to the loss of a
water pump. 105

5.5 Excerpt from an activity network model that checks whether a network
packet under inspection is the corrective response to the loss of a water
pump. 107

6.1 Boundary between continuous and discrete spaces exploited in mirage
theory to camouflage computer simulation or emulation of sensors, ac-
tuators, and physical processes. 115

6.2 A network packet payload that is indicative of the presence of physical
equipment and a physical process. 117

6.3 Excerpt from two communicating finite state machines that model two
individual control systems in a process control network. 121

6.4 Schematic diagram of an emulation of a continuous space via traffic
mirroring. 129

ix

List of Figures x

6.5 Normal density curves for applied voltage frequency γ and actual motor
rotational speed ω, left and right respectively, in which the standard
deviation of γ is 8.46751 and the standard deviation of ω is 25.40254 135

6.6 Scatter plot and linear regression line for the statistical relation be-
tween γ and ω. 137

6.7 POC curves for a PLC that controls a motor-driven water pump, as
estimated during a simulated loss of cooling attack. 141

6.8 POC curves that characterize the uncertainty under which adversaries
identify the target of a loss of cooling attack in the attack-defense
model given in this section. 143

6.9 ROC curve that corresponds to the POC curves of Figure 6.8. 144

7.1 Example of an ACH matrix in the proposed theory of confirmation. . 151
7.2 Example of the derivation of an incomplete-data space for a word vari-

able x1. 155
7.3 Probability tree estimation of prior normalcy and abnormality proba-

bilities. 164

Citations to Published Material

The dissertation research has led to the following publications:

J.L. Rrushi, and K. Kang. An Estimation-Inspection Algorithm for Ano-
maly Detection in Process Control Networks. Proceedings of the 3rd In-
ternational Conference on Critical Infrastructure Protection, Dartmouth
College, Hanover, New Hampshire, USA, March 2009, to appear.

J.L.Rrushi. Exploiting Physical Process Internals for Network Intrusion
Detection in Process Control Networks. 6th American Nuclear Society In-
ternational Topical Meeting on Nuclear Plant Instrumentation, Control,
and Human-Machine Interface Technologies, Knoxville, Tennessee, USA,
April 2009, to appear.

J.L. Rrushi, and K. Kang. CyberRadar: A Regression Analysis Approach
to the Identification of Cyber-Physical Mappings in Process Control Sys-
tems. Proceedings of the 3rd ACM/IEEE Workshop on Embedded Sys-
tems Security, Atlanta, Georgia, USA, October 2008.

J.L. Rrushi, and K. Kang. Mirage Theory: A Deception Approach to In-
trusion Detection in Process Control Networks. NATO Symposium on
Information Assurance for Emerging and Future Military Systems, Ljubl-
jana, Slovenia, October 2008.

J.L. Rrushi, and R.H. Campbell. Detecting Cyber Attacks on Nuclear
Power Plants. Proceedings of the 2nd International Conference on Crit-
ical Infrastructure Protection, George Mason University, Arlington, Vir-
ginia, USA, March 2008.

J.L. Rrushi, and R.H. Campbell. Using Deception to Facilitate Intrusion
Detection in Nuclear Power Plants. Proceedings of the 3rd International
Conference on Information Warfare and Security, Peter Kiewit Institute,
University of Nebraska Omaha, USA, April 2008.

C. Bellettini, and J.L. Rrushi. Low-level Coding Vulnerabilities: Research
on Attack, Defense and Evasion. Handbook of Research on Information
Security and Assurance, Jatinder Gupta and Sushil Sharma editors, pub-
lisher Idea Group, Inc., Spring 2008.

J.L. Rrushi, and R.H. Campbell. An Intrusion Detection System for Op-
eration in Nuclear Power Plants. 4th ITI Workshop on Dependability and
Security, Coordinated Science Laboratory, University of Illinois, Urbana,
USA, November 2007.

xi

Acknowledgments

The love for my family and homeland, and for God Jesus Christ, has been an

immense moral support for me throughout my difficult way towards a Ph.D. I wish

to first acknowledge in this dissertation Professor Emilia Rosti and Professor William

H. Sanders. Professor Rosti introduced me to science, and taught me how to conduct

scientific research. It was the education that I received from her that led me to enroll

in Ph.D. studies. Professor Sanders’ confidence in my potential for scientific research

has been a strong encouragement to overcome a myriad of difficulties that were deter-

ring my academic progress. I’m grateful for his unconditional moral support, which

is one of the factors that led me to completion of my Ph.D. studies.

I would like to thank my tutor and adviser Professor Carlo Bellettini for his supervi-

sion of my Ph.D. studies and research, and for his financial support. I would like to

also thank my coadviser Professor Kyoung-Don Kang for his efforts to validate and

improve my research ideas. Heartfelt thanks go to Professor Roy H. Campbell for ad-

vising me throughout my research at the University of Illinois at Urbana-Champaign.

Heartfelt thanks also go to Professor Carl A. Gunter of the University of Illinois at

Urbana-Champaign for helping me identify and understand the research challenges

in the area of cyber security of networked process control.

I would like to thank the external referees of my dissertation, namely Professor Rajni

Goel, Dr. Alfonso Valdes, and Dr. Alvaro Càrdenas, for their technical and editorial

advice. Special thanks go to Professor Goffredo Haus for his valuable moral support

and understanding. In this dissertation I take the chance to thank the country of

Italy for giving me what I consider the most precious gift in my life, namely higher

education. This is something I will never forget. My doctoral research was financially

xii

Acknowledgments xiii

supported by a doctoral scholarship, conference scholarships, and a research fellow-

ship from the Università degli Studi di Milano, Istituto per il Diritto allo Studio

Universitario, International Information Systems Security Certification Consortium,

U.S. Oak Ridge National Laboratory, U.S. Naval Research Laboratory, and U.S. In-

stitute for Information Infrastructure Protection.

Lastly, but by no means lesser in importance, I would like to thank my wife Ronilda

and my family for their immense love and care without which this doctoral work

would not have been possible.

Dedicated to my mother Liliana.

xiv

Chapter 1

INTRODUCTION

In this dissertation we discuss a novel process control specific network intrusion

detection ensemble for operation in the distributed control system (DCS) of a dig-

itally controlled physical system such as a power plant. A DCS is comprised of

application-specific computer devices and networks that are used to monitor and

control in real-time a physical system within a defined geographic location [110]. Ex-

amples of DCS-controlled physical systems include electric power generation plants,

chemical plants, oil refineries, etc.

A DCS is said distributed as the computer devices that form it are distributed

throughout a physical system, and thus are connected by communication networks

for control and monitoring. Concrete examples of DCS are the Mark VIe and OC

4000, which are provided by General Electric for power plant control. The operation

of the proposed intrusion detection ensemble is organized into three loops, namely

collection, analysis, and reporting.

In a collection loop the intrusion detection ensemble intercepts network packets as

1

Chapter 1: INTRODUCTION 2

they flow across a process control network. In an analysis loop the intercepted traf-

fic is analyzed independently by various intrusion detection algorithms, which are a

major contribution of this dissertation. In a reporting loop an intrusion report fusion

technique analyzes the hypotheses generated in the analysis loop, and hence fuses

them into a single composite estimation of legitimacy or intrusiveness.

The intrusion detection ensemble is formed by a statistical intrusion detection algo-

rithm called the Estimation-Inspection (EI) algorithm, a specification-based intrusion

detection approach that we call a physical process aware approach, a deception-based

intrusion detection approach, and a Bayesian theory of confirmation for intrusion

report fusion. We devised this intrusion detection ensemble for detecting unknown

computer network attacks on a DCS-controlled physical system. Thus, the intrusion

detection algorithms along with the intrusion report fusion technique that we have

devised in this research do not assume any knowledge of any internals of the computer

network attacks that we aim at detecting.

The intrusion detection ensemble bases the concept of normalcy or abnormality of

network traffic on continually changing content of specific memory locations in the

random access memory (RAM) of control systems, with the objective of capturing

the behavior of an entire cyber-physical system. In this research with cyber-physical

system we mean a process control environment such as a DCS integrated with a

physical system such as a power plant. Let us argue why in our research we leverage

evolutions of the content of specific locations in the RAM of control systems into

means of characterizing the normalcy or abnormality of network traffic.

We model as a matrix, say W , the portions of the RAM of control systems that hold

Chapter 1: INTRODUCTION 3

process measurement data or actuator control data along with set points. We view

matrix W as a conceptual dynamic system whose behavior consists of evolutions of

the values of the elements of the matrix W . Let us define the behavior of a physical

process as evolutions of values of physical parameters that characterize that physical

process. For example, the parameters that characterize the fission process within a

nuclear reactor include neutron population, reactivity, moderator temperature, ther-

mal power, etc.

Measurements of the physical parameters that characterize a physical process are com-

monly mapped to ordinary program variables stored in the RAM of control systems.

Taking into account that these program variables are modeled by specific elements

of the matrix W , the behavior of the physical process becomes part of the behavior

of the conceptual dynamic system. Let us define the behavior of a process control

network in a DCS as evolutions of specific RAM content caused by network packets

that flow over that process control network.

Recall that the payloads of such network packets read from or write into specific loca-

tions in the RAM of control systems. These payloads convey set points and actuator

control values that are commonly stored in ordinary program variables, which are

modeled by specific elements of the matrix W as well. Therefore the behavior of a

process control network also becomes part of the behavior of the conceptual dynamic

system. Thus, the matrix W is where the behavior of physical processes in a physi-

cal system and the behavior of a process control network in the associated DCS are

conceptually merged.

We conclude that the behavior of the conceptual dynamic system, and hence evo-

Chapter 1: INTRODUCTION 4

lutions of the content of specific locations in the RAM of control systems, capture

or represent the behavior of the entire cyber-physical system. We validated the said

result empirically through an observational study on an experimental cyber-physical

system. This experimental cyber-physical system was formed by some system and

network components of a DCS and a limited number of simulated physical compo-

nents of an advanced boiling water reactor (ABWR) [56, 37].

The observation result is the following: throughout a normal network operation of

the aforementioned simulated physical system, the continually changing content of

specific memory locations in the RAM of control systems follow specific flows that

persist over time. Thus, in our problem domain the challenge of determining the

normalcy or abnormality of network traffic takes the form of determining normal and

abnormal evolutions of the content of specific locations in the RAM of control sys-

tems, respectively.

For a network packet to be classified as normal, its payload should cause a normal

evolution of RAM content. The EI algorithm, which is comprised of an estimation

part and an inspection part, computes normal evolutions of RAM content via applied

statistics and probability theory. The estimation part of the EI algorithm uses logistic

regression integrated with maximum likelihood estimation in an inductive machine

learning process to estimate a series of statistical parameters, which in conjunction

with logistic regression formulae form a probability mass function for each program

variable stored in the RAM of a control system.

The inspection part of the EI algorithm uses the afore computed probability mass

functions to estimate the normalcy probability of a specific value that a network

Chapter 1: INTRODUCTION 5

packet under inspection is about to write to a program variable. The physical process

aware approach is developed manually through expert knowledge, and is comprised

of direct specifications of normal evolutions of RAM content. These specifications are

derived from rules that regulate the supervisory or automatic network operation of a

DCS-controlled physical system.

The deception-based intrusion detection approach introduces deceptive but consistent

evolutions of RAM content, and thus uses sequence detectors to check for deviations

caused by malicious network packets. The intrusion report fusion technique also lever-

ages evolutions of RAM content. It is a mathematical development of the Heuer’s

analysis of competing hypotheses (ACH) methodology [47] in the form of a Bayesian

theory of confirmation.

In technical terms, the intrusion detection ensemble runs in a dedicated computer

cluster. We use network sniffing devices to tap into all of the network segments

within a DCS. These devices sniff network traffic, which they send to the intrusion

detection ensemble for real-time inspection. The transmission of sniffed traffic from

network sniffing devices to the intrusion detection ensemble could be conducted ei-

ther in-band or out-of-band. Issues related to network traffic collection in real-time

lie outside the scope of this research.

In this dissertation we first discuss each one of the intrusion detection approaches indi-

vidually, and then proceed with a discussion of the intrusion report fusion technique.

We then describe an evaluation of the effectiveness of the EI algorithm, the physical

process aware approach, and the intrusion report fusion technique. The evaluation of

the effectiveness of the deception-based intrusion detection approach is given within

Chapter 1: INTRODUCTION 6

the discussion of this approach itself.

The process control environment, the field devices, and the industrial communication

protocol that are used as references in this research are a DCS [110], programmable

logic controllers (PLCs) [32, 95], and the ModBus protocol [83], respectively. The

physical system that is used as a reference throughout this research is an ABWR. In

this dissertation with logical variable we mean a program variable whose values are

either measurement data received from logical sensors or control data used to drive

logical actuators. Thus, the possible values of logical variables are 0 and 1.

In this dissertation with word variable we mean a program variable whose values are

either measurement data received from continuous sensors or control data that are

used to drive continuous actuators. The values of word variables are discrete and

are normally taken from specific intervals of values, including negative values. In

this dissertation the term network traffic is used to refer to network packets that are

transmitted over a process control network in a DCS.

Chapter 2

BACKGROUND

2.1 Digital Control of Physical Processes

2.1.1 Distributed Control Systems

A DCS is used to monitor and control in real-time physical systems within a de-

fined geographic location. A typical DCS architecture as derived from [110] is depicted

in Figure 2.1. It is comprised of devices and network segments distributed through

various layers, namely a supervisory level, one or more intermediate supervisory levels,

and a field level. At a supervisory level system operators use human-machine interface

(HMI) applications to send requests over a control network to control servers. Those

requests require that the receiving device supplies process data, or that it propagates

process set points down to lower levels.

A control server in turn requests process data from, or sends process set points to,

subordinate control servers at intermediate supervisory levels. Control servers at the

7

Chapter 2: BACKGROUND 8

Figure 2.1: Typical architecture of a Distributed Control System.

lowest intermediate level poll for data or send process set points to edge control sys-

tems, i.e. field level devices such as PLCs, which receive input from sensors and send

output by generating electrical signals in order to drive actuators. An edge control

system may communicate with digital sensors or actuators over a network that is

referred to as fieldbus.

Communications over control networks are conducted via protocols such as Mod-

Bus [83], Fieldbus [10], Distributed Network Protocol v3 (DNP3) [29], etc., while

fieldbus communications are conducted via protocols such as DeviceNet [98] or Mod-

Bus. In this dissertation we refer to control networks at various supervisory levels

along with fieldbus networks as a process control network.

Chapter 2: BACKGROUND 9

2.1.2 Sensors and Actuators

A sensor is a device that measures physical phenomena and converts the measured

value into an electrical signal. Sensors are categorized into logical and continuous.

Logical sensors can only detect a process state that is either true or false. They report

the detected state by turning a voltage or current on or off. Continuous sensors can

measure a process parameter that takes continuous values. They report via genera-

tion of voltages or currents that are proportional to the measured value.

An actuator is a mechanical device that converts electrical energy into mechanical

motion. Actuators are categorized into logical and continuous as well. Logical ac-

tuators allow a physical equipment to position or adjust outputs over two values,

i.e. usually open and closed, while continuous actuators do so over specific ranges of

values.

2.1.3 Programmable Logic Controllers

The internal design of a typical PLC follows a von Neumann architecture, and is

depicted in Figure 2.2 along with I/O modules that enable a PLC to receive input

from, and send output to physical processes usually through electrical signals. In the

actual context with input we mean measurements of physical process variables, such

as for example the temperature in a closed container, while with output we mean

generation of motion via equipment that changes process variables, such as for exam-

ple opening a valve to increase the water level in a tank.

Input is received from sensors, i.e. devices embedded in physical infrastructures that

translate physical phenomena into electrical signals. Output is sent by generating

Chapter 2: BACKGROUND 10

Figure 2.2: Organization of a typical Programable Logic Controller.

electrical signals in order to drive actuators, i.e. devices that transform electrical en-

ergy into mechanical energy usually as motion. The input cards and the output cards

of a PLC are connected through wiring to sensors and actuators, respectively. Some

PLCs, in particular those produced in the recent years, may also communicate with

sensors and actuators via a communication network referred to as fieldbus according

to industrial communication protocols such as DeviceNet [98]. Figure 2.2 depicts

also logical and continuous sensors and actuators.

Chapter 2: BACKGROUND 11

Voltage values that are generated by continuous sensors are referred to as analog

data, and are to be converted into a digital form before being processed by a PLC.

Voltage values are periodically sampled, and once acquired are processed via defined

equations that convert them into numerical values [26]. Similarly, numerical values

that a PLC sends to continuous actuators are to be converted into an analog form,

i.e. voltage values, via specific digital-to-analog conversion equations before having

these continuous actuators be subject to them.

The logic of how a PLC should monitor and control a physical process is encoded into

computer code referred to as logic solving scan programs, possibly following princi-

ples of control theory. Control theory is a discipline based on engineering and applied

mathematics that deals with optimal control of the behavior of dynamic systems

[14, 91].

At run time logic solving scan programs, input scan programs, i.e. programs that

read input values, output scan programs, i.e. programs that write output values, and

other PLC programs such as fault handling programs, power-up handling programs,

etc., are stored in a part of RAM referred to as program memory, as opposed to that

part of RAM identified as variable memory that is dedicated to storage of computa-

tion, input, and output data Figure 2.2.

Logic solving scan programs are usually written in one or more programming lan-

guages of the IEC-61131-3 industrial standard [57], namely ladder diagram language,

function block diagram language, structured text language, instruction list language,

and sequential function chart language. The C and C++ languages are also com-

monly used to program PLCs. A PLC operates by periodically executing a defined

Chapter 2: BACKGROUND 12

sequence of scan programs known as a control loop. In common PLCs control loops

are comprised of four stages, and are executed a large number of times each second.

In the first stage a PLC executes code that checks the hardware and software of the

PLC itself for faults. If no faults are detected, the PLC proceeds with the second

stage in which it executes input scan programs. These programs read input data

from the logical and continuous input cards, respectively, and copy these data in

RAM variable memory. The memory locations in which logical and continuous input

and output values are stored are preliminarily designated.

In the third stage the PLC executes logic solving scan programs that process input

data previously received from sensors and stored in RAM variable memory, and pro-

duce output data that they store also in RAM variable memory in their corresponding

designated locations. In the last stage the PLC propagates logical and continuous

output values from RAM variable memory into logical and continuous actuators,

respectively.

2.1.4 ModBus Communication Protocol

ModBus is an application layer messaging protocol that enables control systems to

communicate with each other in a client-server configuration within possibly different

types of buses and networks [83]. The ModBus data model defines four categories of

variables that hold I/O values. Discrete input variables are read only single-bit data

provided by logical sensors. Coil variables are read and write single-bit data provided

by, or destined for, logical sensors and logical actuators, respectively.

Input register variables are read only 16-bit data provided by continuous sensors.

Chapter 2: BACKGROUND 13

Holding register variables are read and write 16-bit data provided by, or destined for,

continuous sensors and continuous actuators, respectively. ModBus defines its own

addressing model in which each one of the variables of those four categories is as-

signed an address from 0 to 65535. Modus applications maintain a mapping between

addresses of variables as defined by the ModBus addressing model and addresses of

locations in RAM variable memory where these variables are stored.

The said mapping is vendor specific. A ModBus protocol data unit (PDU), i.e. a

network packet payload that conveys information that a sending device wants a re-

ceiving device to process, is comprised of two fields, namely a function code and data.

Function codes indicate an operation on ModBus variables, such as write single reg-

ister, read coils, etc. Function codes are encoded in one byte and their valid values

lie in the 1 to 255 range in decimal representation.

The data field in a PDU that is sent from a client to a server contains additional

information such as ModBus addresses, the number of variables that are to be han-

dled, or the number of bytes in the network packet payload. Server devices need this

information to carry out a task specified by the associated function code. Neverthe-

less, in some specific requests a function code alone is sufficient for a server device to

perform the required task, therefore in these requests the data field is of zero length.

The data field in a response PDU sent from a server to a client contains the data that

the client had preliminarily requested via a request PDU.

For example, if a master computer, say A, controlled by human operators needs to

acquire the values of four discrete input variables generated by logical sensors and

stored contiguously in the RAM variable memory of a PLC, say B, then A sends to

Chapter 2: BACKGROUND 14

B a request PDU in which it specifies a function code of 0x02, which according to the

protocol specification stands for read discrete input, a starting address in the 0x0000

to 0xFFFF range, which in this example will be the address of the first discrete input

variable that is being asked to be read, and the number of discrete input variables

that A is asking to read, namely four in this example.

In a regular transaction device B will derive from the function code the action to

perform, namely read discrete input, will use the starting address and the number of

discrete input variables that A is asking to read for the purpose of determining the

address of each one of these discrete input variables, will read their values from RAM

variable memory and will place them in the data field of a response PDU, which it

then sends to device A. In the ModBus addressing model coil variables are addressed

starting from zero. Thus, the address of the first coil is 0, the address of the second

coil is 1, and so on. In ModBus the output value 0x0000 requests the coil to be 0

(off), while the output value 0xFF00 requests the coil to be 1 (on).

2.2 Computer Network Attacks on Process Con-

trol Systems

We now discuss attack techniques that exploit low-level coding vulnerabilities, as

these attack techniques are applicable to a large number of process control systems in

production. Low-level coding vulnerabilities may be defined as programming errors

that open the way to an adversary to corrupt the memory of a program. Exploitation

of such vulnerabilities generally takes the form of control-data or pure-data attacks.

Chapter 2: BACKGROUND 15

Control-data attacks corrupt memory management data for the purpose of transfer-

ring control to binary code inserted into the address space of a target process, or to

existing arbitrary instructions that usually are forced to take adversary supplied data

as arguments.

Pure-data attacks [20, 96] are built upon corruption of noncontrol data, i.e., compu-

tational data usually held by global or local variables in a computer program. Real-

world examples of low-level coding vulnerabilities in process control systems include a

buffer overflow in the ABB’s PCU400 process communication unit [16], another bufer

overflow in the DATAC’s RealWin/FlexView HMI [6], and a heap overflow in the GE

Fanuc’s CIMPLICITY HMI [17].

2.2.1 Array Overflows

An array overflow is a programming error that occurs when no range checks are

performed on a value that is used to index an array. The danger rises when the said

value may be directly or indirectly affected by an adversary, and the array is filled

with user-supplied data.

2.2.2 Buffer Overflows

A buffer overflow vulnerability is a programming error that allows data to be stored

beyond the boundaries of a destination buffer, therefore overwriting adjacent memory

locations and possibly further away. Buffer overflows may be caused by instructions

that do not perform any bounds checking on a destination buffer when storing data

into it. Some functions such as strncpy() allow a programmer to explicitly specify

Chapter 2: BACKGROUND 16

the number of bytes to copy to a destination buffer, but do not null-terminate the

destination buffer.

These apparently safe functions may lead to the creation of adjacent not null termi-

nated buffers. Such a situation in conjunction with a vulnerable function may cause

an excessive amount of data to be copied to a destination buffer, thus overflowing it.

In fact, the intention to copy one of these buffers to a destination buffer may copy

the intended buffer along with one or more adjacent buffers causing an overflow of

the destination buffer. A stack-based buffer overflow attack in one of its very first

forms consists in injecting binary code and overwriting the saved instruction pointer

stored on stack with the address of the injected code [3].

If executable memory areas where an adversary could inject binary code is not avail-

able or the available buffers are too small to hold the entire injected binary code,

the adversary may overwrite the saved instruction pointer on stack with the address

of existing instructions. The adversary may specify possible arguments by injecting

them on stack along with the corrupting address. A common approach is to overwrite

the saved instruction pointer with the address of the system() function of the libc dy-

namic library along with injecting on stack the address of the string that represents

a command that an adversary aims at executing on a target system.

This attack technique is referred to as return-into-library [88, 108]. As a result of

errors in handling the index of arrays in looping and iteration, a destination buffer

may be overflowed by just a few bytes, more commonly by one byte or by five bytes.

Although such a buffer overflow is limited, it may be sufficient for an adversary to

reach and corrupt the least significant byte of the saved frame pointer in a Little En-

Chapter 2: BACKGROUND 17

dian architecture, and consequently dictate the address where the operating system

pops a saved instruction pointer [73].

Heap overflow attacks [5, 22, 71] are built upon the fact that most of the memory al-

locator algorithms such as System V in Solaris, Doug Lea’s Malloc used by the GNU

C Library, RtlHeap in Windows, and so on, store heap management data in band

on the heap itself. By overflowing a buffer on heap, an adversary may corrupt such

data and consequently force the execution of macros such as unlink or frontlink and

make them use corrupted values in both sides of various assignments. This enables an

adversary to write arbitrary values to memory locations of his choice. In an indirect

pointer overwrite [15], an adversary overflows a buffer to overwrite a data pointer in

which adversary supplied data is to be written.

The adversary makes such a pointer point to a memory address where control data

or sensitive pure data are stored. When the corrupted data pointer is dereferenced,

adversary supplied data overwrite the aforementioned control data or sensitive pure

data. Similarly, through a buffer overflow an adversary may overwrite function point-

ers with the address of injected binary code.

2.2.3 Format String Vulnerabilities

A format string vulnerability is a programming error that allows an adversary to

specify the format string to a format function. An adversary may have the possi-

bility to specify a format string directly, such as, for example, when a programmer

writes printf(buff) instead of printf(”%s,” buff), where buff is user supplied data, or

indirectly when before being used by a vulnerable format function user supplied data

Chapter 2: BACKGROUND 18

is stored in other variables, possibly in a formatted form by other format functions.

Format functions parse a format string one byte at a time.

If a read byte is not equal to %, the format function copies this byte directly to out-

put, otherwise, it means that a format directive is encountered and the corresponding

value is retrieved from a memory address stored on stack. By providing format di-

rectives in a format string an adversary has the possibility to force a format function

to operate on values, part of which are user supplied, stored on stack. For instance,

by providing %x or %s an adversary could view memory content and by providing

%n an adversary may write the number of bytes printed that far into the memory

location pointed by an address retrieved from stack.

An adversary could specify this address where to write at or read from by including

it in the format string and popping values from the stack till reaching it. At that

point the inserted format directive will be processed by the vulnerable format func-

tion, which will use it in these read/write operations. In the case of the %n format

directive, in the format string the adversary may also define each byte of the value

to be written in a specific memory address. The adversary specifies the said memory

address in the format string as well [105, 90, 38].

2.2.4 Integer Overflows

Integer errors are of two kinds, namely integer overflows and integer sign errors.

An integer overflow occurs when an integer variable is assigned a value that is larger

than the maximum value it can hold. When an integer variable is overflowed no

buffers are smashed, thus an integer overflow vulnerability is not directly exploitable.

Chapter 2: BACKGROUND 19

Nevertheless, according to [64], an overflown, unsigned integer variable is subject to

a modulo of MAXINT +1, and the result of this operation becomes the new value of

such a variable.

The actual value of an overflown integer variable may become too small; therefore, it

may be quite problematic when used as a size value in memory allocation operations

in programs that are not prepared for such a failure. As a consequence of an integer

overflow, too little memory may be allocated possibly leading to an overflow of a

buffer on heap if such memory holds the destination buffer of an unprepared memory

copy operation.

An integer sign error occurs when a function that expects an unsigned integer variable

as an argument is passed a signed integer variable instead. Such a function then

implicitly casts the signed integer into an unsigned one. The danger stands in the

fact that a large negative value may pass several maximum size tests in a program,

but when implicitly cast into an unsigned integer and used in memory copy operations

it may cause a buffer overflow.

2.2.5 Dangling Pointers

A dangling pointer vulnerability occurs when a pointer referenced by a program

refers to already deallocated memory. Such a vulnerability may cause a program

to assume abnormal behavior, and in the case of a double free vulnerability, it may

lead to a complete program exploitation [30]. A double free occurs when deallocated

memory is deallocated a second time. After a chunk on heap is freed twice, its for-

ward and backward pointers will point to that chunk itself. If the program requests

Chapter 2: BACKGROUND 20

the allocation of a chunk of the same size as the double freed chunk, and the later

chunk is first unlinked from the list of free chunks, after the unlink the forward and

backward pointers of the doubled free chunk will still point to that chunk itself.

Thus, the doubled free chunk will not really be unlinked from the list of free chunks.

The memory allocator algorithm though assumes that this chunk is effectively un-

linked, and the vulnerable program will use the user data part of the double freed

chunk. The attack at this point proceeds as in a heap overflow exploitation.

2.2.6 Control-Application Specific Memory Corruptions

Process control applications may be subject to memory corruptions conducted

in ways that are specific to them. Examples of these applications include ModBus.

ModBus employs an addressing model in which unsigned integer indices in the range

[0, 65535] are used to logically refer to ModBus application variables. The ModBus

data model maintains a mapping between logical references, i.e. the said indices,

which are also known as ModBuss addresses, and memory addresses of application

objects in a process control system. In general the mapping in question is vendor

device specific.

Faulty mappings may be a possible cause of memory corruptions on a ModBus ap-

plication, as discussed in [9]. An instance of a faulty mapping is one in which the

address of a memory location is calculated by using a logical reference as an offset

with respect to a predetermined base address. In this case a memory corruption at-

tack on a target ModBus application is conducted through a write request network

packet in which the logical reference is such that, when added to the base address, it

Chapter 2: BACKGROUND 21

produces the memory address of control data or the memory address of non-control

data other than normally accessible ModBus variables.

An example of an attack network packet, which more precisely in ModBus is referred

to as protocol data unit (PDU), is shown in Figure 2.3. The idea behind the orga-

nization of the said attack network packet is to request a target MODBUS device

to write two holding register variables, i.e. two 16-bit variables stored in the main

memory of a ModBus device, by specifying a logical reference, which as a result of

a possible faulty mapping would produce the address of the memory location where

control data are stored.

The overwriting value is specified in the attack network packet as well in the form

of two 16-bit data that are to be written to the said register variables. When joined

together, these data form the address of shellcode preliminarily injected. Thus, under

the assumption that a shellcode injection point exists in a vulnerable ModBus appli-

cation, the attack packet in question would corrupt control data with the address of

injected shellcode. This ModBus specific memory corruption is conceptually similar

to the attacks on OLE for Process Control (OPC) [63], which are discussed by Mora

in [85].

