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ABSTRACT
Browsers do not currently support the secure sharing of
JavaScript objects between principals. We present this prob-
lem as the need for object views, which are consistent and
controllable versions of objects. Multiple views can be made
for the same object and customized for the recipients. We
implement object views with a JavaScript library that wraps
shared objects and interposes on all access attempts. Devel-
opers can control the fine-grained behavior of objects with
an aspect system that accepts programmatic policies. The
security challenge is to fully mediate access to objects shared
through a view and prevent privilege escalation.
To facilitate simple document sharing, we build a policy

system for declaratively defining policies for document ob-
ject views. Notably, our document policy system makes it
possible to hide elements without breaking document struc-
ture invariants. We discuss how object views can be de-
ployed in two settings: same-origin sharing with rewriting-
based JavaScript isolation systems like Google Caja, and
inter-origin sharing between browser frames over a message-
passing channel.

1. INTRODUCTION
Under current browser policies, sharing between princi-

pals is all or nothing. Since sharing everything can lead to
cross-site scripting and related attacks, the browser security
community has proposed many new ways to isolate princi-
pals from one another [16, 12, 28, 3, 25]. Given such iso-
lation techniques, we explore the next problem: controlled
sharing of resources between otherwise isolated principals
[16, 5]. We present a mechanism for fine-grained mediation
of shared objects.
Web principals have several resources worth sharing, such

as their document, access to server-side data, and JavaScript
APIs. Principals may want to share limited portions of these
resources without giving up access to all of them. For exam-
ple, consider an application that plots real estate prices on
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a map. Fine-grained sharing controls should let the applica-
tion share only the map-relevant portions of the page with a
third-party mapping service. The application and map ser-
vice would then be able to exchange JavaScript objects and
methods while maintaining separate internal invariants.
With our system, a principal can create a consistent, re-

stricted wrapper for an object. We call the restricted version
an object view. The restrictions might include, for example,
making a property read-only or overriding a method so it al-
ways returns 0. Our object views support an aspect system
[19] to implement these restrictions; we provide hooks on
view actions so that programmatic policies can control the
behavior of views. The most notable web resource we can
wrap is the page document itself. Atop our aspect system,
we build a declarative policy system for sharing document
objects. We further show how to obscure document elements
without breaking document traversal methods.
Our core mechanism for building views is a recursive wrap-

per. The security challenge is complete mediation: leaking
references to unwrapped objects violates isolation, so views
must avoid doing so. This is challenging because JavaScript
is a flexible language; when passing object references across
a trust boundary, even small gaps in the mediation strategy
can enable privilege escalation [23, 20].
We apply our work to two web scenarios:

• Same-origin sharing. JavaScript rewriting systems
[25, 17, 1] isolate gadgets from the rest of the