Chapter 2: BACKGROUND 22

Figure 2.3: Organization of an attack packet payload that exploits faulty mappings
in ModBus applications.

2.3 Computer Network Attacks on Physical Sys-

tems

2.3.1 Attacks on Physical Equipment

The ultimate objectives of computer network attacks on process control systems

are to cause physical damage to physical equipment and sabotage physical processes

that are under their control. In fact they are known to have potential for causing

physical damage to the underlying physical systems [69]. For instance, through a

computer network attack an adversary could destroy an electric power generator, as

demonstrated in the Aurora generator test [54], i.e. an experimental computer net-

Chapter 2: BACKGROUND 23

work attack conducted by researchers of the Idaho National Laboratory.

Depending on equipment specifications and the physics behind physical processes,

there is a variety of ways in which an adversary could manipulate process control

systems to cause physical damage. Note that these attacks represent techniques for

maximizing physical damage on physical equipment once an adversary has acquired

network access to a process control network or process control system. A taxonomy

of these attacks is provided by Larsen in [70].

An inertial attack consists of speeding up or slowing down heavy equipment. An

inertial attack has the potential of forcing heavy equipment to fail as in general such

equipment is not tolerant to abrupt speed changes. An exclusion attack takes place

when a process control system violates physical dependencies between various equip-

ment, while a wear attack manipulates a process control system so as to consume

certain equipment components and hence reduce the life span of the equipment itself.

Small variations of continuous process variables such as electric current or fluid flow

are recorded in a wave kept in other parts of a system.

A resonance attack is conducted by repeatedly causing small variations of word vari-

ables in order to increase the size of this wave beyond acceptable limits. A surge

attack is mounted by exceeding defined process variable limits beyond maximal val-

ues that continuous control systems are capable of handling. A latent abilities attack

exploits latent features in off-the-shelf physical equipment. An example of a latent

abilities attack provided by Larsen is to force a servomotor to run in the reverse di-

rection, although such an action may not be part of its operation in a defined physical

system.

Chapter 2: BACKGROUND 24

2.3.2 Attacks on Physical Processes

Physical processes that take place within a physical system are kept under safe

conditions by system operators, who use sensor data to monitor their status at any

point in time and also generate set points to cause them to evolve in a controlled way.

As sensing and control of physical processes is conducted through process control

systems over process control networks, by compromising these process control systems

an adversary achieves direct control over physical processes, and hence can directly

attack them.

With attacking a physical process we mean taking its parameters to abnormal values,

a fact thay may result even in explosions if the physical process degradation is not

corrected on time. In a nuclear power plant, for example, control rods are used as the

primary mechanism for controlling the rate at which nuclear fissions take place within

the reactor core. If an adversary manages to disable reactor protection systems and

thereafter uses compromised control systems to withdraw a large number of control

rods, then the power level in the reactor will increase to abnormal values.

If the power level along with related parameters are not brought to normal values on

time, the power level will keep increasing beyond the limits of physical safety, with

consequences being comparable to those of accidents in nuclear power plants.

2.4 Intrusion Detection

Intrusion detection approaches can be categorized into misuse detection [97, 75],

anomaly detection [36, 4], and specification-based detection [74, 107]. Misuse detec-

Chapter 2: BACKGROUND 25

tion is based on signatures of known attacks, therefore it does not detect unknown

attacks. Anomaly detection is based on learning profiles of the normal behavior of

systems and networks. A typical anomaly detection approach monitors systems and

networks. If their behavior deviates from the behavior that was preliminarily learned,

the anomaly detection approach deems that an attack is taking place.

Anomaly detection has the potential of detecting unknown attacks, but is subject to

a high rate of false positives. This is due to the fact that systems and networks often

exhibit behavior profiles other than those exhibited during the time frame in which

an anomaly detection approach observes their operation in order to learn profiles of

their behavior. Specification-based detection is based on manually developed specifi-

cations of legitimate behavior of systems and networks.

Specification-based detection is characterized by a lower false alarms rate than anomaly

detection. Nevertheless, the capability of specification-based detection to detect novel

attacks is lower than anomaly detection.

Chapter 3

RELATED RESEARCH

3.1 Applied Statistics for Intrusion Detection

As of this writing, the majority of research on applied statistics and probability

theory for intrusion detection has been conducted on general purpose computer sys-

tems and networks. In [77], Li et al. develop n-gram models upon training data to

probabilistically characterize normal sequences of system calls that are issued by priv-

ileged processes. Li et al. use receiver operating characteristic (ROC) curve analysis

to assess the effectiveness of their n-gram models, and thus show that their approach

is promising to a degree that they also propose to apply it for network intrusion de-

tection.

The approach of Li et al. is limited when it comes to scrutinize the payload of net-

work packets that flow across a process control network. The said limitation stems

from the very definition of an n-gram model. An n-gram model is a probabilistic

model that is used to predict the next item, i.e. phonemes, syllables, letters, words

26

Chapter 3: RELATED RESEARCH 27

or base pairs, etc., in a defined sequence. Given a history of size n, an n-gram model

is used to estimate the probability that a defined item will be the next item. For

example, given a history of system calls of size 2, a 2-gram model is used to calculate

the probability distribution for the third system call that will be issued by a given

process.

Taking into account that the payload of a network packet transmitted over a process

control network conveys data that are to be written to, or are read from, logical or

word variables stored in the RAM variable memory of a given control system, the

task that may be conducted by an n-gram model is the following: given a history

of n values that were taken by a logical or word variable, what is the probability

distribution for the next value that will be taken by the variable in question ?

A history of past values of a defined variable though provides limited visibility on

the next value of the said variable, as a logical or word variable may also depend on

other logical or word variables. In a nuclear power plant, for example, the next value

of the word variable that is mapped to the linear position of a control rod depends to

a large degree on the current values of variables that are mapped to parameters like

temperature, pressure, poisons, fuel concentration, etc.

Similarly, the next value of the logical variable that is mapped to the position of a

safety relief valve depends exclusively on the current value of the word variable that

is mapped to the reactor vessel pressure. Thus, n-gram models have limited visibility

on the evolutions of values of a logical or word variable as in their estimations they

completely ignore the dependency of a given variable on other logical or word vari-

ables. Our statistical intrusion detection algorithm captures the said dependencies

Chapter 3: RELATED RESEARCH 28

in full, and thus maintains visibility over all factors that influence the probability

distribution for the next value of a logical or word variable.

In [4, 59], Valdes et al. describe a statistical intrusion detection algorithm called Next-

Generation Intrusion-Detection Expert System (NIDES), which adaptively learns

what is normal for individual subjects, i.e. system users, user groups, remote hosts,

and the overall system. The NIDES statistical algorithm estimates various statistical

measures of abnormalcy, say Si, where i ≤ n with n being the total number of the

said measures. More than one of the S measures may be used to examine the same

aspect of behavior via different approaches. The NIDES statistical algorithm defines

S measures of activity intensity, audit record distributions, transaction-specific cate-

gories, and counts of various events.

The S measures are then aggregated into a single statistic that is referred to as the

NIDES score value. The estimation of normalcy or abnormalcy of a defined behavior

is conducted upon an estimated value of the NIDES score value. We do not see any

technical reason that could prevent the invention of a version of the NIDES algorithm

applicable to a process control network. In this regard our statistical intrusion detec-

tion algorithm would be fully compliant with the NIDES statistical algorithm since

it could form a NIDES component that estimates one of the S measures, which the

NIDES statistical algorithm then could aggregate with other S measures and hence

derive the score value.

Nevertheless, as of this writing no written material on a version of the NIDES sta-

tistical algorithm for process control networks is publicly available. In [2], Kumar et

al. analyze network traffic via classification trees in order to identify parameters that

Chapter 3: RELATED RESEARCH 29

may be leveraged to characterize normal network traffic, and thus apply the six-sigma

technique integrated with rigorous statistics to estimate upperbound and lowerbound

thresholds for the said parameters.

During inspection of network traffic each packet is deemed as normal if the values of

the parameters in question are found to lie within the corresponding thresholds. We

tried the approach by Kumar et al. on a process control network in order to assess its

applicability to such special-purpose network. What we received from the application

of the six-sigma technique is an estimation of the maximum and minimum values for

each word variable in the RAM variable memory of a control system.

The employment of six-sigma in a process control network is redundant as the maxi-

mum and minimum values for each word variable can be derived from specifications

of the deployed equipment, the physical process being controlled digitally, and the

cyber-physical mapping that is in place. Furthermore, conducting intrusion detection

in a process control network by checking whether the value of a defined word variable

falls within its maximum and minimum values provides limited defense.

We deem that the said limitation is due to the fact that six-sigma completely ignores

the context of physical equipment and physical processes being controlled via a com-

puter network. Consider for example an inertial attack on a four-pole electric motor

that runs on 60 Hz with a maximum speed of 1800 rotations per minute (RPM). Re-

call from [70] that an inertial attack is conducted by causing abrupt speed changes,

with the result being physical damage or operation failure.

Although a network packet that changes the speed of the said motor from, say 25

RPM, to, say 1800 RPM, is a manifestation of an inertial attack, the approach by

Chapter 3: RELATED RESEARCH 30

Kumar et al. would classify the network packet in question as normal since a word

variable is being set to a value that falls within its corresponding maximum and min-

imum values allowed. Our statistical intrusion detection algorithm is not subject to

the said limitation as it is fully aware of the dynamics of physical processes and op-

eration of physical equipment, and as such classifies as abnormal any network packet

that has potential for perturbing any physical parameters in a DCS-controlled phys-

ical system.

In [41], Gowadia et al. apply Bayesian belief networks (BBNs) to model probabilistic

relations between defined fields of network packets, and hence estimate their prob-

ability distributions. Our statistical intrusion detection algorithm is similar to the

approach of Gowadia et al. to some degree, as the probabilistic relations between log-

ical or word variables that we leverage in our work can be expressed as a BBN. Our

work though differs from that of Gowadia et al. in the way conditional probability

distributions are estimated.

Gowadia et al. estimate conditional probability distributions for a defined variable

manually being based on expert knowledge, while our statistical intrusion detection al-

gorithm is built upon inductive learning and uses probability mass functions based on

applied logistic regression and maximum likelihood estimation. In [31], DuMouchel

applies the Bayesian Dirichlet-Multinomial Model to estimate command transition

probabilities. In this case we are referring to operating system commands. Given a

user u and the most recent command c issued by that user. DuMouchel estimates

P (Next Command = k | {c, u})

Chapter 3: RELATED RESEARCH 31

for each k, where k is a command. We deem that DuMouchel’s research provided

in [31] is directly applicable to a process control network. The Modbus counterpart

of an operating system command is a function code, i.e. a 1-byte field of a network

packet that specifies to a receiving node what kind of action to perform. If s and r

are a sending node and a receiving node in a process control network, respectively,

and c is the function code of the most recent network packet sent by s to r, then we

could apply the Bayesian Dirichlet-Multinomial Model to estimate

P (Function Code of Next Network Packet = k | {c, s, r})

for each k, where k is a function code. The said Bayesian Dirichlet-Multinomial

Model applied to a process control network would be complementary to our statisti-

cal intrusion detection algorithm as the former would scrutinize function code fields

of network packets, while the latter scrutinizes data fields of network packets.

In [61], Ju and Vardi address the same challenge as DuMouchel, namely probabilistic

estimation of the sequence of operating system commands that is likely to be issued

by a computer user. Ju and Vardi deem that solely the most recently issued command

is insufficient for computing the probability of transitioning to a defined command.

Consequently they apply a high-order Markov chain to estimate the probability dis-

tribution for the next command being based on a recent history of commands.

Furthermore, Ju and Vardi develop independence models to cope with cases in which

user profiles with respect to sequences of commands change drastically over time.

We believe that the approach of Ju and Vardi is also applicable to a process control

network to estimate the probability distribution for the function code of the next

network packet that will be sent by a sending node to a destination node. The said

Chapter 3: RELATED RESEARCH 32

estimation would be conducted being based on a history of function codes derived

from network packets that were recently sent by a sender to a receiver. In [118], Wang

and Stolfo develop statistical models of network packet payloads, and hence inspect

network traffic in real-time to look for deviations from the said models.

Wang and Stolfo compute a statistical model for each defined range of payload length,

for each service, and for each direction of payload flow. They consider as a variable the

frequency of each byte of a payload. A statistical model then is formed by computing

the mean and standard deviation of such variables over a set of training payloads,

which are gathered during a learning phase in which a normal network interaction

with a network service or application is conducted.

In a monitoring phase Wang and Stolfo capture incoming payloads, and thus compute

the Mahalanobis distance between the byte value distributions of a payload under in-

spection against the statistical model that corresponds to the said payload. If the

Mahalanobis distance is found to be high, then the payload under inspection is likely

to be abnormal. Although clearly the approach of Wang and Stolfo is applicable

to a process control network, the statistical models of network packets that may be

constructed via this approach do not take into account the possible states of a DCS-

controlled physical system.

In other words, the statistical profiles in question are derived solely from network

packets that are observed during a learning phase instead of those network packets

in conjunction with the possible states of a DCS-controlled physical system. This is

a limitation since a network packet may be normal in a defined state and abnormal

in another state of a DCS-controlled physical system. Consider for a moment the

Chapter 3: RELATED RESEARCH 33

network packets that perform a SCRAM of a nuclear power plant, i.e. emergency

shutdown.

The said network packets are normal if the values of certain physical parameters are

outside predefined limits. These same network packets may be abnormal if the val-

ues of the physical parameters in question are within predefined limits. In the latter

case we may have a clear denial of service attempt since restarting a nuclear power

plant takes considerable time, during which the power plant won’t produce any elec-

tric power. Similarly, a network packet that opens the generator output breaker is

normal if the value of a defined physical parameter is indicative of a mechanical or

electrical fault in the generator, and abnormal otherwise.

3.2 Developing Specifications of Normal Behavior

for Intrusion Detection

The practical development of a specification-based intrusion detection approach,

which is capable of detecting known as well as unknown attacks and maintaining a

very low rate of false positives, was studied by Uppuluri and Sekar in [114]. The au-

thors of [114] report that an effective specification-based approach can be built with

moderate efforts. Our experience with a physical process aware specification-based

approach complies with the experience of Uppuluri and Sekar.

Nevertheless, throughout our research we met another factor that is directly related

to the practical development of a physical process aware specification-based approach,

namely a high level of complexity of the detection specifications that we use to scru-

Chapter 3: RELATED RESEARCH 34

tinize the payloads of network packets that flow across a process control network. In

other words, the development of our specification-based approach is practical, but the

expert knowledge that is required to write and maintain the detection specifications

is much higher than the expert knowledge required to develop a specification-based

approach for operation in general-purpose computer systems and networks.

This is mainly due to the necessity of including in the detection specifications the

normal behavior of phenomena that take place at the physical system. For example,

if the physical system is, say a nuclear power plant, we would need to draw from areas

such as nuclear physics and reactor theory to specify the expected normal behavior

of the nuclear power plant in terms of possible normal contents of network packet

payloads. To our knowledge, as of this writing there is only one research work on

specification-based intrusion detection for process control networks, namely model-

based intrusion detection [21].

In [21], Cheung et al. explore protocol-level models for intrusion detection in pro-

cess control networks. These models express a definition of legitimacy for packet

payloads of byte-oriented protocols such as Modbus, and are derived from protocol

specifications and implementation guides. Protocol-level models search for violations

of specifications regarding function codes, exception codes, protocol identifiers, or

other functionally similar fields. Protocol-level models also examine cross-field rela-

tionships, since the legitimate value of a payload field may depend on the value of

another payload field.

Our research on physical process aware specification-based detection is built on top

of model-based detection, and thus is complementary to it. The rest of the work on

Chapter 3: RELATED RESEARCH 35

specification-based detection was conducted for general-purpose computer systems

and networks. Sekar and Uppuluri in [107], and Ko et al. in [74], propose approaches

based on specifications of normal behavior of computer programs.

Sekar and Uppuluri capture the normal execution of a computer program via spec-

ifications of sequences of system calls and specifications of conditions on values of

system call arguments. Ko et al. deem that specifying in full the behavior of a com-

puter program is not practical, and thus develop specifications of only those aspects

of program execution that are relevant to security. More precisely, Ko et al. develop

specifications of the sets of files that the computer program is expected to access,

specific sequences of operations such as I/O or starting external programs such as a

shell program, and synchronization with other concurrent computer programs.

What our physical process aware specification-based intrusion detection approach has

in common with the approaches of Sekar and Uppuluri and Ko et al. is the derivation

of detection specifications from high-level behavior specifications. Their difference

lies in the fact that Sekar and Uppuluri and Ko et al. capture the normal behavior of

computer programs, while in our research we attempt to capture the normal behavior

of network traffic. In [94], Petroni et al. propose a specification-based technique for

detection of rootkits that corrupt dynamic kernel data, given that hash functions can

provide protection from corruption of static kernel data only.

Petroni et al. develop specifications for low-level kernel data structures and the rela-

tionships between them. As the other specification-based approaches, the approach

of Petroni et al. relies on expert knowledge, in this case expert knowledge of oper-

ating system kernels. Both our research and the research of Petroni et al. exploit

Chapter 3: RELATED RESEARCH 36

the concept of data semantics. We work on the semantics of network packets that

flow across a process control network, while Petroni et al. leverage the semantics of

dynamic kernel data.

In [7], Balepin et al. logically couple specification-based intrusion detection with au-

tomated response. Although intrusion response lies outside the scope of the work

that we discuss in this dissertation, the specification models that we develop convey

a sense of response, in the sense that no normal transition of any of the models in

question takes place if a network packet is classified as abnormal.

3.3 Related Research on Applied Deception

The application of deception techniques from conventional warfare, as detailed

under the light of specific case studies of military conflicts drawn from history, for

improving the security of computer systems and networks has been explored by Rowe

and Rothstein in [100, 101]. Rowe and Rothstein analyze historical military opera-

tions like Operation Mincemeat [84], which took place during the second world war,

to illustrate a set of principles and mechanisms that are used for an effective tactical

deception in conventional warfare.

The authors then evaluate the applicability of the said principles and mechanisms to

the invention of defensive deceptive capabilities for computer systems and networks.

Mirage theory moves along the line of Rowe and Rothstein’s research as it is a di-

rect application of MILDEC to the defense of process control systems and networks.

Furthermore, as written in the previous section, while researching on mirage theory

we carefully analyzed a historical conventional warfare operation, namely Operation

Chapter 3: RELATED RESEARCH 37

Fortitude South. Honeypots, i.e. closely monitored information system resources that

serve as network decoys [109, 109], and mirage theory have a few features in common

to some extent, including distraction of adversaries from valuable attack targets, and

leverage of deception for intrusion detection [49, 68].

Nevertheless, mirage theory is fundamentally different. Honeypots are passive and

just stand by to receiving network connections. Thus, they have no normal activity.

Mirage theory is exactly the opposite, in the sense that its main strength lies in nor-

mal system and network activity. Honeypots usually simulate services that are more

vulnerable than their production counterpart in order to lure adversaries. Mirage

theory fights for making deceptive process control networks, systems, and simulated

or emulated physical processes or equipment as much undistinguishable from their

production counterparts as possible.

The deception capabilities of honeypots are placed within the boundaries of a com-

puter system or network, and hence fall within network access visibility. Mirage

theory develops deceptive capabilities at a layer which is not reachable through a

network access to a target process control network. Rowe and Rothstein in [22, 23]

indicate that honeypots are not in line with an important principle of conventional

warfare, namely that deception should be integrated with operations.

Their thesis is that deceptive tactics are more effective on real systems. In fact Holz

and Raynal show in [50] several techniques to detect honeypots by capturing technical

details that are characteristic for virtual execution environments, and hence different

than in real ones. In mirage theory the process control systems and networks are all

genuine. Furthermore, they are deployed and configured in such a way that they can

Chapter 3: RELATED RESEARCH 38

be used to smoothly monitor and control an existing physical system.

The research of Yuill et al. provided in [127] and mirage theory leverage concepts

that are similar to some degree, namely honeyfiles and deceptive program variables in

cyber-physical mappings, respectively. Honeyfiles are bait files intended for hackers

to access. Honeyfiles reside in servers, which generate intrusion alerts if a honefile is

accessed. Honeyfiles are intended to be no different than other normal files. Thus,

for an adversary to detect a honeyfile, he/she has to open it, an action that results

in the detection of the adversary’s presence.

A cyber-physical mapping is a one-to-one correspondence between program variables,

which hold I/O values in the RAM of control systems, and physical process param-

eters or parameters that characterize the operation of physical equipment. While a

file is mapped to regions of secondary storage by the operating system, a deceptive

variable is mapped to a parameter related to a physical process or equipment, which

in fact are all simulated or emulated.

Mirage theory employs deceptive network packets to make deceptive variables appear

no different than their genuine counterpart. For an adversary to detect a deceptive

variable, he/she has to access it either locally or over a process control network, an

action that is used to detect the intrusion. In [99], Rowe attacks the problem of logi-

cal consistency in deception. He explores automated methods which track assertions

that are made up to a certain point in time along with their effects, and thereafter

identify the possible consistent deceptions that may be conducted next in order.

In mirage theory we attack the same problem, but do so in a way that differs from

the approach followed by Rowe in [21] due to our different levels of intervention. Row

Chapter 3: RELATED RESEARCH 39

works mainly at the operating system level, while from the logical consistency per-

spective in mirage theory we focus mainly on physical system phenomena. We employ

large systems of differential equations to feed an adversary with a consistent view of

the internal dynamics of physical processes and equipment at any point in time.

The end objective is what mirage theory has in common with cognitive hacking [39],

reflexive control theory [112], and perception management process [60]. Cognitive

hacking is basically manipulation of the perception of technology users. Reflexive

control is a warfare theory that has been studied in the former Soviet Union and later

on in Russia for a very long time. Reflexive control theory is comprised of methods

for conveying to a subject especially prepared information in order to incline him/her

to voluntarily make a predetermined decision.

The US approximate counterpart of reflexive control theory is the perception man-

agement process. Perception management is comprised of actions that convey and/or

deny selected information and indicators to foreign audiences in order to influence

them. Mirage theory seeks to exploit the adversary’s mind, namely his/her percep-

tion of a defined cyber-physical system. Mirage theory actively conveys information

and indicators to an adversary for the purpose of piloting his/her target selection

process towards simulated or emulated physical processes and equipment.

Chapter 3: RELATED RESEARCH 40

3.4 Other Related Research on Intrusion Detec-

tion in Process Control Networks

The research challenge of detecting attacks to control systems is addressed by

Càrdenas et al. in [18], and Naess et al. in [87]. Càrdenas et al. describe an approach

that is based on an understanding of the interactions between control systems and a

physical system. Càrdenas et al. model the behavior of a physical system as a lin-

ear dynamic system, and thus use the said model to determine the effects of control

commands on physical parameters of the physical system in question.

Their thesis is that attacks to control systems will exhibit an abnormal behavior of the

physical system, i.e. will have negative effects on physical parameters of the physical

system, and thus propose to use sequential detection theory to detect them. In our

research we model the interactions between control systems and a physical system as

evolutions of values of logical or word variables stored in the RAM variable memory

of control systems themselves.

Our thesis is that the normal behavior of a physical system in conjunction with nor-

mal network control traffic by which the former is directly affected can be captured by

specific evolutions. In the EI algorithm we estimate these evolutions via probabilistic

models that we construct upon inductive machine learning. In the physical process

aware approach we use expert knowledge to specify these evolutions. For a control

command to be deemed as normal, the network packet that conveys it should cause

an evolution of values of a logical or word variable that is deemed as normal by our

intrusion detection approaches.

Chapter 3: RELATED RESEARCH 41

Naess et al. discuss an intrusion detection approach that is comprised of high level

application-based policies whose implementation is placed at the middleware level.

Naess et al. develop misuse policies that are based on attack signatures, procedural-

based policies that use execution patterns of a component that is being monitored,

and interval-based policies that look for anomalies in parameter values or method in-

vocation frequencies, and thus are based on estimation and enforcement of parameter

thresholds.

Procedural-based policies use an approach that is typical to host-based intrusion de-

tection, and as such they are not comparable to our statistical intrusion detection

algorithm. So are misuse policies and those interval-based policies that deal with

method invocation frequencies. Our research suggests that interval-based policies

take into account the state of the physical system when setting parameter thresholds.

Naess et al. discuss maximum and minimum value policies that look for values of

parameters that lie outside the range of allowed values of those parameters.

For instance, if the allowed set point for the linear position of a control rod, i.e. a

rod made of neutron absorbing materials that is used to adjust the reactivity of the

reactor core [116], should be an even value between, say 6 and 24, a maximum and

minimum value policy would classify a set point of 24 as normal. If the current value

of reactivity in the reactor is high, moving the control rod in question from a low

position to position 24 may be quite abnormal and thus dangerous.

The approach of Naess et al. includes delta value and maximum average policies,

which are devised to detect unexpected variations in parameter values over a short

amount of time and excesses of maximum distance from a moving average for each

Chapter 3: RELATED RESEARCH 42

measurement, respectively. A consideration of the state of a physical system would

enable delta value and maximum average policies to allow for corrective responses

that are initiated by control systems upon occurrences of faults or breakages in plant

equipment.

To our knowledge many of such corrective responses often consist of set points that

cause large and abrupt changes in values of specific parameters. Naess et al. also

discuss interval-based policies that employ cumulative distribution functions to de-

tect rare values given a history of normally distributed values. Thus, these policies

compare the next value of a parameter with a trace of a given length of previous

values of the said parameter. To our experience though the next normal value of a

parameter depends also on current values of other parameters that characterize the

state of a physical system.

In a nuclear power plant, for example, the next value of the position of a turbine

bypass valve depends also on the current value of the pressure in the reactor vessel.

The EI algorithm and the physical process aware approach consider the full state

of a physical system when estimating a probability distribution for the next value

of a logical or word variable. In [86], Naedele and Biderbost describe an approach

for reducing security related events that occur in a process control environment into

quantitative metrics, which are understandable by system operators who normally

have no computer system and network security expertise.

The said quantitative metrics are then visualized to system operators, who assess

whether a computer network attack is taking place. What the approach of Naedele

and Biderbost has in common with the EI algorithm and the physical process aware

Chapter 3: RELATED RESEARCH 43

approach is that both of them do consider the dynamics of a digitally controlled

physical system when estimating the normalcy of network packets. They differ in the

means they use for estimating the normalcy of network packets.

The approach of Naedele and Biderbost use the human mind as pattern matcher and

relevance evaluator, while the EI algorithm and the physical process aware approach

leverage the estimation power of statistics and physical process aware specifications,

respectively. We deem that the EI algorithm and the physical process aware approach

are better as they provide for real-time detection, while human analysis of events takes

at least a few seconds. Consider for example a malicious network packet that opens

or closes a circuit breaker to desynchronize a power generator with respect to a power

transmission grid.

We think that the approach of Naedele and Biderbost has potential for detecting the

said malicious network packet, but still would detect it too late due to the delay that

is induced by the seconds that the system operators would need to analyze one or

more quantitative metrics. The EI algorithm and the physical process aware approach

are capable of detecting the network packet in question before it is processed by the

target control system that controls the circuit breaker.

3.5 Intrusion Alert Fusion

The ACH [47] is a methodology devised for use by intelligence analysts when

working on choosing several alternative hypotheses. ACH is comprised of eight se-

quential steps that focus on a matrix with hypotheses across the top and evidence

down the side, with the objective being an estimation of the relative likelihood of

Chapter 3: RELATED RESEARCH 44

each hypothesis. ACH forms the foundation of our intrusion report fusion technique,

which may be thought of as a mathematical development of ACH for intrusion report

fusion in process control networks.

A theory of confirmation is a proposal for a logic by which to confirm or deny hy-

potheses [35, 40, 79, 80, 58, 34, 119]. A theory of confirmation normally involves

two measures, namely a measure of hypothesis-based probability of evidence, i.e. the

likelihood of evidence were the hypothesis true, and a measure of the degree to which

a hypothesis is confirmed or disconfirmed on the evidence. A confirmation theory

that uses the Bayes theorem to represent the relation between these two measures is

referred to as a Bayesian confirmation theory.

The intrusion report fusion technique that we discuss in this dissertation is exactly a

Bayesian confirmation theory. In [43], Gu et al. employ the likelihood ratio test [24]

to fuse alerts from an ensemble of intrusion detection approaches in order to improve

the overall intrusion detection effectiveness. The application of the likelihood ratio

test to our problem domain would consist of a comparison between the hypothesis-

based probabilities of evidence. Later on in this dissertation we will see that in our

problem domain the hypothesis-based probabilities of evidence are not directly mea-

surable.

Consequently, a part of our work is conducted on the computation of a probability

density function that allows for estimating the hypothesis-based probabilities of evi-

dence. Furthermore, we attempt to refine the effectiveness of the likelihood ratio test

via the Bayes theorem in its ratio form, which in addition to prior probabilities of

hypotheses uses also the likelihood ratio test to derive and compare the degrees to

Chapter 3: RELATED RESEARCH 45

which each one of the hypotheses is confirmed on evidence.

Majority voting or weighted voting is used as an intrusion alert fusion technique by

Breiman in [12], Perdisci et al. in [92], and by Freund and Schapire in [33]. In

[122], Wolpert discusses stacking, which is a method for training a machine learning

algorithm such as a neural network or a support vector machine for the purpose of

combining predictions made by various intrusion detection classifiers. In [43], Gu et

al. indicate that voting and stacking are less effective than the likelihood ratio test

technique.

In [8], Bass points out that the application of multisensor data fusion for intrusion

detection is based on applied mathematical theories such as statistics, artificial in-

telligence, digital signal processing, information theory, decision theory, etc. In fact

in this research we apply elements of statistics and probability theory to devise an

intrusion report fusion technique especially for process control networks.

Chapter 4

PROBABILISTIC ESTIMATION

OF DATA TRANSITION FLOWS

FOR ANOMALY DETECTION

4.1 Introduction

After decades of engineering research, the majority of the physics behind processes

in a physical system such as a nuclear power plant are known. If a physical system is

operated digitally, as is the case of some generation III, most of generation III+, and

generation IV reactors, arguably we can say that with the said knowledge in hand we

have a good definition of normalcy in the physical side of such cyber-physical system.

Taking into account that several behavior profiles of control systems and networks are

induced by physical processes taking place at the physical side, an intuitive research

direction is to leverage knowledge of normalcy in the physical side into an estimation

46

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 47

of normal behavior of the cyber side, and hence estimate the concept of normalcy for

the whole cyber-physical system in consideration.

In this chapter we discuss an anomaly intrusion detection algorithm that we call

the Estimation-Inspection (EI) algorithm. The EI algorithm leverages the concept

of RAM data flow to derive, in a statistical way, the normal behavior of a process

control network from the behavior of the physical system that is being controlled

digitally. Thus, the EI algorithm estimates the normal evolutions of the content of

specific locations in the RAM of control systems via applied statistics and probability

theory.

The EI algorithm thereafter determines whether a network packet is normal or abnor-

mal by considering the specific RAM data flow that the network packet in question

has potential to cause. The effectiveness of the EI algorithm lies in the fact that the

concept of normal RAM data flow is a direct characterization of the dynamics of a

DCS-controlled physical system, namely its states and transitions between states. By

ensuring that the evolutions of the values of logical or word variables follow only nor-

mal RAM data flows, the EI algorithm protects the DCS-controlled physical system

from being taken to unsafe conditions by malicious network packets.

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 48

4.2 A Statistical Approach to Anomaly Intrusion

Detection

4.2.1 Mathematical Modeling and Underlying Thesis

Abstracting away from individual control systems where RAM integrated circuits

are physically located, in mathematical terms the RAM variable memory of control

systems is modeled as a matrix W whose elements model logical or word variables,

where process measurements data or actuator control data along with set points are

stored. Thus, the overall RAM variable memory that is used to store sensor data and

actuator control data along with set points is modeled as:

W =



x1 x2

.

. xl

xl+1 xl+2

.

. xm

xm+1 xm+2

.

. xn

xn+1 xn+2

.

. xg



Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 49

The elements x1, x2, ..., xl model input register variables, the elements xl+1, xl+2, ...,

xm model holding register variables, the elements xm+1, xm+2, ..., xn model discrete

input variables, and the elements xn+1, xn+2, ..., xg model coil variables. A control

system can hold as many as 65536 variables of each type. If q is the number of control

systems in a process control network, then l = 65536q, m = 2l, n = 3l, and g = 4l.

Nevertheless, in a real world DCS it may happen that not all of the input register

variables, holding register variables, discrete input variables, and coil variables, are

needed, and thus not all of them are defined by control system engineers. Logical

variables and word variables in RAM variable memory, and hence the elements of

the matrix W , are mapped to process parameters, i.e. variables that characterize

the operation of physical equipment and/or physical processes, according to specific

schemes, i.e. cyber-physical mappings, that depend on the communication protocol

being used.

In some byte oriented protocols such as ModBus, cyber-physical mappings are defined

ad hoc by control system engineers and are applied during device configuration, while

other protocols such as IEC 61850 [55] come with inherent cyber-physical mappings

that are defined in their respective specifications. Process parameters are related to

each-other by formulae that lie in sciences such as chemistry or physics, depending on

the kind of processes taking place at the physical side of a DCS-controlled physical

system under consideration.

A cyber-physical mapping is seen as the mechanism that reflects physical or chemical

relations between process parameters into functional relations among logical variables

and word variables in RAM variable memory, and hence into functional relations

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 50

among the elements of the matrix W . Such functional relations in turn form the

stem of what logical data and continuous data are assigned to sensor associated vari-

ables and actuator control variables during a controlled operation of a DCS-controlled

physical system.

Thus, given a kind of process on the physical side of a DCS-controlled physical system

along with a cyber-physical mapping, a value assigned to a defined element of the

matrix W may be explained by consulting a set of other elements of the matrix W,

under the assumption that the analysis is being performed on a safe operation of the

DCS-controlled physical system. The thesis that forms the foundation of the research

discussed in this paper is that for each possible combination of possible values of the

elements of the matrix W , including the current value of W [i][j], W [i][j] may take

each one of its possible values with a probability that varies from 0.0 to 1.0.

We refer to the probability in question as a normalcy probability. A normal transition

flow step occurs when W [i][j] takes a value whose associated normalcy probability is

not 0.0. Thus, a network packet that is about to write W [i][j] is classified as normal

if it causes a normal transition of the current value of W [i][j], i.e. it writes a value to

W [i][j] whose associated normalcy probability is not 0.0. Reasoning in a statistical

context, let us refer to the elements of the matrix W as W [i][j] and x1, x2, ..., xg when

we treat them as dependent variables and as exposure variables, respectively.

The proposed statistical algorithm, which is called the Estimation-Inspection (EI)

algorithm and is provided later on in this section, estimates the probability distribu-

tion of the values of W [i][j] given x1, x2, ..., xg, and checks that a network packet that

writes W [i][j] conveys a value for W [i][j] whose associated normalcy probability is

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 51

not 0.0. In this research we say that the possible values of each variable W [i][j] lie

in {min(W [i][j]), min(W [i][j]) + 1, ..., min(W [i][j]) + h}, where min(W [i][j]) + h =

max(W [i][j]).

We use the term possible value since each logical variable by definition may assume

either the value 0 or the value 1, while each one of the word variables usually takes

values from a defined interval that depends on the process parameter that the variable

in question is mapped to. In a nuclear power plant, for example, the word variable

that is mapped to the pressure in a reactor vessel, i.e. a large cylindrical steel tank

that contains nuclear fuel, may take values that vary from 0 pound per square inch

(psi) at plant start up to a maximum value, say a little bit more than around 1005

psi, when the plant is operating at 100% thermal power.

Similarly, if the maximum synchronous speed of a 2-pole AC induction motor is, say,

1500 revolutions per minute (rpm), the applied voltage frequency, which is used by

an edge control system to directly control the actual rotational speed of such motor,

may assume values that vary from 0 Hz to 25 Hz. Furthermore, we want to accomo-

date also negative values of each variable W [i][j], since in a physical system like a

nuclear power plant several process measurement data or actuator control data can

be negative.

In this research we use stochastic vectors as practical means of storing the probability

distribution of the values of each element W [i][j] of the matrix W . The aforemen-

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 52

tioned stochastic vectors are defined as:

VW [i][j] = {



p0

p1

.

.

.

ph


| p0 + p1 + ...+ ph = 1} (4.1)

Let pk = VW [i][j][k] be the normalcy probability that W [i][j] takes the value

min(W [i][j]) + k, where k ∈ {0, 1, ..., h}. Thus, p0 = VW [i][j][0] is the normalcy

probability that W [i][j] takes the value min(W [i][j]), p1 = VW [i][j][1] is the normalcy

probability that W [i][j] takes the value min(W [i][j]) + 1, and so on. We model as

a probability mass function, say ΓW [i][j], the normal data transition flows that may

potentially be followed by each element W [i][j]. The probability mass function ΓW [i][j]

is defined as:

ΓW [i][j] : x1 X ... X xl+1 X... X xm+1 X... X xn+1 X... X xg → VW [i][j] (4.2)

The estimation part of the EI algorithm uses logistic regression integrated with max-

imum likelihood estimation in an inductive machine learning process to estimate a

series of statistical parameters, which in conjunction with logistic regression formulae

form a practical definition of the probability mass function ΓW [i][j] for each W [i][j].

The inspection part of the EI algorithm uses the probability mass function ΓW [i][j] to

estimate the normalcy probability of a specific value min(W [i][j]) + k that a network

packet is about to write to W [i][j].

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 53

4.2.2 Estimating the Statistical Parameters of Ordinal and

Dichotomous Logistic Models

As we will see later on in this subsection, an element W [i][j] may take each one

of its possible values with a probability that depends on x1, x2, ..., xg and a set of

constants denoted as, say α(s) and β(s), that in statistics are commonly referred to

as parameters. In this research the α(s) are intercept terms, while the β(s) are coef-

ficient terms. We refer to these constants as statistical parameters in order to avoid

conceptual confusion with physical process parameters. We estimate statistical pa-

rameters via applied logistic regression analysis integrated with maximum likelihood

estimation [52, 72].

The first step is to run the replica of a DCS-controlled physical system normally and

under no attacks, and thus record in a database the values of logical or word variables

in the RAM of control systems as they evolve over time. We have several individuals

run the said replica multiple times. Although in nuclear power industry reactor oper-

ator candidates are required to pass identical or similar certification exams, different

reactor operators may have different habits of changing process parameters to reach

desired operational states.

Furthermore, various process related events may be handled in different ways, all con-

sidered part of normal operation as long as they perform the desired task correctly.

What is important here is that the replica is made to generate a sample of network

packets that characterizes the population of network packets that form the normal

network operation of a DCS-controlled physical system. Refer to Section 5.6 for a

detailed discussion on how we generate the learning data set.

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 54

For each program variable modeled by an element W [i][j], we create a database view

composed of rows in the form {ϕ(W [i][j]), x1, x2, ..., xg}, where ϕ(W [i][j]) denotes the

next value of W [i][j]. ϕ(W [i][j]) is extracted from a network packet transmitted over

a process control network that is about to write W [i][j], while the record of values of

x1, x2, ..., xg is a snapshot of the current values of the elements of the matrix W right

before the said network packet changes the value of W [i][j] into a specific ϕ(W [i][j]).

Let d be the number of rows in the database view in question.

We now consider the case in which W [i][j] models a word variable. If in statistical

terms each possible value of W [i][j] is considered as an outcome category, then the

type of logistic regression applicable to the research problem under investigation is the

ordinal logistic regression since in DCS-controlled physical systems in general these

categories are ordered. In a nuclear power plant, for example, the possible values of

word variables that are mapped to process parameters such as pressure in a reactor

vessel, reactor water level, neutron population in a reactor core, steam flow rate, etc.,

are all ordered.

In ordinal logistic regression comparisons between contiguous values of a dependent

variable play a key role in the estimation of their respective probabilities of occur-

rence. Since the possible values of W [i][j] lie in [min(W [i][j]), min(W [i][j]) + h],

there are h possible comparisons between contiguous values of W [i][j]. Consequently,

always according to ordinal logistic regression, there are h intercept terms α in this

ordinal logistic model, namely α1, α2, ..., αh. There is an intercept term αk defined

for each value min(W [i][j]) + k of W [i][j] such that k 6= 0.

Later on in this subsection we will see that αk is directly used in the estimation of

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 55

the probability that W [i][j] takes the value min(W [i][j])+k. Due to a reason that we

explain later on in this subsection, there is no α0 defined for min(W [i][j]). Since the

logistic model under consideration is ordinal rather than polytomous, there is only one

coefficient term βa associated with each exposure variable xa, where a ∈ {1, 2, ..., g}.

Furthermore, there is a unique set of coefficient terms β1, β2, ..., βg defined for all val-

ues min(W [i][j]) + k of W [i][j].

As intercept term αk, the set of coefficient terms β1, β2, ..., βg is also directly used

in the estimation of the probability that W [i][j] takes the value min(W [i][j]) + k.

Given x1, x2, ..., xg, the probability that W [i][j] takes a value equal to or greater than

min(W [i][j]) + k is:

P (ϕ(W [i][j]) ≥ min (W [i][j]) + k | W) =
1

1 + e−(αk+
Pg
a=1 βaxa)

(4.3)

In the equation given above e denotes the Euler’s constant, i.e. the base of natural

algorithm. As a matter of fact we are interested in min (W [i][j]) + k ≥ 1, since

obviously P (ϕ(W [i][j]) ≥ 0 | W) = 1. Similarly, the probability that W [i][j] takes a

value equal to or greater than min (W [i][j]) + k + 1 given x1, x2, ..., xg is:

P (ϕ(W [i][j]) ≥ min(W [i][j]) + k + 1 | W) =
1

1 + e−(αk+1+
Pg
a=1 βaxa)

(4.4)

Equations (4.3) and (4.4) are used to derive the probability that W [i][j] takes a value

min(W [i][j]) + k given x1, x2, ..., xg. The said probability is:

P (ϕ(W [i][j]) = min(W [i][j]) + k | W) = P (ϕ(W [i][j]) ≥ min(W [i][j])+

k | W) − P (ϕ(W [i][j]) ≥ min(W [i][j]) + k + 1 | W) (4.5)

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 56

By plugging equations (4.3) and (4.4) into equation (4.5) we get:

P (ϕ(W [i][j]) = min (W [i][j]) + k | W) =

1

1 + e−(αk+
Pg
a=1 βaxa)

− 1

1 + e−(αk+1+
Pg
a=1 βaxa)

(4.6)

In the specific case in which k = 0, and thus the value of W [i][j] whose probability

of occurrence is being estimated is min(W [i][j]), the minuend in equation (4.6) will

be 1 since P (ϕ(W [i][j]) ≥ min(W [i][j]) | W) = 1. This explains why there is no α0

defined for min(W [i][j]), i.e. when k = 0. We now discuss the development of the

likelihood function LW [i][j] for an element W [i][j]. The function LW [i][j] represents

the joint probability for the likelihood of observing the data of the d rows in the

aforementioned database view. Assuming that the rows of the database view are

numbered from 1 to d, let ybk be an indicator variable defined on the b-th row as

follows:

ybk =

 1 if in the b-th row ϕ(W [i][j]) = min (W [i][j]) + k

0 if in the b-th row ϕ(W [i][j]) 6= min (W [i][j]) + k

(4.7)

The joint probability for the likelihood of observing the data in the database view is:

d∏
b=1

h∏
k=0

P (ϕ(W [i][j]) = min (W [i][j]) + k | W)ybk (4.8)

Equation (4.8) basically estimates the individual contribution made by each row to

the probability that ϕ(W [i][j]) will be min(W [i][j])+k, and then joins the individual

likelihood contributions made by each row. Clearly each row contributes with the

probability of only one value min(W [i][j]) + k being taken by W [i][j], since only one

of the indicator variables will be equal to 1. By plugging equation (4.6) into equation

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 57

(4.8) we get:

d∏
b=1

h∏
k=0

(
1

1 + e−(αk+
Pg
a=1 βaxa)

− 1

1 + e−(αk+1+
Pg
a=1 βaxa)

)ybk
(4.9)

The values of exposure variables x1, x2, ..., xg in equation (4.9) are available from the

database view as each individual row is processed by this equation, therefore after

performing the multiplications of the probabilities contributed by each individual row,

the likelihood function LW [i][j] appears as a function of the statistical parameters,

namely:

LW [i][j] (α1, α2, ..., αh, β1, β2, ..., βg) (4.10)

We are interested to estimate those specific values of the statistical parameters

α1, α2, ..., αh, β1, β2, ..., βg that maximize LW [i][j]. For this purpose we now apply the

maximum likelihood technique [76]. Let us organize the parameters of the likelihood

function LW [i][j] into a vector θ = (θ1, θ2, ..., θh+g). Maximizing LW [i][j] (θ) is equivalent

to maximizing ln
[
LW [i][j] (θ)

]
. If r ∈ {1, 2, ..., h+g}, and hence θr is the r-th element

of vector θ, the values of the statistical parameters that maximize LW [i][j] (θ) are the

solutions of a system of equations of the form:

∂ln
[
LW [i][j] (θ)

]
∂θr

= 0 (4.11)

where the fraction is a partial derivative of the natural logarithm of the likelihood

function LW [i][j] with respect to θr. The solutions of the said system of equations

represent our estimates of the statistical parameters α1, α2, ..., αh, β1, β2, ..., βg. Armed

with the estimated values of the statistical parameters , we can return to equation

(4.6) and estimate the probability that W [i][j] takes the value min(W [i][j])+k, given

the current values of the elements of the matrix W . This is an integral component of

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 58

the EI algorithm, which we provide in full in the next subsection.

Estimating pk = (P (ϕ(W [i][j]) = min (W [i][j]) + k | W)) and storing pk in VW [i][j][k],

for each k ∈ {0, 1, ..., h}, fills all the positions of stochastic vector VW [i][j]. Iteration

of this procedure over each possible tuple of values of exposure variables x1, x2, ..., xg

associates each one of such tuples with a stochastic vector VW [i][j], and hence leads to

a complete computation of the probability mass function ΓW [i][j].

We now consider the case in whichW [i][j] models a logical variable. Thus, the possible

values of W [i][j] are 0 and 1. Since the definition of a logical variable in a control

systems context matches the definition of a dichotomous measure in a statistical

context, the type of logistic regression that is applicable to our research problem in

this case is the dichotomous logistic regression. As ours is a dichotomous logistic

model, there is only one intercept term α defined for both possible values of W [i][j],

and only one coefficient term βa associated with each exposure variable xa, where

a ∈ {1, 2, ..., g}.

Furthermore, there is a unique set of coefficient terms β1, β2, ..., βg defined for both

possible values of W [i][j]. We get the probability that an element W [i][j] takes value

1 by applying the logistic function of the dichotomous logistic model, namely:

P (ϕ(W [i][j]) = 1 | W) =
1

1 + e−(α+
Pg
a=1 βaxa)

(4.12)

The probability that W [i][j] takes value 0 then is given by the equation below:

P (ϕ(W [i][j]) = 0 | W) = 1− P (ϕ(W [i][j]) = 1 | W) = 1− 1

1 + e−(α+
Pg
a=1 βaxa)

(4.13)

We arrange the rows of the database view in such a way that in the first c rows

ϕ(W [i][j]) = 1, and thus in the remaining d − c rows ϕ(W [i][j]) = 0. Let P (Xb)

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 59

denote P (ϕ(W [i][j]) = 1 | W) for the b-th row. Also in a dichotomous logistic model

the joint probability for the likelihood of observing the data in the database view is

given by a likelihood function LW [i][j], which in this case is defined as:

c∏
b=1

P (Xb)
d∏

b=c+1

1− P (Xb) (4.14)

Equation (4.14) estimates the individual likelihood contribution made by each row

numbered from 1 to c to the probability that W [i][j] takes value 1, along the individual

likelihood contribution made by each row numbered from c+1 to d to the probability

that W [i][j] takes value 0, and joins the individual likelihood contributions made by

each row. The values of exposure variables x1, x2, ..., xg in equation (4.14) are available

from individual rows of the database view. By performing the multiplications of the

probabilities contributed by each row we get a likelihood function LW [i][j] that is

defined as:

LW [i][j] (α, β1, β2, ..., βg) (4.15)

We are interested to estimate those specific values of the statistical parameters

α, β1, β2, ..., βg that maximize LW [i][j], and do so via maximum likelihood estimation.

We apply the unconditional likelihood technique rather than the conditional one

since the number of statistical parameters in the model is usually small relative to

the number of rows in the database view. Furthermore, the conditional likelihood

technique does not allow for estimating the intercept term α, which, as may be seen

from equation (4.12) and equation (4.13), is quite indispensable to the estimation of

the probability that W [i][j] takes value 1 and 0, respectively.

If we denote the parameters of the likelihood function LW [i][j] as θ = (θ1, θ2, ..., θg+1),

then the values of the statistical parameters that maximize LW [i][j] (θ) are the solu-

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 60

tions of a system of equations that have the form of equation (4.11). In this case

θr is the r-th individual parameter for r ∈ {1, 2, ..., g + 1}. The solutions of the

system of equations in question represent our estimates of the statistical parameters

α, β1, β2, ..., βg. With the estimates of the statistical parameters in hand, we can re-

turn to equations (4.12) and (4.13) and estimate the probability that W [i][j] takes

the value 1 and 0, respectively, given the current values of the elements of the matrix

W .

This is also an integral component of the EI algorithm. Estimating

p1 = P (ϕ(W [i][j]) = 1 | W) and p0 = P (ϕ(W [i][j]) = 0 | W), and storing p1 and p0

in VW [i][j][1] and VW [i][j][0], respectively, fills both of the positions of stochastic vector

VW [i][j]. Iterating over each possible tuple of values of exposure variables x1, x2, ..., xg

associates each one of them with a stochastic vector VW [i][j], and thus leads to a

complete computation of the probability mass function ΓW [i][j].

4.2.3 The Estimation-Inspection Algorithm

The EI algorithm is provided in Algorithm 1. The first part, i.e. Estimation,

is concerned with estimation of statistical parameters, i.e. intercept terms α(s) and

coefficient terms β(s), and thus is conducted in the learning phase. As indicated on

[part I; line 1], the EI algorithm estimates a specific set of statistical parameters for

each element of the matrix W that models a program variable actually defined in a

control system. The EI algorithm follows the statistical procedure discussed in the

previous subsection.

More precisely, the EI algorithm applies ordinal logistic regression, integrated with

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 61

maximum likelihood estimation, on a learning data set to estimate the intercept terms

and the coefficient terms of the ordinal logistic model developed for an element of the

matrix W that models a word variable [part I; lines 2-4]. The EI algorithm applies

dichotomous logistic regression, integrated with maximum likelihood estimation, on

a learning data set to estimate the intercept term and the coefficient terms of the

dichotomous logistic model developed for an element of the matrix W that models a

logical variable [part I; lines 5-7].

The second part of the EI algorithm, i.e. Inspection, is concerned with scrutiniz-

ing network packets that flow across a process control network. When assessing the

normalcy of a network packet, the EI algorithm conducts its statistical analysis in

relation to each variable that is being written by the network packet currently under

inspection [part II; line 3]. The EI algorithm checks whether the program variable

that is being written by the network packet under inspection is a word variable [part

II; line 4] or a logical variable [part II; line 8, 10].

This information in conjunction with the value of index k derived in [part II; line 4]

is used to identify (1) the type of logistic model, and hence the corresponding logistic

regression formula, that is applicable to the network packet under inspection, (2) the

intercept terms α(s) and coefficient terms β(s) of the applicable logistic model defined

for the variable being written.

If the program variable that is being written is a word variable, the EI algorithm plugs

the intercept terms α(s) and coefficient terms β(s) along with the current values of

exposure variables x1, x2, ..., xg into the formula of the ordinal logistic model, with

the result being an estimate of the normalcy probability of the specific value that

the network packet under inspection is about to write to the continuos variable in

question [part II; line 6].

If the program variable being written is a logical variable, the EI algorithm plugs

the intercept term α and coefficient terms β(s) along with the current values of ex-

posure variables x1, x2, ..., xg into the formula of the dichotomous logistic model to

estimate the normalcy probability of value 1 [part II; line 9] or value 0 [part II; line

11], depending on whether it is 1 or 0 that is being written to the logical variable,

respectively.

If the normalcy probability of the value that is being written to the program vari-

able currently under consideration is greater than zero, the EI algorithm conducts

its statistical analysis in relation to the next variable that the network packet under

inspection is about to write, if any. If that is not the case, i.e. the estimate of the

normalcy probability is equal to zero, the EI algorithm interrupts the scrutiny and

classifies the network packet as abnormal [part II; lines 13-16].

4.2.4 Payload Coverage

The EI algorithm scrutinizes a large part of the payload, i.e. protocol data unit,

of network packets that convey process data in a process control network. This is due

to the fact that most of, or if not most of at least large parts of, the capacity of these

network packet payloads is occupied by process data. A ModBus packet payload, for

example, has a maximum capacity of 253 bytes.

The content of a ModBus packet payload employable for writing up to 123 contiguous

16-bit variables dedicates 1 byte to a function code that specifies the type of request,

62

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 63

Algorithm 1 Assess the normalcy of a network packet payload

1: for all W [i][j] that models a program variable that is defined do

2: if W [i][j] models a word variable then

3: estimate the associated statistical parameters α1, α2, ..., αh, β1, β2, ..., βg via

ordinal logistic regression and maximum likelihood estimation

4: end if

5: if W [i][j] models a logical variable then

6: estimate the associated statistical parameters α, β1, β2, ..., βg via dichoto-

mous logistic regression and maximum likelihood estimation

7: end if

8: end for

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 64

1: U ⇐ payload

2: Norm⇐ true

3: for all W [i][j] such that ϕ(W [i][j]) ∈ U do

4: k ⇐ ϕ(W [i][j])−min(W [i][j])

5: if W [i][j] models a word variable then

6: pk ⇐ 1

1+e
−(αk+

Pg
a=1 βaxa)

− 1

1+e
−(αk+1+

Pg
a=1 βaxa)

7: end if

8: if W [i][j] models a logical variable and k = 1 then

9: pk ⇐ 1

1+e
−(α+

Pg
a=1 βaxa)

10: else if W [i][j] models a logical variable and k = 0 then

11: pk ⇐ 1− 1

1+e
−(α+

Pg
a=1 βaxa)

12: end if

13: if pk = 0.0 then

14: Norm⇐ false

15: break for loop

16: end if

17: end for

18: return Norm

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 65

namely a ModBus packet payload that writes multiple variables, 2 bytes to a base

address that points to the first one of these potential 1-123 variables, 1 byte to the

specification of the number of variables that are to be written, and the remaining

bytes to process data.

Thus, a total of 4 bytes in a ModBus packet payload are reserved for auxiliary fields.

In the case of a maximal utilization of this type of ModBus packet payload, i.e. the

number of variables to be written is 123, process data occupy 246 bytes of the overall

payload capacity, and hence the EI algorithm scrutinizes 98.4% of each one of these

ModBus packet payloads. In a minimal utilization case the number of variables to

be written would arguably be 2 since ModBus provides other types of payloads for

writing single variables.

In this case process data would occupy 4 bytes, therefore the EI algorithm would

scrutinize 50% of each one of these ModBus packet payloads. Clearly the correctness

of such scrutiny relies heavily on the algorithm’s probability mass functions. Con-

sequently, we found substantial motivation for augmenting the construction of the

algorithm’s probability mass functions with a validation procedure.

4.3 Discussion on Inductive Machine Learning in

a DCS

4.3.1 Generating the Learning Data Set

As in the learning phase of traditional anomaly intrusion detection, we need to

run a DCS-controlled physical system normally and under no attacks in order to have

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 66

it exhibit its normal behavior in terms of network packets that are transmitted over

the associated process control network. Our experience with this research indicates

that an appropriate way of implementing the learning phase is to use a hybrid replica

of the real DCS-controlled physical system. The hybrid replica is to be formed by

both real and simulated elements, and is required to strictly resemble the real DCS-

controlled physical system.

The cyber side of the hybrid replica is to be formed by genuine control systems and

networks that possibly are to be identical to the control systems and networks in the

real DCS-controlled physical system, respectively. Furthermore, system and network

configurations in the hybrid replica are a copy of the system and network configu-

rations deployed on the cyber side of the real DCS-controlled physical system. Real

world DCS like General Electric’s Mark VIe or OC 4000 would be ideal as the cyber

side of the hybrid replica.

Nevertheless, as of the time this research was conducted we didn’t have access to a

DCS that is deployed in real world power plants, and thus constructed a DCS com-

prised of ModBus speaking MatPLC systems. The majority of that part of the hybrid

replica that corresponds to the physical side of the real DCS-controlled physical sys-

tem is to be simulated. Given the individual nature of this research, we conducted a

continuous simulation of only a limited part of an ABWR, namely a simplified version

of the rod motion and water injection control mechanisms along with a small portion

of reactor physics.

The rationality behind using a hybrid replica for learning the normal behavior of a

DCS-controlled physical system rather than the DCS-controlled physical system itself

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 67

is formed of a variety of reasons. Gathering training data that are to be used during

the learning phase involves either installing additional code in each control system in

order to copy values of variables from RAM memory as they evolve, or tapping into

control networks and fieldbus networks in order to sniff process control traffic, which

is then used to reconstruct values of variables in the RAM memory of each control

system.

In a DCS-controlled physical system such as a nuclear power plant in production the

aforementioned system or network interventions may be quite constrained by safety

procedures. Training data that characterize temporary perturbations of critical pro-

cess parameters certainly are not immediately available in a DCS-controlled physical

system in production. Learning about transients in a nuclear power plant in produc-

tion, for example, requires gathering or reconstructing values of variables in RAM

memory as transients occur.

Further, variations in transient severity also need to be taken into account in the

learning phase. Generally it may take some time before a DCS-controlled physical

system transitions between various operational states. For example, it may take some

time before a nuclear power plant transitions from 20% thermal power to 40% ther-

mal power and then to 100% thermal power, depending on the demands of the overall

electric power distribution network. If we’re interested in initialization conditions, it

may also take time before a nuclear power plant is shut down and then is restarted

again. Learning the effects of depletion of consumable physical elements on data

transition flows in a real DCS-controlled physical system is also an issue.

In a nuclear power plant, for example, the concentration of nuclear fuel decreases

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 68

with time due to the fission process. This has a direct affect on a series of process

parameters, and hence on logical or word variables in control systems due to a cyber-

physical mapping in place. Consumption of nuclear fuel continues throughout the

operation of a nuclear power plant until it is time for refueling the reactor. If we’re

interested in developing classifiers that are fully aware of the slow effects of gradual

nuclear fuel consumption on data transition flows, then we have to gather data for a

period that extends to the lifetime of a nuclear fuel load in the reactor, i.e. usually

many months.

For instance, in a General Electric reactor designed according to what is known as

a BWR-4 model, the lifetime of a nuclear fuel load is about 18 months under the

assumption that the reactor operates at full thermal power with few interruptions [1].

In a hybrid replica of a DCS-controlled physical system to be protected, RAM mem-

ory monitoring code can be safely installed in each control system, and sniffing tools

can also be safely tapped into control networks and fieldbus networks. In a hybrid

replica temporary perturbations of critical process parameters, such as transients in

nuclear power plants, can be easily emulated at all possible severities.

These emulations enable the anomaly detection system to be able to estimate data

transition flows that have the potential to be followed by logical or word variables in

the RAM memory of control systems when a DCS-controlled physical system to be

protected is subject to these operationally abnormal events. A hybrid replica can be

quickly brought to various states, and hence be transitioned between them. A hybrid

replica can also be shut down and restarted quickly. The aforementioned maneuvers

generate statistical data that allow for reproducing the behavior in terms of data

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 69

transition flows that a DCS-controlled physical system exhibits when it is in initial-

ization conditions, or as it transitions between various possible operational states.

The simulator part of a hybrid replica can be used to simulate in an accelerated way

the depletion of consumable physical elements such as nuclear fuel, and thus allow for

the anomaly detection system to learn the effects that this physical phenomenon has

on data transition flows in a real DCS-controlled physical system. Please notice that,

as the statistical intrusion detection provided in this dissertation is based on logistic

regression, its learning procedure does not require the whole population of network

packets that characterize a normal network operation of a DCS-controlled physical

system. In other words, our algorithm does not need to be presented with all possible

normal flows of values of a logical or word variable.

We only need to generate through the hybrid replica a sample of the said population.

This sample does suffice for our algorithm to produce maximum-entropy classifiers

that can process all possible network packets, and hence determine the normalcy or

abnormalcy of any flows of values of any logical or word variables. This is, again, due

to the kind of statistical foundation of our algorithm, namely logistic regression, which

can estimate statistical parameters that hold for a whole population even though the

regression is applied only on a sample of the said population.

In [81], Mahoney and Chan report some limitations of the simulated normal network

traffic gathered in the IDEVAL datasets [44] and used as a benchmark for evaluating

anomaly intrusion detection systems. Mahoney and Chan have found that IDEVAL

data are excessively predictable and clean, and that several successful intrusion detec-

tions in IDEVAL are due to certain details of the network simulation process. Based

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 70

on their research in [81], Mahoney and Chan believe that Internet traffic is too com-

plex to be accurately simulated, while computer network attacks can be simulated

correctly. Consequently they propose to use real rather than simulated network traffic

as training data, while continuing to use data gathered from simulated attacks for

testing anomaly intrusion detection systems.

The findings of Mahoney and Chan do not directly affect our approach of generating

a learning data set since we use genuine control systems and networks, and hence real

network traffic, for inductive machine learning. In our mind though their research

raises some concerns whether the continuous simulation of a physical system resem-

bles the said physical system to a degree that is sufficient not to negatively affect

the learning process. We believe that a further study similar to that of Mahoney

and Chan is needed to validate the usability of network traffic generated via a hybrid

replica to learn profiles of normal behavior of the corresponding real cyber-physical

system. We leave this study as a future work since as of this writing we do not have

access to a data set gathered from the process control network of a real nuclear power

plant, which is the physical system of reference in our research.

4.3.2 Handling Black Swan Events

The maximum-entropy classifiers produced by the statistical intrusion detection

algorithm are trained to be capable of dealing with data transition flows that are

exclusively due to black swan events. Black swan events are large-impact, hard-to-

predict, and rare events that lie beyond the realm of normal expectations [111]. In

nuclear power plants we identify as black swan events any events such as electric, me-

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 71

chanical, or electronic faults in plant equipment, breakages, etc., that have potential

for causing transients and accidents of any level of gravity.

Transients are abnormal events that can cause temporary perturbations of critical

process parameters of a DCS-controlled nuclear power plant. Transients in general

trigger a corrective response by control systems. An example of a transient is an event

in which at a high power level a feed water pump experiences dysfunction due to some

fault, with the consequence being a rapid drop in reactor water level. The correc-

tive response taken by control systems consists in reducing reactor thermal power

by inserting control rods, i.e. rods that contain the element boron and as such add

negative reactivity by absorbing neutrons.

Accidents in a nuclear power plant are events that have potential for breaking the

protective measures designed to prevent release of radioactive material. We have

simulated a series of computer network attacks on the MatPLCs of the previously

described DCS, and thus noticed the following: the data transition flows that are

followed by logical or word variables in the RAM variable memory of compromised

control systems as a successful attack tends to reach its ultimate objective, namely

cause physical damage, are identical to the data transition flows followed by these

variables when transients or accidents occur.

This is obvious since causations of physical damage by attacks over the network may

be considered as intentional transients or accidents, respectively. What we meant

with dealing with data transition flows that are exclusively due to black swan events

is to generate maximum-entropy classifiers which do not classify transients and ac-

cidents as computer network attacks, and which do not classify as transients and

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 72

accidents those computer network attacks that are stealth enough to masquerade as

transients and accidents, respectively.

In order to generate maximum-entropy classifiers with the said capability, we do in-

clude in the learning data set values of logical or word variables that characterize

transients and accidents, relying on the distinction between causation and reporting.

In the learning phase we absolutely do not allow the transmission of any network

packets that are not part of a normal network operation of a DCS-controlled power

plant, while still allowing for a power plant to be in abnormal conditions in conjunc-

tion with network packets that cause evolutions of values of logical or word variables

that characterize a recovery.

In other words, the statistical intrusion detection algorithm is not presented with net-

work packets that will force the power plant to precipitate into abnormal conditions,

but still the maximum-entropy classifiers are taught how to recognize evolutions of

logical or word variables that characterize corrective responses taken by control sys-

tems to normalize the plant conditions. The statistical intrusion detection algorithm

is capable of recognizing black swan events, and hence does not report them as anoma-

lies. Furthermore, the statistical intrusion detection algorithm classifies as abnormal

all those network packets that have potential for causing black swan events.

4.4 Probabilistic Validation

The EI algorithm’s effectiveness to estimate probability mass functions that per-

mit only normal evolutions of values of logical or word variables in the RAM variable

memory of control systems is validated via modeling and simulation. For the said

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 73

purpose we develop validation models based on the stochastic activity network for-

malism (SAN) [102, 104], which thereafter are solved via the Möbius tool [25]. We

opted for a simulation-based validation because of a variety of reasons.

Clearly a data set that is comprised of network packets sniffed from the process con-

trol network of a real world DCS-controlled physical system like a nuclear power

plant in operation would have been an excellent evaluation benchmark for assessing

whether the EI algorithm classifies as normal each single network packet of the said

data set. Nevertheless, access for experimentation purposes to a real world DCS con-

trolled physical system in operation normally is not available.

At least we as academic researchers, as of the time this research was conducted,

haven’t had feasible means of acquiring real world process control network traffic on

which to base the validation of the EI algorithm, nor are we aware of the existence

of such a data set. Furthermore, clearly the data set that fed the inductive machine

learning phase is not appropriate for validating the maximum-entropy classifiers.

A real world DCS-controlled physical system like a power plant in operation may

exhibit only a subset of the data transition flows that form its normal behavior.

Demonstrating the EI algorithm’s effectiveness on a limited number of data transi-

tion flows is only a partial validation of the algorithm in question. Clearly a power

plant cannot be operated in such a way as to generate a thorough data set usable for

validation purposes.

In other words, it may not be feasible to dedicate the operation of a real world power

plant in operation to an algorithm validation procedure. Even more unreachable ap-

pears to be the access to a data set which includes network packets that are part of a

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 74

computer network attack on a real world DCS-controlled nuclear power plant, which

is our reference physical system in this research.

Although such data set would have been a valuable instrument to validate the detec-

tion capability of the EI algorithm, we believe that several concerns may apply to its

being publicly available due to its relevance to national security. The employment

of modeling and simulation for validation purposes is common in environments in

which experimentation with real world equipment and/or physical phenomena is not

available or feasible.

An argument for advocating the rationality behind using simulation to validate our

statistical intrusion detection algorithm is a parallelism between the said algorithm

and conflict detection algorithms that are used in airborne collision avoidance sys-

tems. While a conflict detection algorithm aims at detecting collision conditions that

threaten the safety of flying aircraft, the EI algorithm aims at detecting abnormal

network communication conditions that threaten the safety of a DCS-controlled phys-

ical system like a power plant.

Most importantly, creating real collision conditions to validate the effectiveness of a

conflict detection algorithm is dangerous in the same way as it is to conduct real com-

puter network attacks on a real world power plant to validate the effectiveness of an

intrusion detection algorithm devised for operation in process control networks. As

can be derived from the review of conflict detection algorithms conducted by Thomas

et al. in [113], simulation is a major instrument for validating the effectiveness of

such algorithms.

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 75

4.4.1 Stochastic Activity Networks with Activity-Marking

Oriented Reward Structures

An activity network [102, 104] is a generalized Petri net [93]. It can be defined

as an eight-tuple: AN = (T,E, I, O, ζ, η, i, o). In this definition T is a finite set of

places, which in a graphical representation are denoted by circles. As in a Petri net,

places hold tokens, which indicate the value or state of a place. The distribution of

tokens among all the places in an activity network is called a marking. Thus, the

marking of an activity network is a function µT : T → N. If S is a set such that

S ⊂ T and S 6= ∅, then a specific marking of S is called a partial marking and is

formed by the function µS : S → N.

The set of possible markings of S is comprised of the set of functions MS = {µS |

µS : S → N}. In the activity network definition, E is a finite set of activities, i.e.

transitions that model activities of a system being modeled. Each activity has one

or more cases, which are used to indicate a possible action that may be taken upon

the completion of the activity. Cases are denoted by small circles on the right side

of activities. Activities are of two kinds, namely timed activities and instantaneous

activities.

Timed activities are transitions that have non-negligible durations, while instanta-

neous activities complete in a negligible amount of time. In a graphical representation

timed activities and instantaneous activities are denoted by thick bars and thin bars,

respectively. I is a finite set of input gates, which connect places to activities. An

input gate is a triple ig = (G, e, f), in which G ⊆ T is a set of input places that are

associated with the input gate ig, e : MG → {0, 1} is the enabling predicate of the

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 76

said input gate, and f : MG →MG is the input function of the gate.

An input gate ig = (G, e, f) is said to hold in the marking µT if e (µG) = 1. In a

graphical representation input gates are denoted by triangles that point to the left.

An activity is said to be enabled when all of the input gates that are connected to

the said activity hold. O is a finite set of output gates, which connect activities to

places. An output gate is a pair og = (G, f), in which G ⊆ T is a set of output places

that are associated with the output gate og, and f is the output function of the said

gate and is defined as f : MG →MG.

In a graphical representation output gates are denoted by triangles that point to the

right. In the activity network definition, ζ is a function that specifies the number

of cases for each activity, and thus is defined as ζ : E → N+. η is a function that

indicates for each activity whether it is timed or instantaneous, and is defined as

η : E → {Timed, Instantaneous}. i is a function that specifies which input gates are

connected to which activity. It is defined as i : I → E.

o is a function that connects output gates to cases of activities. It is defined as

o : O → {(a, c)}, where a is an activity and c is a case of the activity a. Stochastic

activity networks (SANs) are a stochastic extension to activity networks. The said

extension lies in activity time distribution functions and activity case distribution

functions. An activity time distribution function probabilistically specifies the dura-

tion of a timed activity to which it is assigned. An activity case distribution function

assigned to an activity with more than one case specifies the probability distribution

of those cases, i.e. for each case the function in question specifies the probability that

the said case will be selected.

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 77

The overall behavior of a SAN is formed by enabling of activities, completion of ac-

tivities, selection of activity cases, and changes in markings. Reward variables in a

SAN are organized according to their reward structure type, category within a re-

ward structure type, and variable type [103, 104]. The reward structure type that is

applied to validate the algorithm is the activity-marking oriented reward structure

[103, 104]. An activity-marking oriented reward structure is a set of functions that

quantify impulse rewards, i.e. benefits associated with completion of defined activi-

ties, and functions that quantify rates of reward, i.e. benefits associated with defined

numbers of tokens in defined places.

The former functions are of the form C : E → R, in which if a ∈ E, C (a) is the

impulse reward gained by the completion of a. The latter functions are of the form

R : Υ → R, where Υ is the set of partial markings. If µ ∈ Υ, then R (µ) is the rate

of reward gained when the partial marking µ is reached. The category within the

activity-marking oriented reward structure that is of our interest is the interval-of-

time category. The variable type in the said category that we apply in this research is

the one that represents the total reward accumulated during a defined time interval

∆t.

4.4.2 Construction and Solution of Validation Models based

on Stochastic Activity Networks

As we have in hand a probabilistic characterization of the evolutions of values

of elements of the matrix W, namely probability mass functions, clearly from the

EI algorithm’s perspective our dynamic system exhibits a stochastic behavior. We

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 78

model the said dynamic system as a SAN, and thus have the behavior of the SAN

model correspond with the normal behavior of the dynamic system, and hence with

the normal behavior of the whole cyber-physical system. By doing so we gain the

opportunity to check whether the said dynamic system evolves into specific states

that are indicative of conditions that are not created throughout a normal operation

of a DCS-controlled physical system.

Conversely, if the dynamic system in question evolves only between states that charac-

terize a normal operation of a DCS-controlled physical system, we can gain confidence

that the EI algorithm indeed estimates probability mass functions that do not allow

a DCS-controlled physical system to be taken to abnormal conditions. The elements

of the matrix W are in turn modeled as elements of T , i.e. places, and thus the values

of the elements of the matrix W are modeled as tokens in places. Let S be the set of

places that model discrete input variables, input register variables, and those holding

register variables and coil variables that are used to store measurement data or data

produced by computations on measurement data.

An example of the latter data in a nuclear power plant is thermal power, which is

computed upon neutron population measurements that are received over a fieldbus

network from a large number of sensors distributed within the reactor core. MS, i.e.

the set of possible markings of S, may be defined as MS = MSn ∪MSa , where MSn

is the set of possible markings of S that represent normal conditions of the physical

process, while MSa is the set of possible markings of S that represent abnormal con-

ditions of the physical process.

Thus, the normal behavior of the physical process is comprised of evolutions between

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 79

{µS | µS ∈ MSn}, while the abnormal behavior of the physical process involves an

evolution into any {µS | µS ∈ MSa}. Let Q = T − S be the set of places that

model coil variables and holding register variables that are used to store set points

and actuator control values. Let MQ denote the possible markings of Q. ∀µS ∈MSn ,

MQ = MQn ∪ MQa relative to µS, where MQn and MQa are comprised of all those

partial markings in MQ that cause an evolution of µS into a marking of S that lies

in MSn and MSa , respectively.

The evolutions of values of each W [i][j] which models a program variable that is used

to store set points or actuator control values are themselves modeled as an activity,

say aW [i][j]. In other words, the evolutions of numbers of tokens in each one of the

places in Q are modeled as an activity. Many of the evolutions of values of program

variables that are used to store set points and actuator control values, which we model

as activities, have non-negligible durations.

The said durations though depend on factors whose prediction lies outside our prob-

lem domain. In a nuclear power plant, for example, the duration of a specific evolution

of values of program variables that is caused by a transition of the plant from 40%

thermal power to, say, 42% thermal power depends on the demands of the overall

electric power distribution network. If thermal power in a plant is currently 40% and

due to some reasons the demand for electric power increases, then an operator will

quickly transition the plant from 40% thermal power to 42% thermal power, and so

on.

If the demand for electric power remains constant for an undetermined amount of

time, then an operator may keep the plant at 40% thermal power for a while until

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 80

the demand for electric power increases. Clearly the duration of the said evolution

is quite variable from case to case, and thus a precise estimation of the duration in

question is not available. As another example, consider the automatic response initi-

ated by control systems in a nuclear power plant upon sensing of a fault condition in

an electrical generator.

The said response is comprised of opening the generator output breaker, closing the

turbine steam admission valves, and opening the turbine bypass valve. Estimating

the duration, or rate, of any of the evolutions of values of program variables that are

caused by the response in question is equivalent to estimating the failure rate of the

electrical power generator. The activities in the validation models are defined to be

instantaneous. We deem that this modeling choice does not affect the correctness of

the validation procedure.

SANs with activity-marking oriented reward structures traditionally are used to de-

termine measures of time-dependent concepts, like performance along with queueing

time, steady-state and interval availability, reliability over a defined amount of time,

etc. In the validation procedure we are only interested in assessing whether the evo-

lutions modeled by activities have potential for taking the aforementioned dynamic

system into particular states that are indicative of unsafe and abnormal conditions,

regardless of the time. Furthermore, in SAN modeling the duration of each activity

is normally considered relative to a variable being measured [102].

The case distribution function of an activity aW [i][j] is exactly the probability mass

function ΓW [i][j]. Let ΓW [i][j] as applied in a validation model based on a SAN be

referred to as SAN-ΓW [i][j]. The domain of SAN-ΓW [i][j] is comprised of all possible

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 81

markings of T . Being identical to ΓW [i][j], SAN-ΓW [i][j] produces in output a stochastic

vector for each individual marking of T , with the extension that each probability in

the stochastic vector is assigned to a case of the activity in question.

Thus, for each activity aW [i][j] in a validation model we have ζ
(
aW [i][j]

)
= h + 1.

These cases are sequentially numbered from min(W [i][j]) to min(W [i][j]) + h, i.e.

max(W [i][j]). The probability pk, i.e. the value stored at index k of the stochastic

vector produced by SAN-ΓW [i][j], is assigned to the (min(W [i][j]) + k)-th case of the

activity aW [i][j]. Let εW [i][j] denote a place that models W [i][j] in the validation mod-

els. Selection of the (min(W [i][j]) + k)-th case of an activity aW [i][j] denotes the fact

that the number of tokens in εW [i][j] is transitioning to min(W [i][j]) + k.

In a validation model, the set of places T is connected to an activity aW [i][j] via an

input gate igW [i][j] = (G, e, f). Thus, for each W [i][j] that is modeled by one of the

places in Q, we have i : igW [i][j] → aW [i][j]. The set of input places G is defined as

G = T . The enabling predicate e applies SAN-ΓW [i][j] on the current marking of T in

order to compute a stochastic vector, and thereafter sequentially searches in the said

vector for any pk > 0.0.

If the said enabling predicate finds at least one pk > 0.0, then it returns 1, otherwise it

returns 0. In other words, an input gate igW [i][j] holds, and hence enables an activity

aW [i][j], only if the current marking of T is deemed to allow for a normal transition of

the number of tokens in εW [i][j]. In the input gate definition, the input function f is

an identity function. Each case min(W [i][j]) + k of an activity aW [i][j] is connected to

an output gate, say ogMin+k
W [i][j] = (G, f). Thus, for each W [i][j] that is modeled by one

of the places in Q, we have o : ogMin+k
W [i][j] →

(
aW [i][j],min (W [i][j]) + k

)
.

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 82

Let SW [i][j] ⊂ S be the set of places which model program variables that are af-

fected by values of W [i][j] according to some physics or chemistry equations. In each

ogMin+k
W [i][j] , G = SW [i][j] ∪ εW [i][j]. While function f sets the number of tokens in εW [i][j]

to min(W [i][j]) + k, and the number of tokens in each place in SW [i][j] to set a value

that is calculated via the said equations, where W [i][j] is taken as min(W [i][j]) + k.

Figure 4.1: Typical architecture of a SAN model developed for testing a set of stochas-
tic vectors produced by a probability mass function.

Overall, the behavior of these SANs represents the behavior of a cyber-physical sys-

tem considered in its entirety, such as for example a digitally controlled nuclear power

plant along with its associated process control networks, as enforced by the EI algo-

Chapter 4: PROBABILISTIC ESTIMATION OF DATA TRANSITION FLOWS
FOR ANOMALY DETECTION 83

rithm. The question that we are interested to ask is the following: is there an activity

that causes a change in the marking of the SANs in question such that the new partial

marking of S results to be an element of MSa ?

For being able to respond to the said question, in the Möbius tool we define a se-

ries of rates of reward variables of the interval-of-time category that intercept all

{µS | µS ∈ MSa}. The SANs are then solved for very large ∆t. In the estimates

computed via solutions of the SANs in question the reward accumulated by the said

rates of reward variables is 0.0, which means that the partial marking of S never

evolved into any {µS | µS ∈ MSa}. The typical architecture of a validation model

based on a SAN is depicted in Figure 4.1.

Chapter 5

PROCESS AWARE

SPECIFICATION-BASED

DETECTION

5.1 Introduction

Experimental evaluations of specification-based intrusion detection indicate that

this approach is efficient in detecting known and unknown attacks [114]. Furthermore,

it is capable of maintaining a very low rate of false positives [114]. More precisely,

in [114] Uppuluri and Sekar report experiments with specification-based detection

whose outcome is 0 false alarms in both online and offline testing. Nevertheless,

specification-based intrusion detection is not as effective as anomaly intrusion detec-

tion in detecting unknown attacks [106].

Ever since specification-based intrusion detection was first introduced in [74, 107],

84

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 85

little progress has been made in enhancing its detection capabilities, and hence make

these capabilities comparable to those of anomaly intrusion detection with regard to

detection of unknown attacks. The problem lies in attacks whose manifestations are

compliant with manually developed specifications of normal behavior. In a process

control network this problem takes the form of malicious network packets that are

capable of passing all tests of model-based intrusion detection [4].

Sekar et al. in [106] address this problem in its original form by combining specification-

based detection with anomaly detection. For each host or router in a network, Sekar

et al. developed specifications of normal network traffic that is received or transmit-

ted by the modeled host or router, respectively. Sekar et al. derive specifications of

normal network traffic from requests for comments (RFCs) or other descriptions of

communication protocols, and thus represent these specifications as extended finite

state automata.

Sekar et al. then apply anomaly detection on top of the extended finite state au-

tomata. Sekar et al. employ machine learning to capture statistical properties of

network traffic, such as frequencies of transitions between control states in an ex-

tended finite state automaton, the most encountered value of a state variable at a

control state of an extended finite state automaton, and the distribution of values of

a state variable in an extended finite state automaton.

In this chapter we discuss our research on advancing the detection capabilities of

specification-based intrusion detection itself when employed in a process control net-

work. We leave open the possibility of applying statistical machine learning or other

anomaly intrusion detection approaches on top of the improved specification-based

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 86

approach.

Thus, the approach discussed in this chapter, which we refer to as physical pro-

cess aware specification-based intrusion detection, is specific to process control net-

works. As such it aims at leveraging model-based intrusion detection into an extended

specification-based intrusion detection approach whose effectiveness with regard to

detection of unknown attacks is comparable to the effectiveness of anomaly intrusion

detection.

5.2 Semantic Analysis of Network Traffic

Given a network packet, i.e. a byte stream, we are interested in deriving the

semantic meaning of this byte stream. We need to derive the operation or function

that the byte stream in question is about to perform. We refer to this process as byte

stream semantic analysis, and employ it as a fundamental mechanism to increase the

scrutiny of network packets that flow across a process control network. For example,

referring to Figure 5.1, the semantic meaning of a network packet comprised of the

five bytes 0x05 0x03 0x40 0xff 0x00, in a specific nuclear power plant, is: Closing

a main steam line isolation valve.

As depicted in Figure 5.1, we apply byte stream semantic analysis on top of model-

based intrusion detection. We do so for two main reasons. First, if a network packet

is found to be malformed, then it is the model-based intrusion detection approach to

generate an intrusion alert. If that was the case, there would be no need for further

scrutiny, and thus our approach would have been redundant. For this reason a net-

work packet is first scrutinized by the model-based intrusion detection.

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 87

The network packet is scrutinized by our approach only if it is classified as normal by

the model-based intrusion detection. Secondly, a network packet that is malformed

is not unequivocally interpretable. In other words, it is not possible to unequivocally

determine what a network packet of that kind is doing with respect to the network

operation of a nuclear power plant. Byte stream semantic analysis is fed with in-

formation from three sources, namely protocol specification, cyber-physical system

configuration, and physical equipment specification when necessary.

Figure 5.1: Schematic representation of the application of process-aware intrusion
detection specifications.

Thorough insight into the communication protocol being used by control systems in a

DCS is essential for determining the data model, addressing model, and how network

packets make use of the said models to perform operations on data stored in the RAM

of a control system.

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 88

For example, if process control communications in a DCS are conducted via the

ModBus protocol, the information that is required in a byte stream semantic analysis

includes the fact that measurement data generated by continuous sensors are stored

in input register variables, each one of which stores a 16-bit word, and so on for the

other types of program variables in the ModBus data model; that at protocol level

there is an address in the range [0, 65535] that corresponds to each one of the program

variables of a defined type, and that a specific mapping table associates protocol level

addresses with addresses of locations in the physical memory of a control system; that

program variables are accessed via specific function codes; etc.

In the example of Figure 5.1, the intermediate outcome that we reach via byte stream

semantic analysis upon consultation of information provided by the ModBus protocol

specification, is that the network packet under inspection is writing a value of 1 into

the coil variable whose protocol level address is 832. In other words, this network

packet is requesting to energize the logical output that is represented by the said

program variable.

The cyber-physical system configuration provides byte stream semantic analysis with

information like what program variable with what address is mapped to what pa-

rameter of a physical process or equipment, and hence implicitly what control system

monitors and/or operates what physical equipment, what control program running on

a control system handles what aspect of a physical process or equipment operation,

etc.

Referring to Figure 5.1 again, the relevant information that byte stream semantic

analysis receives from cyber-physical system configuration is that the coil variable

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 89

with protocol level address 832 in the RAM of the destination control system is

mapped to the output contact that controls the state of a main steam line isolation

valve, i.e. open or closed. In light of this new information, byte stream semantic

analysis refines the intermediate outcome into another intermediate outcome, namely

that the network packet under inspection is requesting to operate on a main steam

line isolation valve via application of electric power.

Equipment specification provides information about the architecture and configura-

tion of specific equipment. This information is useful from the perspective of scruti-

nizing network packets, since normal network control of equipment of the same type,

but with different architectures or configurations, may be characterized by different

network packets. Consider for example a water pump whose maximum rate is 8.4

million of pounds per hour (MLB/hr), and another water pump whose maximum

rate is 12 MLB/hr.

Let us assume that these rate values are scaled via a multiplication by 10. While a

network packet that conveys a rate value of 100 may be potentially normal if des-

tined for the latter water pump, that same network packet is certainly not normal if

destined for the former water pump. Referring to the specific example of Figure 5.1,

the information that is provided by equipment specification on the main steam line

isolation valve includes the number of positions and the valve position when power is

off, namely 2 and open, respectively.

At this point byte stream semantic analysis refines the current intermediate outcome

into the final outcome, which is that the network packet under inspection is closing

a 2-way, normally open, main steam line isolation valve. In order to highlight the

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 90

effect that equipment specification has on the final outcome of byte stream semantic

analysis, let us consider the case in which according to equipment specification the

main steam line isolation valve is a normally closed valve. Taking into account that

the network packet under inspection is requesting to apply power on the main steam

line isolation valve, the semantic of this network packet would have been that it is

opening the main steam line isolation valve rather than closing it.

If due to any reason a byte stream semantic analysis fails to derive a semantic mean-

ing from a network packet, then the proposed intrusion detection approach deems

that the said network packet is abnormal, and hence raises an intrusion alert. The

rationality behind this conclusion is that, due to the special purpose nature of process

control networks, every normal network packet that flows over such networks carries

a semantic meaning.

As we show in a practical example later on in this chapter, the detection specifi-

cations that we develop in this work do take into account temporary perturbations

of critical process parameters caused by mechanical or electrical faults of physical

equipment, pipe breaks, etc. Thus, the detection specifications that we develop in

this work do not classify the aforementioned transient events as attacks, but rather

express network packets that would stabilize those critical process parameters.

5.3 Specifications of Control Network Traffic

A DCS-controlled nuclear power plant is operated in two simultaneously active

ways, namely supervisory and automatic. In a supervisory operation, plant operators

consult real-time sensor data and accordingly send process set points over a process

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 91

control network to control systems. In an automatic operation, logic solving scan

programs running in control systems elaborate sensor data along with set points and

generate automatic responses according to a specific control logic.

Both supervisory operation and automatic operation are conducted over a process

control network according to a series of well defined rules, which ensure a safe oper-

ation of a DCS-controlled nuclear power plant. Conversely, any violations of these

operation rules have potential for causing perturbations to process parameters, and

thus can cause possible accidents. We leverage these operation rules to develop de-

tection specifications that further extend the scrutiny of network packets that flow

across a process control network.

In our research we deem a network packet as abnormal if the associated semantic

meaning, as derived via byte stream semantic analysis, violates any of the detection

specifications. We now provide a practical explanation of the concepts discussed so

far by referring to the example of Figure 5.1. Recall that in this example a network

packet that is being scrutinized requests closure of a 2-way, normally open, main

steam line isolation valve.

A main steam line in a nuclear power plant is a large pipe that is used to convey

steam from the reactor, where it is created, into the generators’ room, where it is

used to drive a turbine generator for the purpose of producing electric power. A main

steam line isolation valve is positioned in a main steamline, where the latter enters

the reactor vessel. This valve is used to close off the flow of steam from the reactor

vessel in the case downstream piping gets broken at any point due to any reason.

According to the operation rules, a main steam line isolation valve normally remains

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 92

open in order to allow steam to flow through the pipe. The valve is closed only when

control systems sense a low water level or excessive flow in the reactor pressure vessel,

and/or a low pressure in the main steam line. A typical nuclear power plant contains

four main steam lines with two main steam line isolation valves per steam line.

Closing them in normal plant conditions would cause a pressurization of the reactor

vessel, which would then be followed by an addition of positive reactivity. For the

network packet that is depicted in Figure 5.1 to be classified as normal, it has to

be received when either one or both of the aforementioned perturbations are sensed.

Otherwise the network packet in question is classified as abnormal since it is violat-

ing the operation rules, i.e. it is closing a main steam line isolation valve in a plant

condition in which the valve in question should remain open.

5.4 Activity Network Modeling of Detection Spec-

ifications

In summary, for a network packet to be classified as normal by the intrusion

detection approach described in this chapter, it is required to satisfy two properties,

namely (1) have a valid semantic meaning, and (2) have a semantic meaning that fully

complies with supervisory or automatic operation rules. In order to make a concrete

and consistent use of scrutiny, we need a deterministic state-transition formalism to

model a joint representation of byte stream semantic analysis and operation rules.

As can be derived from the next two sections of this chapter, byte stream semantic

analysis and operation rules are state dependent and transition related concepts. In

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 93

this research our formalism of choice is the activity network [102]. We develop activity

network models that reason in terms of network packets, since the physical process

aware intrusion detection approach is to be deployed as a software component of a

network traffic inspection tool.

The specification-based anomaly detection counterpart of our activity network for-

malism is the extended finite state machine. In [106], Sekar et al. use extended finite

state machines to model protocol level specifications. We apply the network formal-

ism in a functionally similar way. This is consistent, since the contribution of the

proposed approach lies in an increase of the scrutiny of network traffic rather than in

a modification of the foundations of specification-based intrusion detection itself.

Before we proceed, let us define physical process aware specifications as compositions

of byte stream semantic analysis and supervisory or automatic operation rules. A

key factor in the process of developing activity network models for intrusion detec-

tion consists of how to map elements of process aware specifications into activity

network primitives. We model as activity network places the various fields of a net-

work packet payload along with the program variables that are stored in the RAM of

control systems.

We also model as activity network places various additional arguments that through-

out the development of activity network models result necessary to fully characterize

network packet transmissions between control systems via network packets. For ex-

ample, in Figure 5.3 and Figure 5.5 we can tell places like pending function code,

pending address, and pending value, which represent a write request that has been

issued but that still has to be confirmed by the receiving control system.

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 94

We model as activity network activities all possible semantic meanings of network

packets that comply with operation rules. We place the burden of byte stream se-

mantic analysis and checks for compliance with operation rules on activity network

input gates. Each input gate is equipped with a predicate that tests whether a de-

fined semantic meaning corresponds to a network packet under inspection. If that is

the case, the predicate consults the number of tokens at various places in order to

determine whether the operation denoted by the semantic meaning in question is not

violating any operation rules.

Only if these two conditions are satisfied does the activity that is associated with this

input gate get enabled. The enabling of a specific activity is indicative of the fact

that a network packet under inspection has successfully passed the intrusion detec-

tion scrutiny. We model as output gates the effects induced by network packets that

have been deemed as normal. As a network packet is sniffed from a process control

network, the value of each field of that packet is extracted and is used as the number

of tokens at the place that represents the field in question.

For a network packet to be classified as normal, there has to be an input gate whose

predicate holds, in which case an associated activity is enabled and completes, with

the result being that an activity network model transitions from a specific marking

into another marking.

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 95

5.5 Concrete Activity Network Models

5.5.1 Supervisory Control Specifications

We now provide concrete examples of detection specifications derived from rules

that regulate the supervisory network operation of a DCS-controlled nuclear power

plant. We also show how one of these specifications and the associated part of byte

stream semantic analysis are encoded into an activity network model. A nuclear

power plant is operated over process control networks via HMI controls according

to precise instructions. For candidate operators to be licensed to operate a nuclear

power plant, they are required to learn the aforementioned instructions in specific

training courses, and also demonstrate their knowledge in especially prepared certifi-

cation exams.

Thus, a normal network operation of a nuclear power plant strictly follows the in-

structions in question. It is exactly these instructions or supervisory operation rules

from which we derive process aware specifications that reason in terms of network

packets. As in other specification-based detection approaches, the specifications that

we develop in this dissertation, including those that are derived from supervisory

operation rules, are deterministic. This is due to the fact that operation rules along

with operation guides, if any, are deterministic.

A power-to-flow operating map, for instance, is a clean example of the latter. A

power-to-flow is a graph that indicates the expected relation between thermal power

and water level in the reactor pressure vessel. One of the available mechanisms for

changing thermal power is to set the rate of specific water pumps, which in turn

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 96

change the water level. An operator specifies a water level set point. Thereafter it

is a logic solving scan program, i.e. control applications, running in a control system

that calculates the exact changes of the rate of water pumps that bring the water

level to the said set point.

An operator has to keep the thermal power within defined thresholds, which depend

on the current values of various plant parameters. In order to be able to do so, an

operator consults the power-to-flow operating map to estimate a change in the water

level, and hence the water level set point, which produces a change in the thermal

power such that the new value of the thermal power lies within the desired thresholds.

These thresholds themselves are defined in supervisory operation rules.

Taking into account that the power-to-flow operating map and the thresholds in

question are deterministic, we can develop process aware specifications that, given a

current value of thermal power, determine the possible network packets that would

cause a change in the water level such that the associated change in thermal power

would produce a new value of thermal power that lies within preliminarily defined

thresholds. We now provide an example of an activity network that represents pro-

cess aware specifications that are derived from a supervisory operation rule and byte

stream semantic analysis.

The said rule protects one of the most important limits on reactor operation, namely

the rate at which the temperature of the water in the reactor pressure vessel is

changed. Since water is in direct contact with the reactor pressure vessel steel, the

temperature of the former is diffused into the latter. Changes of water temperature

cause a difference in temperature between the inside and outside surfaces of the re-

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 97

actor pressure vessel. This factor induces stresses in the walls of the reactor pressure

vessel. Thus, a plant operator is required to operate a nuclear power plant in such a

way as to minimize these stresses.

The plant operator does so by limiting the water temperature change rate to a de-

fined threshold, and thus allow for the temperature of the lower temperature vessel

surface to reach the temperature of the higher temperature vessel surface. In a typ-

ical General Electric boiling water reactor, the allowed water temperature change

rate is about 100 degrees Fahrenheit per hour. The water temperature change rate

is proportional to thermal power, therefore an operator can maintain a specific water

temperature change rate by limiting the average thermal power that is maintained

over each interval in which temperature is increased or decreased.

Earlier in this subsection we mentioned that an operator could change thermal power

by changing the water level in the reactor pressure vessel. In this example we consider

the case in which an operator employs the other available mechanism for controlling

thermal power, namely insertion or withdrawal of control rods. We develop an ac-

tivity network model, which inspects the network packets that insert or withdraw

control rods, and thus checks whether they induce stresses in the walls of the reactor

pressure vessel to a degree that lies beyond predefined minimal values.

The elements that are involved in supervisory withdrawals of control rods are de-

picted in Figure 5.2. Neutron detectors, which are located adjacent to nuclear fuel

rods inside the reactor core, measure neutron population. Their measurement values

are received over a fieldbus network by PLC3. PLC3 uses a logic solving scan program

to process neutron population measurements, and hence produce an estimation of the

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 98

Figure 5.2: Schematic diagram of supervised thermal power increase via network
packets that withdraw control rods.

current value of thermal power, which it then stores in a holding register variable with

address 26538.

A temperature sensor is located adjacent to water within the reactor core. This sen-

sor measures the water temperature and sends the measurement value over a fieldbus

network to PLC3, which stores it in an input register variable with address 19640.

The activity network model that we develop in this subsection focuses on a specific

control rod, namely the one whose coordinates are control rod 34-55, control rod

group 21. This control rod is inserted or withdrawn over a fieldbus network by PLC2

via an electric motor and a ballscrew.

PLC2 executes a logic solving scan program that processes a linear position set

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 99

point, and thereafter generates network packets to directly control the actual rota-

tional speed of the electric motor along with its rotor’s rotation direction. The rota-

tional motion that is produced by the electric motor is converted into linear motion

by the ballscrew. This linear motion then is used to insert or withdraw the control

rod depending on the rotor’s rotation direction. A linear position sensor measures

the actual linear position of the control rod.

Let the Internet protocol (IP) addresses of the subordinate control server and PLC2

be represented by the identifiers 169 and 205, respectively. Some key elements of the

activity network model that scrutinizes protocol packets for potential for inducing

high stresses in the walls of the reactor pressure vessel are depicted in Figure 5.3.

Let us see how this activity network model scrutinizes the network packet payload in

Figure 5.2.

This network packet, which is sent by the subordinate control server to PLC2, requests

to withdraw the control rod in question, more precisely change its linear position from

6 to 12. Notice that a control rod always moves between even positions. The possible

exact semantic meanings of a network packet that requests to cause a change to the

linear position of the control rod in consideration are: (1) withdrawing control rod

34-55, control rod group 21; and (2) inserting control rod 34-55, control rod group

21.

As this network packet is sniffed from a process control network, the values of each one

of its fields, namely function code, register address, and register value, are assigned as

amounts of tokens to the corresponding places in the activity network model. Both

protocol fields and activity network places take discrete values; therefore there are no

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 100

Figure 5.3: Excerpt from an activity network model that checks whether defined
network traffic induces high stresses in the walls of the reactor pressure vessel.

inconsistencies in mirroring the former into the latter.

The input gate ThermalPowerIncrease conducts byte stream semantic analysis to

determine whether a network packet under inspection has a semantic meaning de-

noted here as (1), in which case it checks whether that network packet fully complies

with the supervisory operation rule that protects the walls of the reactor pressure ves-

sel from excessive stresses. The part of the predicate of the said input gate that checks

for the semantic meaning of the network packet being scrutinized is the following:

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 101

(SendingNode->Mark() == 169) && (ReceivingNode->Mark() == 205) &&

(FunctionCode->Mark() == 6) && (Address->Mark() == 30249)

This code snippet basically checks that the network packet is originating from the

subordinate control server, which is the device that according to the cyber-physical

system configuration is configured to transmit network packets that convey control

rod linear position set points. This code snippet also checks that the network packet

is destined for PLC2, which according to the cyber-physical system configuration is

the edge control system that is configured to directly control the electric motor that

in turn inserts or withdraws the control rod.

In addition, this code snippet checks whether the network packet is writing the holding

register variable with address 30249, which, again, according to the cyber-physical

system configuration is the program variable that is mapped to the linear position of

the control rod. The rest of the predicate verifies that the network packet will not

induce high stresses in the walls of the reactor pressure vessel.

&& ((PLC3_InputRegister19640->Mark() + tempaddition(Value->Mark(),

PLC3_HoldingRegister26538->Mark(), PLC3_InputRegister19640->Mark()))

<= (DepartureTemperature->Mark() + 100)) &&

(Value->Mark() < PLC2_HoldingRegister30249->Mark()) &&

(PendingFunctionCode->Mark() == 0) && (PendingAddress->Mark() == 0) &&

(PendingValue->Mark() == 0)

Control rod worth is defined as the amount of reactivity that is added per increment

of control rod motion, and is a function of thermal power and linear position. Control

rod worth is proportional to the thermal power change rate, and hence to the water

temperature change rate. The function tempaddition() in the snippet of code given

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 102

above calculates the additional temperature ∆T expected to be induced by the new

linear position of the control rod that is being requested by the network packet being

analyzed.

Let the departure temperature denote the original value of the temperature when

it first began to change. The said code snippet adds ∆T to the current value of

the temperature, and then checks that the resulting value is less than or equal to

the maximum value of the temperature allowed in one hour. This code snippet is

basically verifying that the control rod motion requested by the network packet will

not cause a change in the water temperature that has potential for inducing high

stresses in the walls of the reactor pressure vessel.

The remaining lines of code in the snippet above are verifying that the network

packet is a request rather than a response. In ModBus a request network packet and

a response network packet may be identical, since a receiving device may respond to

a sending device with a copy of the request network packet in order to notify positive

processing of the said request. If the said input gate enables the associated activity,

the network packet has successfully passed the intrusion detection scrutiny.

The output function of the output gate OG3 is used to denote the fact that the normal

network packet is being processed by PLC3. That function is given below:

PendingFunctionCode->Mark() = FunctionCode->Mark();

FunctionCode->Mark() = 0; PendingAddress->Mark() = Address->Mark();

Address->Mark() = 0; PendingValue->Mark() = Value->Mark();

Value->Mark() = 0; SendingNode->Mark() = 0; ReceivingNode->Mark() = 0;

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 103

According to the ModBus protocol specification a successful reception of a request

network packet does not imply its successful processing. A receiving device may not

be able to handle a request network packet due to factors like detection of parity errors

in its RAM, detection of communication errors, etc. The input gate ResponseSeq2 in

the activity network model of Figure 5.3 conducts byte stream semantic analysis to

determine whether a network packet under inspection has a semantic meaning that

corresponds to the status of handling the request network packet that was analyzed

previously, in which case the associated activity gets enabled. The predicate of input

gate ResponseSeq2 is given below:

((SendingNode->Mark() == 205) && (ReceivingNode->Mark() == 169))

&& (((FunctionCode->Mark() == PendingFunctionCode->Mark()) &&

(Address->Mark() == PendingAddress->Mark()) &&

(Value->Mark() == PendingValue->Mark())) ||

((ErrorCode->Mark() == 134) && (ExceptionCode->Mark() > 0) &&

(ExceptionCode->Mark() < 5)))

The output function of output gate OG4 assesses whether PLC2 is sending a normal

response indicating to have handled the query correctly, in which case it commits

the change of the control rod linear position from its original value to the set point

indicated in the request network packet, namely from 6 to 12. If that is not the case,

the said output function voids the temporary effects of the request network packet.

This is because the holding register variable with address 30249 in the RAM of PLC2

was not written, and thus the control rod linear position remained unchanged.

The output function of output gate OG4 is given below:

if (ErrorCode->Mark() == 0) {

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 104

PLC2_HoldingRegister30249->Mark() = PendingValue->Mark();

flush(ErrorCode->Mark());

} else {

flush(ErrorCode->Mark());

}

5.5.2 Automatic Control Specifications

The logic of automatic operation functions is encoded into logic solving scan pro-

grams. These computer programs are executed many times per second in order to

check for the creation of specific conditions that urge a fast intervention, and hence

provide a timely corrective response. An example of an automatic operation rule

is the rod sequence enforcement in a nuclear power plant. In order to limit control

rod worth, a mandatory sequence of control rod movements is required as rods are

withdrawn or inserted. Violations of this specific sequence have potential for creating

unsafe conditions.

Consequently, the sequence in question is enforced via one or more logic solving scan

programs. In this research we derive process aware specifications also from logic solv-

ing scan programs, or if possible, from the high level program specifications upon

which they were developed. We now provide an example of an activity network that

represents process aware specifications that are derived from an automatic operation

rule. The rule in question protects a reactor from unsafe conditions that may be

created as a consequence of a fault in any of the water pumps.

A rapid drop in the reactor water level characterizes the loss of a water pump, with

the result being an excessive increase of thermal power. The said rule requires control

systems to detect the loss of any water pumps, and upon detection of that event to

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 105

Figure 5.4: Schematic diagram of an automatic corrective withdrawal of a control rod
that is conducted via a network packet in response to the loss of a water pump.

rapidly insert specific control rods. These control rod withdrawals decrease thermal

power to values that are normal for the reduced water level. The elements that are

involved in automatic withdrawals of control rods, as a water pump is lost due to a

fault, are depicted in Figure 5.4.

PLC1 is an edge control system that controls and monitors two motor-driven water

pumps. The rate of each one of these water pumps is measured by flowmeters, which

send their measurement values over a fieldbus network to PLC1. Let the input register

variable with address 19685 in the RAM of PLC1 be mapped to the rate of the first

water pump from top. PLC2 along with the control rod, electric motor, ballscrew,

and linear position sensor are those that were discussed in the previous subsection.

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 106

Some key elements of the activity network model that scrutinizes network packets to

see whether they are the corrective response to the loss of a water pump are depicted

in Figure 5.5.

The input gate LossOfFeedwaterPump conducts byte stream semantic analysis to

determine whether a network packet being scrutinized has the following semantic

meaning: inserting control rod 34-55, control rod group 21. If that is the case, the

said input gate checks whether one of the water pumps results to have been lost. For

modeling purposes, let the IP address of PLC1 be represented by the identifier 168.

The part of the predicate of input gate LossOfFeedwaterPump that checks for the

semantic meaning of the network packet being scrutinized is given below:

(SendingNode->Mark() == 168) && (ReceivingNode->Mark() == 205) &&

(FunctionCode->Mark() == 6) && (Address->Mark() == 30249) &&

(Value->Mark() < PLC2_HoldingRegister30249->Mark()) &&

The remaining of the said predicate verifies that the network packet is being sent in

response to the loss of a water pump, and that it will not insert the control rod in

question beyond its insertion limit.

(PLC1_InputRegister19685->Mark() == 0) && (Value->Mark() > 5) &&

(PendingFunctionCode->Mark() == 0) && (PendingAddress->Mark() == 0) &&

(PendingValue->Mark() == 0)

The other lines in the code snippet given above verify that the network packet being

analyzed is a request rather than a response. The remaining elements of the activity

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 107

Figure 5.5: Excerpt from an activity network model that checks whether a network
packet under inspection is the corrective response to the loss of a water pump.

network model are defined similarly to their counterpart elements discussed in the

previous subsection.

5.6 Discussion

We now discuss the complexity of detection specifications, which is the main factor

that directly affects the practicality of the physical process aware specification-based

intrusion detection approach. As in any other specification-based approaches, the

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 108

level of abstraction is quite relevant to keeping the proposed approach practical. In

other words, specifying in full the normal behavior of a system in general is not prac-

tical. For example, as discussed in the related work section, a thorough specification

of the behavior of a computer program is not practical [74].

Consequently, specification-based approaches that focus on the behavior of a com-

puter program capture only specific details, and thus refrain from attempting to

capture the full behavior of a computer program [74, 107]. Moving along this line, we

deem that capturing the full dynamics of a physical system such as a nuclear power

plant is not practical. Consequently, we do not attempt to include the full behavior

of physical processes into the specifications of normal control network traffic.

As written earlier in this chapter, we aim at capturing the normal behavior of a

physical system, as exhibited in contents of network packet payloads, by deriving

specifications from supervisory operation rules and control applications. To our ex-

perience, the complexity of supervisory operation rules is manageable, and therefore

the derivation of detection specifications from these rules is feasible.

A consideration of a control application in its entirety to derive specifications of net-

work packets, which are expected to be received or transmitted by that control ap-

plication, leads us to construct a replica of the control application in question within

the activity network models. In other words, we would have ended up with activity

network models that perform redundant program execution [67]. While redundant

program execution has been already used for computer security [23], we deem that in

our problem domain the creation of entire replicas of control applications is unneces-

sary.

Chapter 5: PROCESS AWARE SPECIFICATION-BASED DETECTION 109

For the purpose of developing specifications of control network traffic, in this research

we consider only those functions of a control application that read from or write to

network sockets, in conjunction with program variables that are stored in the RAM

of a control system. To our experience, the complexity of deriving these detection

specifications from a control application is relatively high, but yet manageable. As

a future work, we deem that drawing from areas such as nuclear physics and reactor

theory to specify the expected normal behavior of a nuclear power plant in terms of

network packets has potential for further improving the effectiveness of the proposed

approach.

Chapter 6

MIRAGE THEORY FOR

DECEPTION-BASED

DETECTION

6.1 Introduction

In this chapter we provide a discussion of mirage theory, i.e. a novel deception

approach that we have derived from military deception (MILDEC) [117] and its appli-

cations [126]. In [117], MILDEC is defined as those actions executed to deliberately

mislead adversary decision makers as to friendly military capabilities, intentions, and

operations, thereby causing the adversary to take specific actions or inactions that

will contribute to the accomplishment of the friendly mission.

Mirage theory is comprised of actions that are devised to deliberately mislead an ad-

versary as to DCS-controlled physical processes and equipment such as nuclear power

110

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 111

plants, thereby causing the adversary to take specific actions that will contribute to

the detection of his/her intrusion in process control networks. Deception means in

MILDEC are grouped into three categories, namely physical means, technical means,

and administrative means. Examples of physical means include dummy and decoy

equipment and devices, tactical actions, movement of military forces, etc.

Examples of technical means include emission of chemical or biological odors, emission

of radiation, reflection of energy, computers, etc., while examples of administrative

means include techniques to convey or deny physical evidence. Mirage theory employs

mainly technical deception means, namely emission of deceptive network traffic along

with computers and computer networks. Mirage theory relies to a large degree on a

MILDEC concept that is referred to as a display. Displays are simulation, disguising,

and/or portrayal of friendly objects, units, or capabilities that may not exist, but are

made to appear so.

In this regard mirage theory employs computers or computer clusters to simulate

or emulate the presence of physical processes and equipment. The ultimate goal of

mirage theory is to cause an adversary to target computer systems that monitor and

control simulated or emulated physical processes via simulated or emulated sensors

and actuators. Actions taken by a deceived adversary are thereafter leveraged to

detect and characterize his/her malicious activity.

Our research on mirage theory was inspired by a lesson that we drew from history,

namely the Operation Fortitude South, which is a MILDEC application that was

conducted in the second world war [126]. The allied invasion of German occupied

territory of France was preceded by a strategic plan whose codename was Operation

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 112

Fortitude South, which was made by the allies to deceive the command of German

military into believing that the allies would attack from Pas de Calais rather than

from Normandy. In addition to large intelligence operations such as espionage and

controlled leaks of information through diplomatic channels, this plan included also

the creation and deployment of a special electronic unit that was called the 5th wire-

less group.

This group used some newly developed transmitters to generate radio communica-

tions based on preprogrammed and especially written scripts. These radio commu-

nications contained conversations that are typical to military assault operations. As

the German military in France had few aerial reconnaissance capabilities left, eaves-

dropping on radio communications was the principal mechanism that they could use

to determine movements of allied troops. The Operation Fortitude South was highly

successful to a degree that Adolf Hitler concentrated a large number of military units,

including Panzer tank units, in Pas de Calais.

Mirage theory exploits similar concepts, namely the adversary’s reliance on analysis

of intercepted network data to derive the presence and characteristics of physical tar-

gets, and the lack of means to verify that intercepted traffic is indeed generated by

existing physical targets. In this chapter the terms physical system and continuous

space are used interchangeably. The terms cyber-physical system and DCS-controlled

physical system are also used interchangeably. The terms communicating finite state

machine and automaton are used interchangeably as well.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 113

6.2 Conducting Defensive Deception for Intrusion

Detection

As illustrated in the top part of Figure 6.1, the interactions between sensing or

actuating devices and edge control systems take place via application of electrical sig-

nals with certain characteristics. In a typical sensing activity sensors, i.e. transducers,

measure physical phenomena and report continuous values by generating analog val-

ues, i.e. voltages or currents. For instance, incore detectors in a nuclear reactor

measure neutron flux. Incore detectors apply electrical signals that are proportional

to neutron population in the reactor core.

Neutron flux measurements that are conveyed by these electrical signals are pro-

cessed by computer systems, which together form a neutron monitoring system. For

measurement values to be processed by computer systems, the corresponding elec-

trical signals are periodically sampled and converted into discrete numerical values

via analog-to-digital conversion integrated circuits [48]. Edge control systems actuate

physical equipment also by applying electrical signals. Discrete numerical values in

a computer system are converted into analog values via digital-to-analog conversion

integrated circuits.

For instance, an edge control system may set the rotational speed of an AC induction

motor by controlling the applied voltage frequency. In the actual context we see two

spaces, namely one in which values are in a continuous form and another in which

values are in a discrete form. In this work we refer to these spaces as the continuous

space and the discrete space, respectively. As also depicted in Figure 6.1, analog-

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 114

to-digital and digital-to-analog conversion integrated circuits may be thought of as a

boundary between the continuous and discrete spaces.

In fact it is in these integrated circuits that information changes form from continuous

to discrete and vice versa. The basis of mirage theory is formed by leverage of the

boundary between continuous and discrete spaces, leverage of how the presence of

a continuous space is reflected on a corresponding discrete space, and simulation or

emulation of physical processes and physical equipment. A computer network attack

provides an adversary with access that may extend to a whole discrete space. Nev-

ertheless, due to physical limits there are no feasible ways for an adversary to gain

visibility over a continuous space through a computer network attack.

In other words, a computer network attack won’t enable an adversary to virtually

move beyond the analog-to-digital and digital-to-analog conversion integrated cir-

cuits. Consequently an adversary cannot verify whether input electrical signals are

indeed applied by existing sensing devices, nor can he/she verify whether output elec-

trical signals indeed reach an existing actuating device. Referring to the bottom part

of Figure 6.1, in mirage theory we generate measurement values in a digital form via

computer simulation or emulation, and hence employ digital-to-analog converters to

generate the electrical signals that correspond to these digital values.

What edge control systems receive in input comprises a series of analog values as if

such values were generated by existing sensing devices. Edge control systems then

convert these logical values into digital values via analog-to-digital converters, and

thereafter process them. Since it is after the conversion to a digital form that the

values in question become accessible to an adversary, the previously described ma-

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 115

Figure 6.1: Boundary between continuous and discrete spaces exploited in mirage
theory to camouflage computer simulation or emulation of sensors, actuators, and
physical processes.

nipulation based on computer simulation or emulation is totally transparent.

Similarly, we employ analog-to-digital converters to receive analog values from edge

control systems. Resulting digital values thereafter may be fed to a computer system

in order to simulate or emulate the effects that electrical signals that are applied by

edge control systems would have had on existing physical processes or equipment.

When values that are generated by an edge control system are converted into an

analog form, an adversary entirely loses visibility on them. As a consequence the

previously described manipulation is, again, transparent.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 116

From a network access perspective the presence of physical processes and physical

equipment is derived from network packets that flow over a process control network.

For instance, in a nuclear power plant control network a network packet such as the

one depicted in Figure 6.2 denotes the presence of an electric motor that generates

rotational motion, a ball screw that translates this rotational motion into a linear

motion, and a control rod that is inserted or withdrawn via the linear motion in

question.

The reconnaissance that normally precedes initiation of physical damage through a

computer network attack over a target process control network includes analyses of

network packets that flow over this network. By employing techniques such as applied

regression analysis an adversary analyzes data that are conveyed by network packets,

with the result being an identification of the configuration of a target cyber-physical

system along with equipment and physical process specifications indicated in Fig-

ure 6.2.

Not only is the information derived through these reconnaissance analyses indicative

of the presence of physical processes and equipment, but it also details them. The

interaction between a simulated or emulated continuous space and a genuine discrete

space, as depicted in the bottom part of Figure 6.1, is characterized by network traffic

that guides the reconnaissance analyses conducted by an adversary into identification

of physical processes and equipment, which in reality are all simulated or emulated,

along with the computer systems that control and monitor them. As written pre-

viously, in mirage theory only continuous space is simulated or emulated. Discrete

space is intentionally chosen to be genuine in its entirety. In mirage theory process

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 117

Figure 6.2: A network packet payload that is indicative of the presence of physical
equipment and a physical process.

control systems and networks are deployed and configured as if they were to monitor

and control a real physical process through real sensors and actuators. The com-

puter code that is to be run in these control systems also needs to have been written

for control systems that are intended to monitor and control a real physical process

through real sensors and actuators.

A clean way of constructing the discrete space of an application of mirage theory is

to deploy a replica of the discrete space of a real cyber-physical system in produc-

tion. The ultimate goal of mirage theory is to deceive an adversary into targeting

a simulated or emulated physical process and/or equipment by actively attacking a

control system over a process control network in the discrete space of an application

of mirage theory itself.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 118

6.3 Real-Time Deceptive Event Generation

Taking into account that an adversary cannot cross the boundary between con-

tinuous and discrete spaces, a possible option that he/she may explore for detecting

deception consists of analyses of network packets having as an objective to identify

inconsistencies that may be caused by errors in the simulation or emulation of physi-

cal processes and equipment. Even tiny imperfections in the simulation or emulation

of physical processes and equipment are reflected on network data in the discrete

space, and hence have potential for enabling an adversary to catch inconsistencies by

employing advanced analysis techniques such as those based on applied mathematics.

In this section we discuss our research on faithfull simulation or emulation of physical

processes and equipment, namely continuous simulation and traffic mirroring.

6.3.1 Continuous Simulation of Physical Processes and Equip-

ment

In mirage theory we need to simulate a continuous space in real-time in order to

faithfully mimic the appearance of existing DCS-controlled physical systems such as

nuclear power plants or radar units. We deem that a viable simulation technique for

such purpose is continuous simulation [19] as, in addition to having the necessity to

simulate continuous systems, we are also interested in modeling the internal dynamics

within each one of these continuous systems in order to generate a faithful simulation.

As a matter of fact physical processes and physical equipment such as, for instance,

nuclear fission and AC induction motors, respectively, are continuous systems.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 119

Their state variables, which are modeled as functions, change continuously over time.

Furthermore, the rates of change of these variables, which are modeled as derivatives,

change continuously over time as well. Continuous simulation models of a continuous

space are comprised of ordinary or partial differential equations that characterize the

behaviour, i.e. internal dynamics, of physical processes and equipment at any point in

time. The continuous simulation itself is conducted by solving these differential equa-

tions via analytical methods, i.e. explicit formulas, or numerical analysis in computer

clusters behind the boundary between continuous and discrete spaces, as indicated in

the bottom part of Figure 6.1.

With regard to detection of network packets that are part of a computer network at-

tack, we organize this process as in anomaly intrusion detection, namely in a learning

phase and a monitoring phase. We model each process control system that is involved

in deceptive communications, i.e. network packets that are generated as a result of

simulation of a continuous space, as a communicating finite state machine [115].

Both input that causes these automata to transition from one state to another and

output that is generated when state transitions take place are network packets. An

example of the said communicating finite state machines is given in Figure 6.3. The

purpose of a learning phase is to thoroughly contruct these automata, while in a suc-

cessive monitoring phase these automata are used to distinguish between deceptive

network packets and possible malicious network packets.

In a learning phase we define a sequence of process set points, which when entered in

a HMI [110] will emulate the DCS-controlled operation of a physical system. Recall

that all or part of the continuous space is simulated. Examples of set points in a

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 120

nuclear power plant include discrete values of the level of water whithin a reactor

pressure vessel, logical values, i.e. on or off, for starting or stopping a defined water

pump, logical values for opening or closing a main steam isolation valve, logical values

for opening or closing the circuit breaker of an electric generator, discrete values of

the terminal speed of a turbine, etc.

The said set points are then issued from a computer system that would normally be

used by a system operator, i.e. the computer system that is associated with a HMI

and that is depicted in the upper left corner of Figure 6.4, with the result being a

realistic operation of a DCS-controlled physical system as if the continuous space was

real rather than simulated. As the simulated continuous space is operated, we sniff

all network packets that flow over the process control network.

The network packets that a control system receives and transmits are modeled as

input and output, respectively, in the associated communicating finite state machine.

Each one of the network packets in input causes a state transition. Nevertheless, the

automaton may transition from one state to another state even though it has received

no network packets in input. Similarly, it may transition from one state to another

state while producing no network packets in output.

Overall, a communicating finite state machine acts as a sequence detector with re-

spect to the network traffic that is received from or transmitted by the control system

that it models. Although we coded a few communicating finite state machines in the

concurrent hierarchical state machine language system [78], and those mainly in the

form of a proof of concept prototype, to our knowledge the activity of constructing

these automaton-based sequence detectors can be automated.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 121

Figure 6.3: Excerpt from two communicating finite state machines that model two
individual control systems in a process control network.

In a monitoring phase we employ a computer system, which would normally be used

by a system operator, to issue the sequence of process set points that were defined and

used in the learning phase. Here, again, the process of mimicking a system operator,

i.e. issuing set points, can be easily fully automated. From a network access perspec-

tive, which is what an adversary sees and perceives, network traffic that flows over

the process control network is indicative of the presence of a physical system that is

being operated digitally by system operators. Communicating finite state machines

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 122

are embedded in a network packet inspection tool. As network packets flow accross a

process control network, the detection tool inspects them to determine the network

identifiers of the source and destination nodes, i.e. for example IP addresses in the

case the process control protocol runs over TCP/IP, and thereafter submits them

individually to the corresponding automata. If these sequence detectors recognize

the network packets submitted to them, then they simply transition to another state,

and from there the inspection loop keeps running.

We do allow for small variations of values in the data field of network packets in

order to deal with various sources of small errors, such as for example jitter effects

on analog to digital and digital to analog converters. If sequence detectors do not

recognize a given network packet, then it means that they are processing a network

packet that was not generated in the learning phase, therefore the inspection tool

raises an intrusion alert.

We deem that if learning is conducted correctly in the learning phase, then a com-

puter network attack is manifested as one or more extra network packets, i.e. network

packets that do not result to have been generated in the learning phase. Later on

in this chapter we discuss an attack-defense model in which an adversary conducts a

loss of cooling attack on a power plant. The attack is materialized by transmitting a

network packet that writes a malicious value to a program variable, which is mapped

to applied voltage frequency, in a target control system.

According to our thesis the said malicious network packet is not generated in the

learning phase, therefore sequence detectors in the inspection tool won’t recognize it.

We see a series of pros and cons in employing continuous simulation to simulate a

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 123

continuous space. Continuous simulation allows for interactivity with an adversary,

in the sense that an adversary can generate malicious network packets and verify

their negative impact on his/her targets. This is useful in the case security officers

are interested in letting an adversary do some progress, in order to extract a better

characterization of his/her attack.

Furthermore, there are cases in which it may be necessary to allow for more than a

single unseen network packet in order to have sufficient confidence that a computer

network attack is actually taking place. With continuous simulation we have no re-

liance on existing DCS-controlled physical systems. We can independently deploy an

entire process control network and associate it with a simulated continuous space.

We can, for example, deploy a large number of dummy power plants that are based

on continuous simulation, while not needing the presence of an existing power plant.

On the other hand, it is challenging to conduct a continuous simulation of a nuclear

power plant in real-time.

The issue is that differential equations that model complex systems such as nuclear

power plants are too complex to be solved analytically. Their solutions are to be

obtained via numerical analysis, which requires considerable computing resources for

making the internal dynamics within a simulated continous space appear as taking

place in real-time. Furthermore, numerical analysis generally produces numerically

approximated solutions of differential equations, a fact which in theory may open a

window for an adversary to look for imperfections that indicate the simulation nature

of a target continuous space. In practice though we do not see approximate solutions

of differential equations as an issue as long as they stay within an acceptable degree

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 124

of accuracy range.

The rationality behind our assumption lies in the fact that, to the best of our knowl-

edge, analyses of network traffic that is induced by an existing continuous space do

not reflect any absolute perfections. Thus, the challenge that an adversary has to face

does not consist in how to differentiate between a perfect view and an imperfect view

of a target continuous space. An example of a source of imperfection in our context

is the conversion of information. There are no ideal analog to digital converters.

Analog to digital conversion of information is characterized by unavoidable errors

such as quantization errors, aperture errors, non-linearity errors when applicable, etc.

Similarly, digital to analog conversion of information is not ideal either. Further-

more, the said errors are mostly random. Thus, the challenge that an adversary has

to face consists in how to differentiate between randomly imperfect views of a target

continuous space.

6.3.2 Deceptive Emulation via Network Traffic Mirroring

Traffic mirroring is a technique for emulating a continuous space. Thus, it is an

alternative to continuous simulation. The main idea behind this emulation technique

is to sniff network traffic in a process control network in production, i.e. a process

control network that is used to operate an existing physical system, and thereafter

replay the said traffic in a deceptive process control network, i.e. a process control

network that is deployed as part of a mirage theory application. A schematic diagram

of how traffic mirroring may be applied is depicted in Figure 6.4.

As of the time that the research reported in this chapter was conducted, we had no

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 125

access for experimentation purposes to a real world power plant. Due do this lim-

itation we couldn’t implement network traffic mirroring and analyze it in practice,

consequently we describe it in this chapter as a theoretical approach to emulation of a

continuous space. In addition, the concepts that accompany our proposal of the said

emulation technique, including network sniffing systems, traffic mirroring network,

and inspection tool, are purely hypothetical.

The deceptive process control network, which is depicted in the left part of Figure 6.4,

is the replica of a process control network in production, which is depicted in the right

part of Figure 6.4. Network sniffing systems are deployed in all network segments of

the process control network in production. These systems are equipped with two net-

work interfaces, namely one attached to a segment of the process control network in

production, and another one attached to a network that is used to propagate network

packets to the deceptive process control network. We refer to the latter as a traffic

mirroring network.

The network sniffing systems operate at the data link layer, therefore they are not

assigned a network layer address on the network interface that is attached to a seg-

ment of the process control network in production. Furthermore, for obvious reasons

we need the network sniffing systems not to reveal their existence. For this purpose

the network stack of a network sniffing system may be modified such that it doesn’t

respond to any queries, and hence evade network discovery tools. The network sniff-

ing systems are assigned a network layer address on the network interface that is

attached to the traffic mirroring network.

As network packets flow across the process control network in production, they are

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 126

intercepted by the network sniffing systems, which in turn associate a timestamp with

them and send them to the general purpose computers depicted in the right part of

Figure 6.4. More precisely, network packets that convey set points and that are trans-

mitted by the HMI system in the process control network in production are sent to

the replica of a HMI system in the deceptive process control network. At emulation

time the replica of a HMI system replays these network packets into the deceptive

process control network according to their associated timestamps.

Network packets that convey sensor data are sent to those computer systems that are

equipped with digital to analog converters. In Figure 6.4, for example, to each one

of the flowmeters corresponds a computer system, which at emulation time converts

sensor data from digital to analog according to their timestamps. Thus, in general

the said systems emulate transducers that are in the process control network in pro-

duction. Sniffing and replaying network packets that convey set points and sensor

data is sufficient for emulating a continuous space.

As set points are transmitted from the replica of a HMI system into the deceptive

process control network, they trigger exchanges of network packets between control

systems, with the result being a transmission of network packets that convey actua-

tor control data. Upon reception of the said data, actuators in the deceptive process

control network generate electrical signals, which are received from computer systems

in the traffic mirroring network that are equipped with digital to analog converters.

Once these computer systems derive the digital form of an analog value, they ignore

it as their only objective is to mimic the reception of physical parameter changes by

physical equipment.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 127

As computer systems that emulate transducers generate electrical signals, which cor-

respond to the analog form of sensor data that are received from network sniffing

systems, these signals are converted into digital sensor data and then are transmitted

over the deceptive process control network.

The resulting network packets, which convey the said sensor data, trigger exchanges

of network packets between control systems in the deceptive process control network.

Some of these sensor data are also sent to the replica of a HMI system in the form of

process status updates. Thus, overall, what we expect to achieve with synchronized

replays of set points and sensor data is a logical mirror. The said mirror is intended to

reflect network packets that flow across the process control network into the deceptive

process control network, with a shift ∆t with respect to time.

With regard to detection of malicious network packets, we propose an adaptation of

the approach used in the case continuous simulation is used to simulate a continuous

space. More precisely, we propose to model each control system in the process control

network in production as a communicating finite state machine like those depicted

in Figure 6.3. The emulation and intrusion detection activities are organized into

intervals of time ∆t. During each one of these intervals the network sniffing systems

intercept network packets as they flow across the process control network in produc-

tion.

If we assume that the activity of constructing automata can be automated, then

the said network packets are used in an automated construction of communicating

finite state machines, which model control systems in the process control network

in production. The interval of time ∆t is chosen sufficiently long for the automated

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 128

contruction of communicating finite state machines to be complete by the end of ∆t

itself. As in the case of continuous simulation, we may integrate these automata into

a network packet inspection tool.

In the next interval of time ∆t, as the network packets that convey set points and

sensor data are replayed in the deceptive process control network, the inspection tool

intercepts all network packets that flow accross the deceptive process control net-

work. The inspection tool then submits these network packets to the communicating

finite state machines, which act as sequence detectors. As in the case of continuous

simulation, we need to tolerate small variations of values in the data field of network

packets in order to deal with small errors induced by factors such as jitter effects.

Furthermore, considering that the control systems in the deceptive process control

network are replicas of the control systems in the process control network in produc-

tion, we expect the said sequence detectors to be valid for the former as well as for

the latter. As in the case of continuous simulation, if the sequence detectors recognize

the network packets that are submitted to them, then they transition to from ones

state to another. If not, we deem that the network traffic flowing across the process

control network in production is diverging from the network traffic flowing across the

deceptive process control network.

We deem that one of the most relevant advantages of employing traffic mirroring to

emulate a continuous space is its potential for producing a highly accurate copy of

the network traffic that flows in a process control network in production. On the

other hand, traffic mirroring does not allow for interactivity with an adversary. With

traffic mirroring we have to rely on an existing DCS-controlled physical system. That

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 129

Figure 6.4: Schematic diagram of an emulation of a continuous space via traffic
mirroring.

said, a logical connection with a process control network in production may be a

disadvantage as much as an advantage.

While we cannot independently deploy an entire process control network and associate

it with an emulated continuous space, divergences captured by the sequence detectors

may be an indication of intrusion in the process control network in production.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 130

6.4 Analysis of Deception Capabilities in Mirage

Theory

We now provide a practical attack-defense model in order to analyze the deception

capabilities of mirage theory. In this model an adversary attempts a loss of cooling

attack on a DCS-controlled power plant that is based on a boiling water reactor de-

sign. In the said power plant a number of water pumps feed water into the reactor

core. The injected water picks up the heat produced by nuclear fission, and thereafter

is transformed into steam. Steam is then directed through pipes to spin the shaft of

a turbine that is connected to an electric generator. In addition to being transformed

into steam, the injected water serves to also cool nuclear fuel in the reactor.

Let water be fed into a reactor core by motor-driven water pumps that are controlled

by PLCs. In this example attack-defense model the adversary conducts a computer

network attack on these PLCs in order to cause physical damage to the motors that

they control, and hence prevent the motor-driven water pumps from functioning. Let

the PLCs that control motor-driven water pumps in this model be part of a DCS

whose communications are based on ModBus TCP protocol.

For an adversary to affect the operation of an electric motor, he/she should prelimi-

narily identify that part of a cyber-physical mapping which relates program variables

in a target PLC with physical parameters that characterize the operation of the as-

sociated electric motor. This is due to the fact that an adversary can affect these

physical parameters only by modifying the corresponding program variables. We pro-

vide a statistical technique that may be used for such purpose. We thereafter show

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 131

how mirage theory deceives an adversary by generating data that guide his/her data

analysis, and hence quantify empirically the deception capabilities exhibited in this

attack-defense model by analyzing under the light of signal detection theory [66, 82]

the reaction of mirage theory.

6.4.1 Reconnaissance for a Computer Network Attack on an

Electric Motor

We have found persistent statistical relations between certain program variables

in RAM of PLCs, depending on what physical parameters they are mapped to. More

precisely, we have developed a statistical technique which, under the condition that

a linear relation between program variables of interest is in place, employs the degree

of linear association as measured by a linear correlation coefficient to identify such

variables of interest and hence reveal their ModBus addresses [24]. In our attack-

defense model an adversary applies the said technique to conduct a network inertial

attack on an alternating current (AC) induction motor [53], which in turn drives a

water pump.

An inertial attack is conducted by speeding up or slowing down heavy equipment

at high rates. It is reported to have potential for forcing heavy equipment to fail

as in general heavy equipment is not tolerant to abrupt speed changes [70]. For an

adversary to be able to launch an inertial attack, he/she needs to find out what pro-

gram variable in the RAM of a target PLC is mapped to applied voltage frequency,

which is a physical parameter that is used to set the actual rotational speed of an AC

induction motor controlled by the PLC in question.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 132

Let this PLC use a continuous sensor, namely a battery powered stroboscopic tachome-

ter, to measure the rotational speed of the AC induction rotor. The adversary is

assumed to have acquired access to a target process control network, and hence can

reconstruct the content of variables in the RAM of a target PLC by sniffing network

packets or by sending ModBus queries to the target PLC. The first step for the adver-

sary is to find out whether a program variable of interest in a target PLC is linearly

correlated with other program variables that are acquirable via network sniffing or

scanning.

Referring to our model, an adversary is interested in finding out whether a program

variable that is mapped to applied voltage frequency in a target PLC, which con-

trols an AC induction motor, can be linearly associated with a variable, say actual

rotational speed, that is available in the discrete space. Let γ, ω, τ , p, δ, l, and ν

denote applied voltage frequency, actual rotational speed, synchronous speed, number

of poles, magnetic slip, load, and nameplate speed at full load of an AC induction

motor, respectively.

In laboratory settings we study a PLC-controlled AC induction motor that is char-

acterized by values of physical parameters p, δ, τ , ν, and l, chosen randomly among

those available. These values are given in Table 6.1. Our thesis is that, although the

internal architecture and configuration of a randomly chosen AC induction motor may

be totally different than the internal architecture and configuration of an AC induc-

tion motor controlled by the target PLC, some program variables that are mapped to

physical parameters such as γ and ω exhibit hidden but calculable statistical relations.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 133

p ω τ l ν δ γ
4 1246.3 1884.0 0.9 1175.4 637.7 62.8
4 1255.6 1977.0 0.9 1175.4 721.4 65.9
4 1236.1 1782.0 0.9 1175.4 545.9 59.4
4 1218.7 1608.0 0.9 1175.4 389.3 53.6
4 1205.8 1479.0 0.9 1175.4 273.2 49.3
4 1178.8 1209.0 0.9 1175.4 30.2 40.3
4 1203.7 1458.0 0.9 1175.4 254.3 48.6
4 1222.6 1647.0 0.9 1175.4 424.4 54.9
4 1197.7 1398.0 0.9 1175.4 200.3 46.6
4 1186.0 1281.0 0.9 1175.4 95.0 42.7

Table 6.1: A sample of values of physical parameters that characterize the operation
of an AC induction motor studied in laboratory settings.

Furthermore, these statistical relations are persistent among electric motors, even

though their internal architectures and configurations may differ to large degrees.

We show that the said thesis holds for a linear relation between γ and ω, a fact that

is leveraged by the adversary in our attack-defense model to find out what variable

in the target PLC is mapped to ω. Taking into account that the actual rotational

speed ω of the AC induction motor as reported by the tachometer is a continuous

input value, by referring to the ModBus specification the adversary derives that the

target PLC uses an input register variable to hold ω in its RAM.

Furthermore, since the applied voltage frequency γ is a continuous output value, the

adversary derives that the target PLC uses a holding register variable to hold γ. The

reconnaissance analysis proceeds with assessing whether the program variable of in-

terest and program variables that the program variable of interest may be potentially

linearly correlated with, i.e. the holding register variable mapped to γ and the input

register variable mapped to ω in our attack-defense model, follow a Gaussian distri-

bution [46]. We use ModScan [120] to acquire values of the holding register variable

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 134

mapped to γ and values of the input register variable mapped to ω over a defined

period of time from the testing PLC that controls the AC induction motor in labo-

ratory settings.

These values are given in Table 6.1 along with the values of physical parameters p, δ,

τ , ν, and l mentioned previously. A series of ModBus scanner tools such as ModScan

[13, 120] have been developed for security assessments, and some of them are publicly

available. These tools enable a security analyst or adversary to acquire the values of

discrete input variables, coil variables, input register variables, and holding register

variables, which are stored in the RAM of a target PLC.

Furthermore, most of these tools also enable a security analyst or adversary to send

attack packets that attempt to write to logical or word variables in a target PLC once

he/she has identified the cyber-physical mapping. ModBus variables in a target PLC

may be scanned several times, a process that normally produces a large set of data.

The challenge consists in analyzing these data to identify a cyber-physical mapping,

and it is this challenge that is addressed by the proposed statistical technique. Let γ̄

and ω̄ denote the mean average of γ and the mean average of ω, respectively. γ̄ and

ω̄ are estimated through the formulae shown below:

γ̄ =

(∑10
i=1 γ

10

)
= 52.41 (6.1)

and

ω̄ =

(∑10
i=1 ω

10

)
= 1215.13 (6.2)

The normal density curves for γ and ω are depicted in Figure 6.5. Under the condition

that the program variables that are being analyzed follow a Gaussian distribution,

the adversary applies the least squares regression method [11] to estimate the regres-

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 135

Figure 6.5: Normal density curves for applied voltage frequency γ and actual motor
rotational speed ω, left and right respectively, in which the standard deviation of γ
is 8.46751 and the standard deviation of ω is 25.40254

sion line that characterizes the linear relationship between these program variables.

More precisely, he/she estimates the intercept and slope of this regression line, and

hence builds the regression line itself along with a scatter plot displaying values of

the program variables under investigation.

He/she then uses the regression line and the scatter plot to characterize the degree

of linear association between these program variables, and hence estimates their lin-

ear regression coefficient. In our specific attack-defense model the adversary pilots

his analysis towards quantification of a linear relation between the holding register

variable that is mapped to γ and the input register variable that is mapped to ω.

More precisely, he/she is interested in their degree of linear association as measured

by a linear correlation coefficient that we denote with r. In the analysis of the data

that are shown in Table 6.1 we consider γ as a dependent variable, and ω as an

independent variable. Note that we are not assuming causality between these two

program variables in this order. Let a and b denote intercept and slope, respectively,

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 136

in the linear relation between γ and ω. The linear relation between γ and ω is modeled

by the equation below:

γ = a+ b ω (6.3)

where a and b are estimated via least squares regression [11] as shown in the following

equations:

b =

(∑10
i=1 ((ωi − ω̄) (γi − γ̄))∑10

i=1 (ωi − ω̄)2

)
= 0.33 (6.4)

γ̄ = a+ b ω̄ ⇒ a = γ̄ − b ω̄ = −352.6 (6.5)

Thus, the linear relation between γ and ω is modeled as:

γ = (−352.6) + 0.33 ω (6.6)

The scatter plot and linear regression line for this linear relation are depicted in

Figure 6.6. Let γ̂ denote the values of γ estimated by the linear regression line

of Figure 6.6. The linear correlation coefficient r measuring the degree of linear

association between γ and ω is estimated by the following equation:

r = (

√∑10
i=1(γ̂i − γ̄)2∑10
i=1(γi − γ̄)2

) = 1 (6.7)

Armed with a quantification of the correlation coefficient r that measures the degree of

linear association between γ and ω, an adversary reconstructs the content of program

variables that are stored in the RAM of a target PLC. Table 6.2 presents a sample of

these data. For the sake of clarity, IR and HR stand for input register variable and

holding register variable, respectively. The ModBus address of each reconstructed

variable is given in square brackets. Recall that the adversary has already derived

that it is an input register variable and a holding register variable in the RAM of the

target PLC that is mapped to ω and γ, respectively.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 137

Figure 6.6: Scatter plot and linear regression line for the statistical relation between
γ and ω.

At this point the adversary estimates the degree of linear association between all pro-

gram variables, which is, he/she estimates their linear regression coefficients. These

estimations are given in Table 6.3. Let rlab be the regression coefficient between a

program variable that is mapped to a physical parameter of interest and a program

variable that is mapped to another physical parameter, which in turn is linearly corre-

lated with the physical parameter of interest, as preliminarily estimated in laboratory

settings.

The identification of a program variable of interest in a target PLC takes place when

defined program variables are found to have a regression coefficient that is equal to

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 138

IR[16] IR[53] IR[18] IR[69] HR[19685] HR[20008] HR[18610] HR[655]
702.5 1884.0 1205.3 685.2 63.9 36.5 42.1 49.6
803.8 1977.0 903.9 679.2 55.4 39.2 41.6 52.4
901.8 1782.0 1306.9 722.4 55.8 38.3 45.2 62.3
904.1 1608.0 1004.8 763.2 67.3 45.8 48.6 60.1
1004.7 1884.0 1407.8 735.6 57.8 48.1 46.3 59.2
903.1 1977.0 1409.4 796.8 58.1 49.3 51.4 57.3
1004.9 1782.0 1408.3 868.8 61.8 51.5 57.4 57.9
809.6 1608.0 1598.3 817.2 48.9 58.3 53.1 61.4
1208.8 1782.0 1203.9 890.2 38.9 61.8 59.1 63.8
803.5 1608.0 957.5 945.6 48.6 47.5 63.8 65.0

Table 6.2: Excerpt from the data set acquired through ModScan from a target PLC.

IR[16] IR[53] IR[18] IR[69]
HR[19685] -0.41 0.16 -0.05 -0.54
HR[20008] 0.64 -0.36 0.43 0.71
HR[18610] 0.4 -0.54 0.05 0.99
HR[655] 0.49 -0.66 0.1 0.72

Table 6.3: Measurements of the degree of linear association between holding register
variables and input register variables that were scanned from the memory of a target
PLC.

rlab. Thus, in our specific attack-defense model the holding register variable that is

mapped to applied voltage frequency γ is the one whose linear association with an

input register variable, which is presumably mapped to the actual rotational speed

rlab, has a degree that is equal to 1.

From referring to Table 6.3 we see that the ModBus address of the holding register

variable that is mapped to applied voltage frequency γ is 18610. Furthermore, the

ModBus address of the input register variable that is mapped to actual rotational

speed is 69. In fact the correlation coefficient of these two program variables is slightly

less than 1, namely 0.99, since a series of roundings of numbers were performed during

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 139

the mathematical estimations.

6.4.2 Empirical Quantification of Deception Effects

The reconnaissance for a loss of cooling attack produces information such as pres-

ence of motor-driven water pumps that are controlled over a reachable discrete space,

presence of physical processes such as nuclear fission, evaporation, condensation, etc.,

in a target continuous space, address or name of a program variable in the RAM of

a target PLC that is mapped to applied voltage frequency, the IP address of a target

PLC, the TCP port used by a slave ModBus application in a target PLC to receive

and send data, etc.

This information has a direct influence on the adversary’s decision making process

with regard to target selection and attack engineering. Mirage theory intervenes dur-

ing the reconnaissance process with the objective of interfering with the adversary’s

decision-making process. Such interference is conducted by manipulating the adver-

sary’s perception of a target continuous space through the lenses of an associated

discrete space. We analyze the effects of mirage theory on the adversary’s decision-

making process under the light of signal detection theory.

Signal detection theory is a method to characterize and quantify the ability of a sub-

ject to discern between signal and noise. If we draw three parallel lines between signal

detection theory and mirage theory, namely a parallel line between signal and pres-

ence of existing physical processes and equipment, another parallel line between noise

and simulated or emulated physical processes and equipment, and another parallel

line between subject and adversary, then we end up with applying signal detection

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 140

theory to characterize and quantify the ability of an adversary to discern between an

existing continuous space and a simulated or emulated continuous space.

The subjects in our analysis comprised a team of students who were taught the in-

ternals of process control networks, ModBus TCP, PLCs, and AC induction motors.

Most importantly, the student team was taught how to apply the statistical technique

discussed in the previous subsection for the purpose of identifying in a large set of

data a holding register variable that is mapped to applied voltage frequency. Thus,

the student team took the role of the adversaries.

The complete network packets exchanged, i.e. network packets that comprise data

link, IP, and TCP headers, and application data units [19], were sniffed and gathered

in a data set, which was presented to members of the student team individually. The

student team was told that only one of the holding register variables is mapped to

an applied voltage frequency. Each member of the student team was asked to recon-

struct the values of program variables from ordered series of network packets printed

on chapter, and from there identify an existing target of a loss of cooling attack by

the means of estimation of degrees of linear association.

This test revealed that during the reconnaissance for a loss of cooling attack an ad-

versary is subject to what in signal detection theory is defined as external noise. The

most common form of external noise met during this test was that the degree of lin-

ear association between several program variables was estimated to be rlab. In other

words, more than two program variables were found to be linearly associated to the

same degree. External noise was found also during the application of other optional

or complementary reconnaissance techniques.

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 141

Figure 6.7: POC curves for a PLC that controls a motor-driven water pump, as
estimated during a simulated loss of cooling attack.

For instance, an adversary may identify variables of interest by comparing the values

of reconstructed program variables to typical values of parameters related to physical

processes or equipment. Thus, when conducting reconnaissance for a loss of cooling

attack an adversary may assess whether values of each holding register variable are

typical for a parameter such as applied voltage frequency. The external noise in this

case is that values of several holding register variables may be typical for applied

voltage frequency.

Despite the affects of external noise, the said test showed that the adversary’s decision-

making process with regard to target selection is subject to a relatively low uncer-

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 142

tainty. Figure 6.7 depicts the internal response probability of occurrence (POC)

curves that characterize the said uncertainty. The horizontal axis in Figure 6.7 repre-

sents information that motivates an adversary to take the decision that the signal is

present, while the vertical axis represents the frequency of the occurrence of a defined

amount of such information.

The POC curves in Figure 6.7 show that the signal strength is high and the amount of

noise, both external and internal, is low. Consequently the overlap of these two POC

curves is small, while their spread is reduced. The discriminability index derived from

the separation and spread of the two POC curves in Figure 6.7 has a value around

d
′
= 5.6. Thus, with such a high discriminability index an existing continuous space

is considerably discriminable from a simulated or emulated continuous space.

These estimations overall indicate that adversaries who have expertise in process con-

trol can identify correctly the target of a loss of cooling attack with a high rate of

correct selections and a low rate of wrong selections. The receiver operating char-

acteristic (ROC) curve, which is plotted with hit rate on the vertical axis and false

alarms rate on the horizontal axis, for a discriminability index d
′

= 5.6 goes up to

the upper left corner converging with a straight line that intersects the vertical axis

at a value of 100% and is parallel with the horizontal axis.

This ROC curve indicates that an adversary’s decision making process with regard to

target selection is characterized by a large number of hits and just a few false alarms.

The previous test was conducted again, but this time the student team was made

subject to deception effects that were induced by an application of mirage theory.

The target process control network included a number of PLCs that controlled emu-

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 143

Figure 6.8: POC curves that characterize the uncertainty under which adversaries
identify the target of a loss of cooling attack in the attack-defense model given in this
section.

lated motor-driven water pumps. As in the former test, in the latter test we sniffed a

set of complete network packets that were sent over the process control network, and

thereafter presented them to each member of the student team individually.

Emulation of motor-driven water pumps resulted in generation of deceptive network

packets that drastically increase the uncertainty to which the adversary’s decision-

making process is exposed with regard to target selection. These deceptive commu-

nications acted as what in signal detection theory is defined as internal noise. As

in signal detection theory, a subject, i.e. an adversary, has little or no control over

the internal noise that is emitted during a decision making process. The POC curves

Chapter 6: MIRAGE THEORY FOR DECEPTION-BASED DETECTION 144

Figure 6.9: ROC curve that corresponds to the POC curves of Figure 6.8.

that characterize the uncertainty that was induced by deceptive network packets are

depicted in Figure 6.8.

The internal noise makes an existing continuous space hardly discriminable from a

simulated or emulated continuous space. Under the effects of mirage theory the

strength of the internal response is lowered. More precisely, mirage theory lowers the

discriminability index of the reconnaissance for a loss of cooling attack from d
′
= 5.6

to d
′
= 0.45. The effects of mirage theory in terms of hit rates and false alarm rates

are provided by the ROC curve depicted in Figure 6.9.

Chapter 7

A BAYESIAN THEORY OF

CONFIRMATION FOR

INTRUSION REPORT FUSION

7.1 Introduction

Intrusion detection approaches devised for operation in process control networks

are required to be highly effective in terms of probability of detection and false alarms

rate due to the sensitivity of the tasks that those special purpose networks conduct

in industrial environments. More specifically, no single attack on process control

networks can be left undetected due to permanent physical damage that those attacks

have potential to cause on the digitally controlled physical system. False positives

may also prove more costly in process control networks when compared to general

purpose computer networks.

145

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 146

As Gu et al. and Dietterich show in [43] and [28], respectively, an intrusion detection

ensemble, i.e. a set of diverse intrusion detection algorithms employed as a group,

outperforms each one of those diverse algorithms used individually. Moving along this

line, we have devised three intrusion detection algorithms especially for process control

networks, namely an Estimation-Inspection (EI) algorithm, a physical process aware

specification-based approach, and a theory of deception that we refer to as mirage

theory.

We now propose in this dissertation a probabilistic technique for fusing the intrusion

reports generated by such intrusion detection approaches. This fusion technique is

a Bayesian theory of confirmation whose objective is to have the three intrusion

detection approaches correct the limitations of each other while contributing to a

joint intrusion detection intelligence.

7.2 Problem Statement

Let us recall the modeling of the portion of RAM of control systems that is used

to store sensor data and actuator control data along with set points as the matrix

given below:

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 147

W =



x1 x2

.

. xl

xl+1 xl+2

.

. xm

xm+1 xm+2

.

. xn

xn+1 xn+2

.

. xg


where x1, x2, ..., xl model input register variables, xl+1, xl+2, ..., xm model holding

register variables, xm+1, xm+2, ..., xn model discrete input variables, and xn+1, xn+2,

..., xg model coil variables. Network packets that are formatted according to a mon-

itoring and control communication protocol such as ModBus, and that flow across a

process control network, read or write input register variables, holding register vari-

ables, discrete input variables, and coil variables.

From a modeling perspective, these network packets read or write elements of the

matrix W , namely x1, x2, ..., xg. Let us define a combination of values of x1, x2,

..., xg as a state of the DCS-controlled physical system. Thus, the set of states of

the DCS-controlled physical system is comprised of all possible combinations of all

possible values of x1, x2, ..., xg. Clearly a network packet that writes an element of

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 148

the matrix W evolves the state of a DCS-controlled physical system. So may do a

network packet that reads an element of the matrix W , since the read value, if new,

is usually stored in another element of the matrix W .

A normal operation of a DCS-controlled physical system is comprised of network

packets that evolve the states of the said DCS-controlled physical system. Computer

network attacks on control systems inject data into the RAM of control systems via

malicious network packets, and hence they also evolve the state of a target DCS-

controlled physical system. The challenge of determining whether a network packet

is normal or abnormal takes the form of determining whether the network packet

in question is taking a DCS-controlled physical system from a normal state into an

abnormal state.

This challenge is exactly what we attack via the EI algorithm, the specification-based

approach, and the mirage theory. Given a state of a DCS-controlled physical system,

each one of these approaches has its own algorithmic logic to estimate the normalcy

or abnormality of the said state. They classify a network packet as normal only if the

packet in question is taking a DCS-controlled physical system into a state that they

deem as being normal. In our research we have demonstrated the effective intrusion

detection features of these three approaches, while not leaving any shortcomings be-

hind.

In other words, we are not aware of any shortcomings of the EI algorithm, the

specification-based approach, and the mirage theory, which could potentially become

sources of false positives and/or false negatives. Nevertheless, we believe that it is

rational to assume that these three approaches do have a series of shortcomings,

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 149

which simply are unknown to us. We seek an intrusion report fusion technique that

could enable us to have the various intrusion detection approaches eliminate, or at

least alleviate, the shortcomings of each other, while contributing with their effective

intrusion detection features to a joint intrusion detection intelligence.

Let Hn denote the hypothesis that a network packet under inspection is normal, and

Ha the hypothesis that the network packet under inspection is abnormal. Employ-

ing individually the EI algorithm, the specification-based approach, and the mirage

theory, we can estimate the probability that hypothesis Hn holds and the probability

that hypothesis Ha holds. Let us denote these probabilities as P (Hn) and P (Ha),

respectively. The idea behind the intrusion report fusion technique is to revise P (Hn)

and P (Ha) in such a way as to reduce the overall number of false positives and false

negatives, and with that increase the confidence with which to detect intrusions when

they really take place in a process control network.

We have the EI algorithm, the specification-based approach, and the mirage theory,

generate pieces of evidence in the form of intrusion reports for any of the two hypothe-

ses Hn and Ha that they may defend after each network packet inspection1. Each

such piece of evidence is reducible to the specification of a state of the DCS-controlled

physical system that each one of the approaches may deem as being normal or abnor-

mal, respectively. The said state is where a network packet under inspection is taking

the DCS-controlled physical system to. Following the Heuer’s ACH methodology, we

work on a matrix with hypotheses across the top and pieces of evidence down the

1Mirage theory generates an intrusion report only if the network packet under inspection operates
on any of the deceptive variables. If that is not the case, mirage theory remains neutral with regard
to support or rejection of the normalcy and abnormality hypotheses.

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 150

side.

An example of such matrix is given in Figure 7.1. Given a piece of evidence X =

(val(x1), val(x2), ..., val(xg)), where val(xk) denotes a specific value of xk for k ∈

{1, 2, ..., g}, we are interested to estimate the degrees to which each one of the two hy-

potheses Hn and Ha is confirmed by the three intrusion detection approaches through

X. In this case the EI algorithm, the specification-based approach, and the mirage

theory are employed simultaneously in parallel. Let us denote the said degrees of

confirmation as P (Hn | X) and P (Ha | X), respectively.

In this research we use the Bayes theorem in its ratio form in order to estimate and

compare the posterior probabilities P (Hn | X) and P (Ha | X) from the prior proba-

bilities P (Hn) and P (Ha). For being able to do so, for each one of the hypotheses Hn

and Ha individually, we need to compute a probability distribution, i.e. a probability

density function, that indicates the likelihood of occurrence of each possible piece of

evidence were the associated hypothesis true.

Such likelihoods are also known as hypothesis-based probabilities of evidence [45],

which in this research we denote as P (X | Hn) and P (X | Ha), respectively. Re-

assembling, we need to compute all of the terms on the right of the equation given

below:

P (Hn | X)

P (Ha | X)
=
P (X | Hn)

P (X | Ha)

P (Hn)

P (Ha)

which is the Bayes theorem in its ratio form as applied to our problem domain.

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 151

Figure 7.1: Example of an ACH matrix in the proposed theory of confirmation.

7.3 Estimating the Hypothesis-based Probabilities

of Evidence

Let X denote the set of states of the DCS-controlled physical system. Thus, X

is defined as: X = {X | X = val(x1), val(x2), ..., val(xg))}. The EI algorithm, the

specification-based approach, and the mirage theory may produce each element X of

the set X as a piece of evidence for any of the two hypotheses Hn and Ha that they

may defend. Consequently we need to be able to estimate P (X | Hn) and P (X | Ha)

for all X ∈ X.

In this research we treat the estimation of P (X | Hn) as a statistics problem, in

which, for each intrusion detection approach ids ∈ {EI algorithm, specification −

based approach,mirage theory}, we analyze a sample of normal states

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 152

{X ∈ X | X is normal ∧X is classified as normal by ids} to infer the probability

distribution that has most likely generated the said sample of states from the per-

spective of approach ids.

The said probability distribution is selected from the unconstrained probability model

on X, i.e. a non-empty set of all possible probability distributions on X. We fol-

low the same approach to the estimation of P (X | Ha), but this time, for each

intrusion detection approach ids, we analyze a sample of abnormal states {X ∈

X | X is abnormal ∧ X is classified as abnormal by ids}. We cannot compute

P (X | Hn) and P (X | Ha) directly as we are in a setting in which we are incom-

pletely informed. Let us see why.

Our statistical analysis is based on a set of network packets sniffed from the process

control network of a real world DCS-controlled physical system as the latter is oper-

ated normally. From the said set of data we can derive the sample of normal states

that were followed by the DCS-controlled physical system throughout its normal oper-

ation. This sample of normal states contains only a limited number of the population

of all possible normal states of the DCS-controlled physical system. Furthermore,

the generation of all possible combinations of all possible values of x1, x2, ..., xg that

constitute a normal state is unpractical.

Consequently our statistical analysis would cover only the specific states that appear

in the sample of normal states, with the consequence being that we cannot estimate

P (X | Hn) if X does not appear in the sample of normal states. A similar limitation

holds with regard to the estimation of P (X | Ha). We can generate a set of abnormal

network packets, and thus consider them in conjunction with the sample of normal

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 153

states in order to derive a sample of abnormal states.

This sample of abnormal states contains only a limited number of the population of

all possible abnormal states of the DCS-controlled physical system. This is because

clearly the attacks that we could generate are only a sample of the population of all

possible attacks on the DCS-controlled physical system. Furthermore, the generation

of all possible combinations of all possible values of x1, x2, ..., xg that constitute an

abnormal state is unpractical.

Since our statistical analysis would cover only the specific states that appear in the

sample of abnormal states, we cannot estimate P (X | Ha) if X does not appear in the

sample of abnormal states. The approach that we take to overcome these limitations

is to transform the problem of estimating P (X | Hn) and P (X | Ha) in a form that

allows us to attack it by applying the Expectation-Maximization (EM) algorithm [27].

We do so as the EM algorithm is known to be effective with regard to estimation of

probability distributions in a setting in which we are informed only in part. The

majority of the statistical concepts that underlie our discussion in this section are

drawn from the context of the EM algorithm [27].

7.3.1 Developing Incomplete-data Spaces and the Associated

Symbolic Analyzers

The set of states of the DCS-controlled physical system X is a complete-data space

comprised of types X. If X = val(x1), val(x2), ..., val(xg), then

P (X | Hn) = P (val(x1) | Hn) P (val(x2) | Hn) P (val(xg) | Hn)

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 154

and

P (X | Ha) = P (val(x1) | Ha) P (val(x2) | Ha) P (val(xg) | Ha)

This means that the problem of estimating the probability distributions on X that

are most likely to have generated the aforementioned samples of states, is reduced

to identifying the corresponding probability distributions on each variable xk, for

k ∈ {1, 2, ..., g}, that are most likely to have generated those samples of states.

In this research we define an incomplete-data space for each variable xk, where

k ∈ {1, 2, ..., g}. Let us first discuss the process of defining an incomplete-data space

for a word variable, say x1.

This process is depicted in Figure 7.2. The segment of possible values of x1 is parti-

tioned into δ subsegments of contiguous values of x1. We refer to these subsegments

as δ partitions. For example, in Figure 7.2 the possible values of x1 are organized into

four δ partitions. Let anyval(xk) denote any possible value of xk. An incomplete-data

type Yj consists of (y1, y2, ..., yg), where y1 is any value of x1 that lies in the j-th δ

partition, while y2, ..., yg are equal to anyval(x2), ..., anyval(xg), respectively. Let Y

denote the incomplete-data space for variable x1.

In this case Y is comprised of the incomplete-data types {Y1, Y2, Y3, Y4}. The choice of

δ is proportional to the size of the segment of possible values of x1. The incomplete-

data space for a logical variable, say x1 again, is defined in a similar way. This time δ

can only be two, and thus the two possible δ partitions are 0 and 1. The incomplete-

data types Y1 and Y2 consist of (y1, y2, ..., yg), where y1 = 0 and y1 = 1, respectively. In

both of these incomplete-data types, y2, ..., yg are equal to anyval(x2), ..., anyval(xg),

respectively.

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 155

Figure 7.2: Example of the derivation of an incomplete-data space for a word variable
x1.

In this case the incomplete-data space Y for variable x1 is comprised of the incomplete-

data types {Y1, Y2}. In the context of our application of the EM algorithm, the

complete-data space for a variable xk is the segment of values [min(xk),max(xk)],

where min(xk) and max(xk) denote the minimum value and the maximum value of

variable xk, respectively. A symbolic analyzer, say A, is a relation that maps each

incomplete-data type to a set of complete-data types.

Thus, overall the symbolic analyzer A maps the incomplete-data space Y to the

complete-data space [min(xk),max(xk)] with respect to variable xk. Let us see how

this mapping is done for the word variable x1 in the example of Figure 7.2. Given

an incomplete-data type Yj = (y1, y2, ..., yg). The symbolic analyzer A examines y1

to determine the δ partition of the values of x1 where y1 lies in. Yj is then mapped

to the set of val(x1) that lie in that δ partition.

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 156

Referring to the example of Figure 7.2, the symbolic analyzer A maps Y1 to the set of

val(x1) that lie in the first δ partition, Y2 to the set of val(x1) that lie in the second δ

partition, Y3 to the set of val(x1) that lie in the third δ partition, and Y4 to the set of

val(x1) that lie in the fourth δ partition. The mapping of Yj is done in a similar way

in the case x1 is a logical variable. If y1 = 0, Yj is mapped to the value 0 of variable

x1. If y1 = 1, then Yj is mapped to the value 1 of variable x1.

7.3.2 Algorithmic Approach

We now discuss how we estimate the hypothesis-based probability distributions

on logical or word variables stored in the RAM of control systems. The algorith-

mic approach is given in Algorithm 2. The theory of confirmation first defines the

complete-data space X whose types are states of the DCS-controlled physical system

[Algorithm 2; line 1]. It is this space’s hypothesis-based probability distributions that

we cannot compute directly. As written earlier in this dissertation, for the sake of the

application of the EM algorithm we consider as a complete-data space the interval of

values [min(xk),max(xk)] for each variable xk.

Once we compute the hypothesis-based probability distributions on each variable xk,

we can then compute the hypothesis-based probability distributions on X. Taking

into account that the EI algorithm, the specification-based approach, and the mirage

theory have their own individual detection logic, the hypothesis-based probability dis-

tributions on each variable xk differ according to what intrusion detection approach

is being used. In other words, given the hypothesis Hn is true or the hypothesis Ha is

true, the probability of receiving a specific piece of evidence is different for different

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 157

intrusion detection approaches.

Thus, the theory of confirmation computes the hypothesis-based probability distri-

butions on each variable xk [Algorithm 2; line 3] for each one of the three intrusion

detection approaches [Algorithm 2; line 2]. Let M(xk) denote the unconstrained

probability model on variable xk, i.e. a non-empty set of all possible probability dis-

tributions on variable xk [Algorithm 2; line 4]. The theory of confirmation randomly

chooses a probability distribution p0 from M(xk) [Algorithm 2; line 5].

The probability distribution p0 is needed to initiate the execution of the EM algorithm.

In [Algorithm 2; lines 6-14], the theory of confirmation defines an incomplete-data

space Y for each word variable xk. It also defines the symbolic analyzer A that maps

types of Y to the appropriate δ partition of variable xk, as discussed in the previous

subsection. In [Algorithm 2; lines 15-21], the theory of confirmation performs the

same task for each logical variable xk. Recall that we have in hand a sample of nor-

mal tokens from X, and a sample of abnormal tokens from X.

Following the discussion made in the previous subsection, we derive the corresponding

sample of normal tokens from Y, say n, and the corresponding sample of abnormal

tokens from Y, say m, respectively. Let nids denote a sample comprised of those nor-

mal tokens of n that are classified as normal by the intrusion detection currently in

consideration [Algorithm 2; line 22]. Further, let mids denote a sample comprised of

those abnormal tokens of m that are classified as abnormal by the intrusion detection

currently in consideration [Algorithm 2; line 23].

Thus, nids ⊆ n and mids ⊆ m. Both nids and mids are non-empy and finite. In

[Algorithm 2; line 24], the theory of confirmation passes the symbolic analyzer A,

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 158

the sample nids of normal tokens that are classified as normal by the intrusion detec-

tion currently in consideration, the unconstrained probability model on variable xk,

namely M(xk), and the randomly chosen probability distribution p0, to the EM algo-

rithm. The EM algorithm then estimates the instance pn xkids of M(xk) that maximizes

the likelihood of nids.

Similarly, in [Algorithm 2; line 25], the theory of confirmation passes the symbolic

analyzer A, the sample mids of abnormal tokens that are classified as abnormal by the

intrusion detection currently in consideration, the unconstrained probability model

M(xk), and the randomly chosen probability distribution p0, to the EM algorithm,

which estimates the instance pm xk
ids of M(xk) that maximizes the likelihood of mids.

Let us see in Algorithm 3 how the EM algorithm estimates pn xkids .

The estimation of pm xk
ids is conducted by the EM in a similar way. In this case the

EM algorithm works on mids rather than on nids.

Algorithm 2 Estimate the hypothesis-based probability distributions on each logical

or word variable

1: X⇐ {X | X = val(x1), val(x2), ..., val(xg))}

2: for all ids such that ids ∈ {EI algorithm, specification-based approach, mirage

theory} do

3: for all xk such that k ∈ {1, 2, ..., g} do

4: M(xk)⇐ unrestricted probability model on xk

5: p0 ⇐ a probability distribution on xk chosen randomly from M(xk)

6: if xk models a word variable then

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 159

7: e⇐ number of δ partitions of xk

8: Y⇐ NULL

9: for all j such that j ∈ {1, 2, ..., e} do

10: Yj ⇐ (y1, y2, ..., yg), where min(xk) + δ(j − 1) ≤ yk < min(xk) + jδ and

yl = anyval(xl) for l 6= k

11: Y⇐ Y ∪ Yj

12: A(Yj)⇐ {val(xk) | min(xk) + δ(j − 1) ≤ val(xk) < min(xk) + jδ}

13: end for

14: end if

15: if xk models a logical variable then

16: Y1 ⇐ (y1, y2, ..., yg), where yk = 0 and yl = anyval(xl) for l 6= k

17: Y2 ⇐ (y1, y2, ..., yg), where yk = 1 and yl = anyval(xl) for l 6= k

18: Y⇐ Y0 ∪ Y1

19: A(Y1)⇐ 0

20: A(Y2)⇐ 1

21: end if

22: nids : Y → R, such that for all Y ∈ Y, nids(Y) ≥ 0 and 0 < |nids| < ∞ ⇐

sample of normal tokens classified as normal by ids

23: mids : Y → R, such that for all Y ∈ Y, mids(Y) ≥ 0 and 0 < |mids| < ∞ ⇐

sample of abnormal tokens classified as abnormal by ids

24: pn xkids ⇐ feed the EM algorithm with (A, nids,M(xk), p0)

25: pm xk
ids ⇐ feed the EM algorithm with (A,mids,M(xk), p0)

26: end for

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 160

27: end for

The EM algorithm (Algorithm 3) that estimates pn xkids is comprised of an expectation

step and a maximization step, which are iterated until the sequence of probabilities

allocated to the incomplete-data sample nids converge to a local maximum value.

Initially the aforementioned p0 chosen randomly from M(xk) is used as the probability

distribution q that is used to generate a complete-data sample [Algorithm 3; line 2].

Let nqids denote the complete-data sample expected by the probability distribution q

[Algorithm 3; line 3].

In [Algorithm 3; lines 4-8], the EM algorithm computes the complete-data sample

expected by the probability distribution q. In other words, the EM algorithm uses

the probability distribution q to distribute the frequency nids(Y), for each incomplete-

data type Y ∈ Y, among the complete-data types val(xk) ∈ A(Y). Let p̄ denote the

maximum-likelihood estimate of M(xk) on nqids [Algorithm 3; line 9]. Taking into

account that M(xk) is an unconstrained probability model, the maximum-likelihood

estimate of M(xk) on nqids corresponds to the relative-frequency estimate of M(xk)

on nqids.

In [Algorithm 3; lines 10-12], the EM algorithm computes p̄, which becomes the

probability distribution q that is used to generate a complete-data sample in the next

iteration [Algorithm 3; line 13]. The relative-frequency estimate of M(xk) on nqids that

the EM algorithm computes in the last iteration becomes pn xkids [Algorithm 3; line 15].

P (X | Hn) and P (X | Ha) are computed for each intrusion detection approach ids ∈

{EI algorithm, specification− based approach,mirage theory} as shown below:

P (X | Hn) = pn x1
ids (val(x1)) pn x2

ids (val(x2)) p
n xg
ids (val(xg))

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 161

and

P (X | Ha) = pm x1
ids (val(x1)) pm x2

ids (val(x2)) p
m xg
ids (val(xg))

In Figure 7.1, for example, we see that the EI algorithm has computed a probability

0.36 for P (X | Hn), and a probability 0.18 for P (X | Ha).

Algorithm 3 Compute the normalcy maximum likelihood estimate of the unre-

stricted probability model on a logical or word variable

1: for all i such that i ∈ {1, 2, ..., r} do

2: q ⇐ pi−1

3: nqids ⇐ complete-data sample expected by the probability distribution q

4: for all Y such that Y ∈ Y do

5: for all val(xk) such that val(xk) ∈ A(Y) do

6: nqids(val(xk))⇐ nids(Y) q(val(xk))
q(Y)

7: end for

8: end for

9: p̄⇐ relative-frequency estimate of M(xk) on nqids

10: for all val(xk) do

11: p̄(val(xk))⇐
nqids(val(xk))

|nqids|

12: end for

13: pi = p̄

14: end for

15: pn xkids ⇐ pr

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 162

7.4 Estimating Prior Probabilities of Normalcy and

Abnormality

We now discuss the estimation of P (Hn) and P (Ha), which correspond to the

probability of Hn and the probability of Ha, respectively, if we were to employ only

one of the three intrusion detection approaches in question. In this research we use

the probability tree method to estimate P (Hn) and P (Ha). An example is given in

Figure 7.3. The root of the tree is the starting point of the inspection of a variable

value conveyed by a network packet payload. The children nodes of the root node are

the intrusion detection approaches, namely the EI algorithm, the specification-based

approach, and the mirage theory.

Each one of these three nodes has two children nodes, namely Hn and Ha. The EI

algorithm, the specification-based approach, and the mirage theory have comparable

effectiveness, and thus we would have no reasons for employing one specific approach

rather than another. Consequently each one of the branches that connects the root

node with an approach node is assigned a probability of 1/3, since the choice of the

approach to use is random. Upon inspection of a variable value conveyed by a network

packet payload, the EI algorithm computes a stochastic vector in which it specifies a

normalcy probability for the value in question.

If the said probability is 0.00, then the entire network packet is classified as abnormal,

in which case the hypothesis Ha holds. Otherwise the specific variable value being

analyzed is classified as normal, and thus the hypothesis Hn holds. In the case the

estimated normalcy probability is 0.00, the probability 1.00 is assigned to the branch

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 163

that connects the EI algorithm node with the Ha node. This is because when the

estimated normalcy probability is 0.00, the probability that the EI algorithm reports

that the hypothesis Ha holds is 1.00.

Furthermore, the probability 0.00 is assigned to the branch that connects the EI

algorithm node with the Hn node. When the estimated normalcy probability is 0.00,

the probability that the EI algorithm reports that the hypothesis Hn holds is 0.00.

In the case the estimated normalcy probability is greater than 0.00, the probability

1.00 is assigned to the branch that connects the EI algorithm node with the Hn node.

This is because when the estimated normalcy probability is greater than 0.00, the

probability that the EI algorithm reports that the hypothesis Hn holds is 1.00.

Furthermore, the probability that is assigned to the branch that connects the EI

algorithm node with the Ha node is 0.00. When the estimated normalcy probability is

greater than 0.00, the probability that the EI algorithm reports that the hypothesisHa

holds is 0.00. When inspecting a variable value conveyed by a network packet payload,

the specification-based approach uses a series of rules in conjunction with selected

portions of the current state of the DCS-controlled physical system to compute a

range of normal values. If the value being inspected falls within the said range, the

specification-based approach reports that the hypothesis Hn holds.

In this case we assign a probability of 1.0 to the branch that connects the specification-

based approach node with the Hn node, and a probability of 0.00 to the branch that

connects the specification-based approach node with the Ha node. If the value being

inspected falls outside the computer range of normal values, the specification-based

approach reports that the hypothesis Ha holds. In this case we assign a probability

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 164

of 0.0 to the branch that connects the specification-based approach node with the Hn

node, and a probability of 1.00 to the branch that connects the specification-based

approach node with the Ha node.

When inspecting a variable value conveyed by a network packet payload, mirage

theory uses a communicating finite state machine in the form of sequence detector to

assess whether the said network packet is foreign, i.e. it is not part of the network

traffic that is generated by deceptive simulation. If the sequence detector recognizes

the variable value in question, mirage theory reports that the hypothesis Hn holds.

In this case we assign a probability of 1.0 to the branch that connects the mirage

theory node with the Hn node, and a probability of 0.00 to the branch that connects

the mirage theory node with the Ha node.

Figure 7.3: Probability tree estimation of prior normalcy and abnormality
probabilities.

If the sequence detector does not recognize the variable value in question, mirage

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 165

theory reports that the hypothesis Ha holds. If this occurs, we assign a probability

of 0.0 to the branch that connects the mirage theory node with the Hn node, and

a probability of 1.00 to the branch that connects the mirage theory node with the

Ha node. Following the multiplicative law of probability, the probability that each

one of the intrusion detection approaches reports that the hypothesis Hn holds is

obtained by multiplying the probabilities along the path from the root node to the

Hn node. According to the probability tree method, P (Hn) is obtained by summing

these estimated individual probabilities, as shown in the equation below:

P (Hn) = 0.33 P (Hn | EI algorithm)+0.33 P (Hn | specification−based approach)

+ 0.33 P (Hn | mirage theory)

Similarly, the probability that each one of the intrusion detection approaches reports

that the hypothesis Ha holds is obtained by multiplying the probabilities along the

path from the root node to the Ha node. P (Ha) is obtained by summing these

estimated individual probabilities:

P (Ha) = 0.33 P (Ha | EI algorithm)+0.33 P (Ha | specification−based approach)

+ 0.33 P (Ha | mirage theory)

7.5 Bayesian Comparison of the Normalcy and Ab-

normality Hypotheses

We now discuss how we compare the two competing hypotheses, namely Hn and

Ha. The algorithmic approach is given in Algorithm 4. Let ϕ(xk) denote a val(xk)

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 166

that a network packet under inspection is writing to a variable xk. The theory of

confirmation inspects each ϕ(xk) held in the payload of the said network packet [Al-

gorithm 4; line 3]. Let alg1, alg2, and alg3 denote the EI algorithm, the specification-

based approach, and the mirage theory, respectively.

In [Algorithm 4; lines 5-7], the theory of confirmation uses the probability tree

method to estimate the prior probabilities of the hypotheses Hn and Ha. The

theory of confirmation computes P (X | Hn) for each intrusion detection approach

ids ∈ {EI algorithm, specification − based approach,mirage theory}, and then

sums the estimated probabilities to get the overall P (X |Hn) [Algorithm 4; lines 8-14].

Similarly, the theory of confirmation computes P (X | Ha) for each intrusion detec-

tion approach ids ∈ {EI algorithm, specification−based approach,mirage theory},

and then sums those estimated probabilities to compute the overall P (X | Ha) [Al-

gorithm 4; lines 15-21].

In Figure 7.1, for example, the overall P (X | Hn) is 0.36+0.24+0.13 = 0.73, while the

overall P (X | Ha) is 0.18+0.15+0.29 = 0.62. At this point we have in hand the prior

probabilities P (Hn) and P (Ha), and the hypothesis-based probabilities of evidence,

namely P (X | Hn) and P (X | Ha), and thus are in the position of applying the Bayes

theorem in its ratio form [Algorithm 4; line 22]. In [Algorithm 4; lines 23-29], the

estimation theory compares the posterior probabilities P (Hn | X) and P (Ha | X). If

P (Hn | X) is greater than P (Ha | X), the theory of confirmation classifies as normal

the ϕ(xk) currently under inspection.

If P (Hn | X) is smaller than P (Ha | X), the theory of confirmation classifies as ab-

normal the said ϕ(xk) along with the network packet under inspection.

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 167

Algorithm 4 Compare competing hypotheses

1: U ⇐ payload

2: Norm⇐ true

3: for all xk such that ϕ(xk) ∈ U do

4: X ⇐ evidence

5: build the probability tree associated with xk

6: P (Hn)⇐ P (alg1) P (Hn | alg1) + P (alg2) P (Hn | alg2) + P (alg3) P (Hn | alg3)

7: P (Ha)⇐ P (alg1) P (Ha | alg1) + P (alg2) P (Ha | alg2) + P (alg3) P (Ha | alg3)

8: P (X | Hn) = 0

9: for all ids such that ids ∈ {EI algorithm, specification-based approach, mirage

theory} do

10: pX = 1

11: for all xk such that k ∈ {1, 2, ..., g} do

12: pX ⇐ pX pn xkids (val(xk))

13: end for

P (X | Hn) = P (X | Hn) + pX

14: end for

15: P (X | Ha) = 0

16: for all ids such that ids ∈ {EI algorithm, specification-based approach, mirage

theory} do

17: pX = 1

18: for all xk such that k ∈ {1, 2, ..., g} do

Chapter 7: A BAYESIAN THEORY OF CONFIRMATION FOR INTRUSION
REPORT FUSION 168

19: pX ⇐ pX pm xk
ids (val(xk))

20: end for

P (X | Ha) = P (X | Ha) + pX

21: end for

22: u⇐ P (Hn | X)
P (Ha | X)

⇐ P (X | Hn)
P (X | Ha)

P (Hn)
P (Ha)

23: if u > 1 then

24: payload is normal

25: else if u < 1 then

26: payload is abnormal

27: Norm⇐ false

28: break for loop

29: end if

30: end for

31: return Norm

Chapter 8

EXPERIMENTAL EVALUATION

8.1 Testbed

We created a small testbed ad hoc for (1) generating a learning data set for

the inductive machine learning process within the intrusion detection ensemble, (2)

conducting an empirical experimental evaluation of the intrusion detection ensemble.

The DCS in the testbed in question was comprised of Linux PC-based PLCs [110],

more precisely MatPLCs [121] installed on general purpose Linux machines with a

x86 CPU architecture. We used custom MatPLC modules in master mode to control

and monitor a limited number of simulated components of an ABWR.

These modules are implementations of control logic that processes MatPLC points,

i.e. inputs, outputs, internal coils and registers of MatPLC. The said MatPLC points

were mapped to physical I/O parameters, and hence represented the link between the

MatPLC modules in master mode and some parameters of the simulated components

of an ABWR. Network communications were conducted via the ModBus protocol over

169

Chapter 8: EXPERIMENTAL EVALUATION 170

TCP/IP. Sensors and actuators were emulated via custom MatPLC modules running

in slave mode.

Furthermore, we used a MatPLC HMI GNU image manipulation program toolkit

(GTK) module to read and write MatPLC points in the form of supervisory network

operation of a power plant. We conducted a simulation of the mechanisms that

are used to insert or withdraw a control rod, namely the joint operation of an AC

induction motor that produces a torque and a ballscrew that transforms rotational

motion into linear motion, a motor-driven water pump that is used to inject water

within the reactor core, and limited portions of the nuclear fission process that involve

reactivity [116] and core flow, i.e. water level in the reactor core.

8.2 Test Vulnerabilities and Exploitations

As we deployed and activated a prototype implementation of the intrusion de-

tection ensemble in the MatPLCs, we ran the simulated components of an ABWR

normally via the DCS over the network. The main purpose of this test was to assess

whether the algorithms of the intrusion detection ensemble along with the alert fusion

technique would mistakenly classify normal network packets as abnormal, and hence

generate false positives. In order to assess the effectiveness of the intrusion detection

ensemble with regard to detection of computer network attacks, we planted a series

of memory errors into the ModBus implementation running in the MatPLCs, and

thereafter developed attack code that exploited them.

The computer network attacks that we launched on the MatPLCs comprised the

following: stack overflow exploitations with shellcode injection, stack overflow ex-

Chapter 8: EXPERIMENTAL EVALUATION 171

ploitations with arc injection, heap overflow exploitations with shellcode injection,

frame pointer overwrites with shellcode injection, format bug exploitations with shell-

code injection corrupting function pointers in the global offset table (GOT), indirect

pointer overwrites with shellcode injection corrupting function pointers in GOT, and

exploitations of out of boundary array indexes with shellcode injection.

Furthermore, we mounted inertial attacks on the simulated AC induction motor, and

exclusion attacks that violated a functional dependency between the (limited) simu-

lated control rod insertion and withdrawal system and the (limited) simulated reactor

feedwater system.

8.3 Empirical Results

In this section we discuss the results of testing the EI algorithm, the physical

process aware specification-based approach, and the Bayesian confirmation theory.

The results of testing the mirage theory are given earlier in this dissertation, namely

in chapter 6. The overall results of these tests are the following:

• We received a false alarms rate of 0 for both the EI algorithm and the physical

process aware specification-based approach.

• We received a probability of detection of approximately 98% for both the EI

algorithm and the physical process aware specification-based approach, which

is, 98% of the malicious network packets were detected by the EI algorithm and

the physical process aware specification-based approach. When possible, we

crafted network packets in such a way as to inject shellcode two bytes at a time.

Chapter 8: EXPERIMENTAL EVALUATION 172

A few of these bytes managed to pass undetected, since they were indeed normal

process data in defined states of the simulated components of an ABWR. All

of the network packets that were injecting memory addresses were detected by

the EI algorithm and the physical process aware specification-based approach.

Overall, all of the computer network attacks that we generated in this test were

detected by the EI algorithm and the physical process aware specification-based

approach.

With regard to the testing of the proposed Bayesian confirmation theory, given that

we are not aware of attacks that are capable of evading the three intrusion detection

approaches when used individually, we employed a testing technique that is similar to

fault injection in software testing. We injected logical flaws in the the EI algorithm,

the specification-based approach, and the mirage theory.

Thus, we intentionally caused intrusion detection failures, with the result being a

reduced probability of detection and an increased false alarms rate for each one of

these three approaches. The purpose of such detection failure injection was to test the

effectiveness of the proposed intrusion report fusion technique to repair the probability

of detection and alleviate the false alarms rate. In front of the same set of attacks, the

gain in intrusion detection effectiveness appeared to depend on the level of detection

failure injection, i.e. the degree of intentional degrade of the probability of detection

and false alarms rate.

The empirical results that regard the gain in probability of detection (Pd) in the case

the EI algorithm and the physical process aware specification-based approach were

individually made subject to detection failure injection are given in Table 8.1 and

Chapter 8: EXPERIMENTAL EVALUATION 173

Injected Pd Corrected Pd
0.81 0.92
0.72 0.81
0.64 0.72
0.51 0.57
0.43 0.46

Table 8.1: The gain in probability of detection in the case the EI algorithm is made
subject to detection failure injection.

Table 8.2, respectively.

Mirage theory contributes to the correction of the probability of detection in the case

a malicious network packet writes any of the deceptive variables configured in control

systems. An example is a malicious network packet that performs a write of multiple

variables, any of which is a deceptive variable. If a malicious network packet does not

affect any of the deceptive variables, the Bayesian theory of confirmation leverages

mostly the EI algorithm and the physical process aware specification-based approach

to correct the detection failures of each-other.

The empirical results that regard the gain in probability of detection in the case

mirage theory was individually made subject to detection failure injection are given

in Table 8.3. When mirage theory experiences failures in sequence detection, the

Bayesian theory of confirmation attempts to compute a correction of the probability

of detection by leveraging the detection intelligence of the EI algorithm and the

physical process aware specification-based approach.

Chapter 8: EXPERIMENTAL EVALUATION 174

Injected Pd Corrected Pd
0.83 0.96
0.69 0.79
0.62 0.81
0.53 0.60
0.46 0.50

Table 8.2: The gain in probability of detection in the case the physical process aware
specification-based approach is made subject to detection failure injection.

Injected Pd Corrected Pd
0.85 0.98
0.73 0.95
0.62 0.93
0.56 0.92
0.41 0.89

Table 8.3: The gain in probability of detection in the case mirage theory is made
subject to detection failure injection.

The empirical results that regard the gain in false alarms rate (Fa), expressed as

the number of false alarms raised per hour, in the case the EI algorithm and the

physical process aware specification-based approach were individually made subject

to detection failure injection are given in Table 8.4 and Table 8.5, respectively. Mirage

theory makes a low contribution to the correction of the false alarms rate in either

of these two cases as it has no visibility on program variables that are non-deceptive.

In other words, the inspection of network packets that write operational, and hence

non-deceptive, variables lies outside the scope of mirage theory.

The testing results of the case in which mirage theory was individually made subject

to detection failure injection are given in Table 8.6. Both the EI algorithm and the

physical process aware approach contribute to the correction of the false alarms rate

when mirage theory experiences failures in sequence detection. A side effect of this

Chapter 8: EXPERIMENTAL EVALUATION 175

Injected Fa Corrected Fa
10 6
9 6
7 4
5 2
3 1

Table 8.4: The gain in false alarms rate in the case the EI algorithm is made subject
to detection failure injection.

Injected Fa Corrected Fa
10 7
8 6
7 5
6 4
2 1

Table 8.5: The gain in false alarms rate in the case the physical process aware
specification-based approach is made subject to detection failure injection.

intervention is that network packets that probe the continuous space to assess whether

it is real or simulated won’t result in a report of intrusion, despite the sequence

detection is functioning correctly.

This is because since these packets do not attempt to exploit coding vulnerabilities

in target control systems or cause physical damage to physical equipment or physical

processes, they are classified as normal by both the EI algorithm and the physical

process aware approach. The evaluation of these probe packets as normal then affects

directly the ability of mirage theory to report foreign network packets as an attempt

of intrusion. Nevertheless, this might not be an issue considering that the simulated

continuous space is manifested in network traffic in a consistent way.

Chapter 8: EXPERIMENTAL EVALUATION 176

Injected Fa Corrected Fa
9 6
8 6
5 2
2 0
1 0

Table 8.6: The gain in false alarms rate in the case mirage theory is made subject to
detection failure injection.

Chapter 9

CONCLUSIONS

In this dissertation we discussed the development and empirical testing of an in-

trusion detection ensemble that we devised for defending cyber-physical systems such

as DCS-controlled power plants from application-level computer network attacks. We

discussed a statistical intrusion detection algorithm called the Estimation-Inspection

algorithm. We described the mathematical modeling for the Estimation-Inspection al-

gorithm, formally formulated the main thesis that underlies the Estimation-Inspection

algorithm, developed the statistical foundation of the Estimation-Inspection algo-

rithm, and then described in detail the Estimation-Inspection algorithm.

We assessed the effectiveness of the Estimation-Inspection algorithm both empirically

and through modeling and simulation. From an empirical experimental evaluation

of the Estimation-Inspection algorithm in a small testbed created ad hoc for this re-

search, we received a probability of detection of 98% and a false alarms rate of 0. We

validated the effectiveness of the Estimation-Inspection algorithm probabilistically via

stochastic activity networks with activity-marking oriented reward structures, with

177

Chapter 9: CONCLUSIONS 178

the concrete outcome being that the Estimation-Inspection algorithm constructs and

employs probability mass functions that do not allow malicious network packets to

take a DCS-controlled power plant to abnormal conditions.

In this dissertation we also discussed a specification-based intrusion detection ap-

proach for operation in a DCS-controlled power plant, namely a physical process

aware specification-based approach. We discussed the main components of the said

approach, namely byte stream semantic analysis and supervisory and automatic oper-

ation rules. We also discussed the modeling of a joint representation of the byte stream

semantic analysis and operation rules via a deterministic state-transition formalism,

namely activity networks, which is the concrete mechanism that this approach uses

to determine whether a network packet is normal or abnormal.

From an empirical experimental evaluation of the physical process aware approach

in the testbed, we observed a detection performance that is approximately the same

as the detection performance of the Estimation-Inspection algorithm. In this disser-

tation we also discussed our research on mirage theory, which is a process control

specific approach to intrusion detection that we derived from MILDEC and deep

studies of historical military operations. We provided a description of the boundary

between continuous and discrete spaces, which forms the basis of mirage theory from

the concealment perspective.

We then explained the internals of mirage theory as built upon the said boundary.

We provided an overview of how an adversary conducts reconnaissance that leads to

target identification and attack engineering, and showed how mirage theory exploits

the adversary’s perception of a target cyber-physical system to cause him/her to vol-

Chapter 9: CONCLUSIONS 179

untarily make the decision of targeting a simulated or emulated physical process or

equipment.

In mirage theory the deceptive event generation process is performed via simulation or

emulation of a continuous space. In this regard we discussed continuous simulation

and traffic mirroring along with techniques for detecting intrusions once an adver-

sary is deceived into attacking a simulated or emulated target. We then developed

a practical attack-defense model in which we analyzed and quantified the deception

capabilities of mirage theory.

More precisely, we applied signal detection theory to empirically quantify the decep-

tion effects of mirage theory on the adversary’s mind. Our evaluations of mirage

theory indicate that it is highly deceptive, and hence a viable approach to intru-

sion detection in process control networks. In this dissertation we also discussed a

Bayesian theory of confirmation for fusing intrusion reports that are generated indi-

vidually by the intrusion detection algorithms that we devised especially for process

control networks.

The purpose of this Bayesian theory of confirmation is to increase the probability of

detection by joining the best detection features of the intrusion detection approaches,

while reducing the false alarms rate by having the intrusion detection approaches cor-

rect each-other’s detection weaknesses. We formalized the problem of fusing intrusion

reports in a process control network, and outlined the components of the proposed

theory of confirmation that address the problem in question.

The intrusion reports represent evidence for or against two hypotheses, namely that a

network packet under inspection is normal or abnormal. We described how we develop

Chapter 9: CONCLUSIONS 180

incomplete-data spaces and the associated symbolic analyzers, which we use within

the Expectation-Maximization algorithm to estimate the hypothesis-based probabil-

ity distributions on logical or word variables stored in the RAM of control systems.

We also showed how we use those probability distributions to estimate hypothesis-

based probabilities of each piece of evidence.

We discussed how we estimate prior probabilities of the two hypotheses via the prob-

ability tree method. We then discussed how we estimate and compare the posterior

probabilities of the two hypotheses via the Bayes theorem in its ratio form. In con-

clusion, we discussed an empirical testing of the proposed theory of confirmation via

a technique that we devised especially for our problem domain, namely detection

failure injection.

Bibliography

[1] Acme Nuclear Services. Boiling Water Reactor Simulator Program. Acme
Website.

[2] S. Alampalayam, P. Kumar, A. Kumar, and S. Srinivasan. Statistical Based In-
trusion Detection Framework using Six Sigma Technique. International Journal
of Computer Science and Network Security, Vol. 7, No.10, October 2007.

[3] Aleph1. Smashing the Stack for Fun and Profit. Phrack Magazine, 7(49), 1996.

[4] D. Anderson, T. Lunt, H. Javitz, A. Tamaru, and A. Valdes. Next-generation
Intrusion Detection Expert System (NIDES): A Summary. SRI-CSL-95-07, SRI
International, 1995.

[5] Anonymous. Once upon a free(). Phrack Magazine, 9(57), 2001.

[6] Anonymous. DATAC RealWin 2.0 SCADA Software - Remote PreaAuth Ex-
ploit. SecurityFocus Website, 2008.

[7] I. Balepin, S. Maltsev, J. Rowe, K.N. Levitt. Using Specification-Based Intru-
sion Detection for Automated Response. Proceedings of the 6th International
Symposium on Recent Advances in Intrusion Detection, pp. 136-154, Pitts-
burgh, PA, USA, September 2003.

[8] T. Bass. Intrusion Detection Systems and Multisensor Data Fusion. Commu-
nications of the ACM, vol. 43(4), pp. 99-105, 2000.

[9] C. Bellettini, and J.L. Rrushi. Vulnerability Analysis of SCADA Protocol Bina-
ries through Detection of Memory Access Taintedness. Proceedings of the 2007
IEEE Workshop on Information Assurance, United States Military Academy,
West Point, NY, USA, 2007.

[10] J. Berge. Fieldbuses for Process Control: Engineering, Operation, and Mainte-
nance. ISA, 2002.

[11] A. Björck. Numerical Methods for Least Squares Problems. SIAM, 1996.

181

Bibliography 182

[12] L. Breiman. Bagging Predictors. Machine Learning, 24(2):123140, 1996.

[13] M. Bristow. Probabilistic Networks with Undirected Links for Anomaly Detec-
tion. DEFCON 16. August 2008.

[14] W.L. Brogan. Modern Control Theory. Prentice Hall, 1990.

[15] Bulba, and Kil3r. Bypassing stackguard and stackshield. Phrack Magazine,
10(56), 2000.

[16] C4. ABB PCU400 4.4-4.6 Remote Buffer Overflow. SecurityFocus Website,
2008.

[17] C4. GE Fanuc Cimplicity 6.1 Heap Overflow. SecurityFocus Website, 2008.

[18] A.A. Càrdenas, S. Amin, S. Sastry. Research Challenges for the Security of
Control Systems. Proceedings of the 3rd USENIX workshop on Hot Topics in
Security, July 2008.

[19] F.E. Cellier, and E. Kofman. Continuous System Simulation. Springer, 2006.

[20] S. Chen, J. Xu, E.C. Sezer, P. Gauriar, and R.K. Iyer. Noncontrol-data Attacks
are Realistic threats. Proceedings of the 14th USENIX Security Symposium,
pp. 177-192, Baltimore, USA, 2005.

[21] S. Cheung, B. Dutertre, M. Fong, U. Lindqvist, K. Skinner, and A. Valdes.
Using Model-based Intrusion Detection for SCADA Networks. Proceedings of
the SCADA Security Scientific Symposium, Miami Beach, Florida, January
2007.

[22] M. Conover, and w00w00 security team. w00w00 on Heap Overflows. w00w00
Website.

[23] B. Cox, D. Evans, A. Filipi, J. Rowanhill, W. Hu, J. Davidson, J. Knight,
A. Nguyen-Tuong, and J. Hiser. N-Variant Systems: A Secretless Framework
for Security through Diversity. Proceedings of the 15th USENIX Security Sym-
posium, Vancouver, BC, Canada, August 2006.

[24] D.R. Cox, and D.V. Hinkley. Theoretical Statistics. Chapman and Hall, 1974.

[25] D.D. Deavours, G. Clark, T. Courtney, D. Daly, S. Derisavi, J.M. Doyle,
W.H. Sanders, and P.G. Webster. The Möbius Framework and Its Implemen-
tation. IEEE Transactions on Software Engineering, pp. 956-969, Vol. 28, No.
10, 2002.

[26] M. Demler. High-Speed Analog-to-Digital Conversion. Academic Press, 1991.

Bibliography 183

[27] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from
Incomplete Data via the EM Algorithm. Journal of the Royal Statistics Society,
B(39), pp. 1-38, 1977.

[28] T.G. Dietterich. Ensemble Methods in Machine Learning. Lecture Notes in
Computer Science, 1857, pp. 1-15, 2000.

[29] DNP Users Group. Distributed Network Protocol Specification. 2007.

[30] I. Dobrovitski. Exploit for CVS double free() for linux pserver. seclists.org
Website, 2003.

[31] W. DuMouchel. Computer Intrusion Detection Based on Bayes Factors for
Comparing Command Transition Probabilities. Technical Report, National In-
stitute of Statistical Sciences, 1999.

[32] K.T. Erickson. Programmable Logic Controllers: An Emphasis on Design and
Application. Dogwood Valley Press, 2005.

[33] Y. Freund, and R. E. Schapire. Experiments with a New Boosting Algorithm.
Proceedings of the 13th International Conference on Machine Learning, pp.
148-156, 1996.

[34] R. Fisher. On an Absolute Criterion for Fitting Frequency Curves. Messenger
of Mathematics, No. 41, 1912.

[35] B. Fitelson. The Plurality of Bayesian Measures of Confirmation and the Prob-
lem of Measure Sensitivity. Philosophy of Science, No. 66, pp. 362-378, 1999.

[36] S. Forrest, S. Hofmeyr, and A. Somayaji. Computer Immunology. Communi-
cations of ACM 40 (10), 1997.

[37] General Electric, Inc. Advanced Boiling Water Reactor Plant General Descrip-
tion. GE Website, 2000.

[38] Gera, and Riq. Advances in Format String Exploitation. Phrack Magazine,
11(59), 2002.

[39] G. Giani, and P. Thompson. Cognitive Hacking: A Battle for the Mind. IEEE
Computer, 35(8), pp. 50-56, 2002.

[40] C. Glymour. Theory and Evidence. Princeton: Princeton University Press,
1980.

[41] V. Gowadia, C. Farkas, and M. Valtorta. PAID: A Probabilistic Agent-Based
Intrusion Detection System. Journal of Computers and Security, 2005.

Bibliography 184

[42] R. Goonatilake, A. Herath, S. Herath, S. Herath, and J. Herath. Intrusion
Detection Using the Chi–Square Goodness–Of–Fit Test for Information Assur-
ance, Network, Forensics and Software Security. Journal of Computing Sciences
in Colleges, Vol. 23, Issue 1, pp. 255-263, 2007.

[43] G. Gu, A.A. Càrdenas, and W. Lee. Principled Reasoning and Practical Ap-
plications of Alert Fusion in Intrusion Detection Systems. In Proceedings of
ASIACCS 08, Tokyo, Japan, March 2008.

[44] J.W. Haines, R.P. Lippmann, D.J. Fried, M.A. Zissman, E. Tran, and
S.B. Boswell. 1999 DARPA Intrusion Detection Evaluation: Design and Pro-
cedures. MIT Lincoln Laboratory: Lexington, MA, 2001.

[45] J. Hawthorne. Confirmation Theory. Philosophy of Statistics, Handbook of the
Philosophy of Science, No. 7, 2008.

[46] R. Herrnstein, and C. Murray. The Bell Curve: Intelligence and Class Structure
in American Life. Free Press, 1994.

[47] R.J. Heuer, Jr. Psychology of Intelligence Analysis. Center for the Study of
Intelligence, Central Intelligence Agency, 2007.

[48] D.F. Hoeschele. Analog-to-Digital and Digital-to-Analog Conversion Tech-
niques. 2nd Edition, Wiley-Interscience, 1994.

[49] T. Holz, J Goebel, and J. Hektor. Advanced Honeypot-based Intrusion Detec-
tion. ;login:, 31, 6, USENIX, 2006.

[50] T. Holz, and F Raynal. Detecting Honeypots and Other Suspicious Environ-
ments. Proceedings of the 6th IEEE Information Assurance Workshop, United
States Military Academy, West Point, NY, USA, 2005.

[51] The Honeynet Project. Know Your Enemy: Learning about Security Threats.
2nd Edition, Addison-Wesley Professional, 2004.

[52] D.W. Hosmer, and S. Lemeshow. Applied Logistic Regression. Wiley-
Interscience Publication, 2nd edition, 2000.

[53] A. Hughes. Electric Motors & Drives. Newnes, 2005.

[54] IBM Internet Security Systems. X-Force Threat Insight Monthly. IBM Website.

[55] International Electrotechnical Commission. IEC 61850: Communication Net-
works and Systems for Power Utility Automation. Part 7-410: Hydroelectric
Power Plants - Communication for monitoring and control. IEC Website, 2007.

Bibliography 185

[56] International Electrotechnical Commission. IEC 61505: Nuclear Reactor Instru-
mentation - Boiling Water Reactors (BWR) - Stability Monitoring. Distributed
through American National Standards Institute, 2007.

[57] International Electrotechnical Commission. IEC 61131, Programmable Con-
trollers - Part 3: Programming Languages. IEC Website.

[58] E. T. Jaynes. Prior Probabilities. IEEE Transactions on Systems Science and
Cybernetics, (SSC-4), pp. 227-241, 1968.

[59] H.S. Javitz, and A. Valdes. The NIDES Statistical Component Description and
Justification. SRI Project 3131 Annual Report, 1994.

[60] C.S. Jones. The Perception Management Process. Military Review - The Pro-
fessional Journal of the U.S. Army, 1999.

[61] W.H. Ju, and Y. Vardi. A Hybrid High-Order Markov Chain Model for Com-
puter Intrusion Detection. Technical Report Number 92, National Institute of
Statistical Sciences, February 1999.

[62] E. Jonckheere, K. Shah, and S. Bohacek. Dynamic Modeling of Internet Traf-
fic for Intrusion Detection. Proceedings of the American Control Conference,
Anchorage, AK, May 2002.

[63] F. Iwanitz, and J. Lange. OPC - Fundamentals, Implementation and Applica-
tion. Huthig Fachverlag, 2006.

[64] JTC 1/SC 22/WG 14. ISO/IEC 9899: Programming Languages - C. Technical
Report, International Organization for Standards, 1999.

[65] M. Kaempf. Vudo - An Object Superstitiously Believed to Embody Magical
Powers. Phrack Magazine, 8(57), 2001.

[66] S.M. Kay. Fundamentals of Statistical Signal Processing, Volume 2: Detection
Theory. Prentice Hall Publishing, 1998.

[67] K. Knowlton. A Combination Hardware-Software Debugging System. IEEE
Transactions on Computers, Vol. 17, No. 1, January 1968.

[68] C. Kreibich, and J. Crowcroft. Honeycomb - Creating Intrusion Detection Sig-
natures Using Honeypots. Proceedings of the 2nd Workshop on Hot Topics in
Networks, Cambridge, MA USA, 2003.

[69] R.L. Krutz. Securing SCADA Systems. Wiley Publishing, 2006.

[70] J. Larsen. Breakage. Blackhat Federal, 2008.

Bibliography 186

[71] M. Kaempf. Vudo - An Object Superstitiously Believed to Embody Magical
Powers. Phrack Magazine, 8(57), 2001.

[72] D.G. Kleinbaum, L.L. Kupper, A. Nizam, and K.E. Muller. Applied Regression
Analysis and Multivariable Methods. Duxbury Press, 4th edition, 2007.

[73] Klog. The Frame Pointer Overwrite. Phrack Magazine, 9(55), 1999.

[74] C. Ko, M. Ruschitzka, and K. Levitt. Execution Monitoring of Security-Critical
Programs in Distributed Systems: A Specification-Based Approach. IEEE Sym-
posium on Security and Privacy, 1997.

[75] S. Kumar, and E. Spafford. A Pattern-Matching Model for Intrusion Detection.
Proceedings of Nat’l Computer Security Conference, 1994.

[76] E.L. Lehmann, and G. Casella. Theory of Point Estimation. Springer, 2nd
edition, 2003.

[77] Z. Li, A. Das, and S. Nandi. Utilizing Statistical Characteristics of N-Grams
for Intrusion Detection. Proceedings of the 2003 International Conference on
Cyberworlds, IEEE Computer Society, Washington, DC, USA, December 2003.

[78] P.J. Lucas, and F. Riccardi. Concurrent Hierarchical State Machine. Source-
Forge Wesite.

[79] P. Maher. Subjective and Objective Confirmation. Philosophy of Science, No.
63, pp. 149-174, 1996.

[80] P. Maher. The Concept of Inductive Probability. Erkenntnis, No. 65, pp. 185-
206, 2006.

[81] M. Mahoney, and P. Chan. An Analysis of the 1999 DARPA/Lincoln Lab-
oratory Evaluation Data for Network Anomaly Detection. Proceedings of the
Recent Advances in Intrusion Detection, Pittsburgh, PA, USA, September 2003.

[82] J.I. Marcum. A Statistical Theory of Target Detection by Pulsed Radar. U.S.
Air Force Project RAND, 1947.

[83] Modbus Organization. Modbus Application Protocol Specification. Modbus-
IDA Website.

[84] E. Montagu. The Man Who Never Was. Lippincott Publishing House, 1954.

[85] L. Mora. OPC Server Security Considerations. Proceedings of SCADA Security
Scientific Symposium, Miami, USA, 2007.

Bibliography 187

[86] M. Naedele, and O. Biderbost. Human-Assisted Intrusion Detection for Process
Control Systems. Proceedings of the 2nd International Conference on Applied
Cryptography and Network Security, Tunxi/Huangshan, China, June 2005.

[87] E. Naess, D.A. Frincke, A.D. McKinnon, and D.E. Bakken. Configurable
Middleware-Level Intrusion Detection for Embedded Systems. Proceedings of
the Second International Workshop on Security in Distributed Computing Sys-
tems, vol. 2, pp. 144-151, 2005.

[88] Nergal. The Advanced Return-into-lib(c) Exploits: PaX Case Study. Nergal,
2001.

[89] D.M Nicol, and P. Heidelberger. Parallel Execution for Serial Simulators. ACM
Transactions on Modeling and Computer Simulation, pp. 210-242, Vol. 6, No.
3, 1996.

[90] NOP Ninjas. Format String Technique. Bughunter Website, 2001.

[91] N. Nise. Control Systems Engineering. Wiley, 2007.

[92] R. Perdisci, G. Gu, and W. Lee. Using an Ensemble of One-class SVM Classifiers
to Harden Payload-based Anomaly Detection Systems. Proceedings of the IEEE
International Conference on Data Mining, December 2006.

[93] A.C. Petri, and W. Reisig. Petri Net. Scholarpedia, Vol. 3, No. 4, 2008.

[94] N.L. Petroni, Jr., T. Fraser, A. Walters, W.A. Arbaugh. An Architecture for
Specification-based Detection of Semantic Integrity Violations in Kernel Dy-
namic Data. Proceedings of the 15th USENIX Security Symposium, Vancouver,
B.C., Canada, August 2006.

[95] F.D. Petruzella. Programmable Logic Controllers. Career Education, 2004.

[96] J. Pincus, and B. Baker. Mitigations for Low-level coding vulnerabilities: In-
comparability and limitations. Microsoft Website.

[97] P. Porras, and R. Kemmerer. Penetration State Transition Analysis: A Rule
based Intrusion Detection Approach. Proceedings of the 8th Annual Computer
Security Applications Conference, 1992.

[98] Rockwell Automation. DeviceNet Adaptation of CIP. ODVA Website.

[99] N.C. Rowe. Finding Logically Consistent Resource-Deception Plans for Defense
in Cyberspace. Proceedings of the 3rd International Symposium on Security in
Networks and Distributed Systems, Niagara Falls, Ontario, Canada, 2007.

Bibliography 188

[100] N.C. Rowe, and H. Rothstein. Deception for Defense of Information Systems:
Analogies from Conventional Warfare. Technical report of the Department of
Computer Science and Defense Analysis, U.S. Naval Postgraduate School, USA,
2003.

[101] N.C. Rowe, and H. Rothstein. Two Taxonomies of Deception for Attacks on
Information Systems. Journal of Information Warfare, Vol. 3, No. 2, pp. 27-39,
2004.

[102] W.H. Sanders, and J.F. Meyer. Stochastic Activity Networks: Formal Defini-
tions and Concepts. Lecture Notes in Computer Science, No. 2090, pp. 315-343,
Berlin, Springer, 2001.

[103] W.H. Sanders, and J.F. Meyer. A Unified Approach for Specifying Measures
of Performance, Dependability, and Performability. In Dependable Computing
for Critical Applications, Vol. 4 of Dependable Computing and Fault-Tolerant
Systems, pp. 215-237, Heidelberg: Springer-Verlag, 1991.

[104] W.H. Sanders. Construction and Solution of Performability Models Based on
Stochastic Activity Networks. Doctoral Dissertation, University of Michigan,
1988.

[105] Scut, and Team Teso. Exploiting Format String Vulnerabilities. Version 1.2,
badcoded.blogspot.com Website, 2001.

[106] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.
Specification-based Anomaly Detection: A New Approach for Detecting Net-
work Intrusions. Proceedings of the 9th ACM Conference on Computer and
Communications Security, Washington, DC, USA, 2002.

[107] R. Sekar, and P. Uppuluri. Synthesizing Fast Intrusion Prevention/Detection
Systems from High-Level Specifications. USENIX Security Symposium, 1999.

[108] Solar Designer. Getting Around Nonexecutable Stack and Fix). Bugtraq Mail-
ing List, 1997.

[109] L. Spitzner. Honeypots: Tracking Hackers. Addisson-Wesley Professional, 2002.

[110] K. Stouffer, J. Falco, and K. Scarfone. Guide to Industrial Control Systems
Security. NIST Website, 2007.

[111] N.N. Taleb. The Black Swan: The Impact of the Highly Improbable. Random
House Publishing, 2007.

[112] T.L. Thomas. Russia’s Reflexive Control Theory and the Military. Journal of
Slavic Military Studies 17: pp. 237-256, 2004.

Bibliography 189

[113] L.C. Thomas, C.D. Wickens, and E.M. Rantanen. Imperfect Automation in
Aviation Traffic Alerts: A Review of Conflict Detection Algorithms and their
Implications for Human Factors Research. Proceedings of the Human Factors
and Ergonomics Society, 47th Annual Meeting, Denver, Colorado, USA, Octo-
ber 2003.

[114] P. Uppuluri, and R. Sekar. Experiences with Specification-based Intrusion De-
tection. Proceedings of the 4th International Symposium on Recent Advances
in Intrusion Detection, Davis, CA, USA, 2001.

[115] C. Tropper, and A. Boukerche. Parallel Simulation of Communicating Finite
State Machines. Proceedings of the Workshop on Parallel and Distributed Sim-
ulation, pp. 143-150, San Diego, CA, USA, 2004.

[116] US Department of Energy. DoE Fundamentals Handbook of Nuclear Physics
and Reactor Theory. DOE-HDBK-1019/1-93, January 1993.

[117] U.S. Joint Chiefs of Staff. Military Deception. The Defense Technical Informa-
tion Center (DTIC) website.

[118] K. Wang, S.J. Stolfo. Anomalous Payload-based Network Intrusion Detection.
Proceedings of the International Symposium on Recent Advances in Intrusion
Detection, France, September 2004.

[119] J. Williamson. Inductive Influence. Philosophy of Science, No. 58, pp. 689-708,
2007.

[120] WinTECH Software. ModScan Tool. WinTECH Website.

[121] C. Wuollet, A. Romanenko, H. Jack, J. Baum, J.C. Orozco, M.J.R. de Sousa.
MatPLC. SourceForge Wesite.

[122] D.H. Wolpert. Stacked Generalization. Neural Networks, vol. 5, pp. 241-259,
1992.

[123] N. Ye, C.M. Borror, and D. Parmar. Scalable Chi–Square Distance versus Con-
ventional Statistical Distance for Process Monitoring with Uncorrelated Data
Variables. In Quality and Reliability Engineering International, Vol. 19, No. 6,
pp. 505-515, 2003.

[124] N. Ye, Q. Chen, S. Emran, and K. Noh. Chi-Square Statistical Profiling for
Anomaly Detection. In IEEE Systems, Man, and Cybernetics Information As-
surance and Security Workshop, West Point, New York, June 2006.

Bibliography 190

[125] N. Ye, X. Li, Q. Chen, S.M. Emran, and M. Xu. Probabilistic Techniques for
Intrusion Detection Based on Computer Audit Data. In IEEE Transactions on
Systems, Man, and Cybernetics, part A: Systems and Humans, Vol. 31, No. 4,
July 2001.

[126] M. Young, and R. Stamp. Trojan Horses - Deception Operations in the Second
World War. Bodley Head, London, UK, 1989.

[127] J. Yuill, M. Zappe, D. Denning, and F. Freer. Honeyfiles: Deceptive Files for
Intrusion Detection. Proceedings of the 5th IEEE Workshop on Information
Assurance, U.S. Military Academy, West Point, NY, USA, 2004.

[128] R. Zboray. Experimental Modelling & Study of Natural-Circulation Boiling
Water Reactor Dynamics. Delft University Press, 2002.

[129] B. Zhou, Q. Shi, and M. Merabti. Intrusion Detection in Pervasive Networks
Based on a Chi-Square Statistic Test. Proceedings of the 30th Annual Interna-
tional Computer Software and Applications Conference, 2006.

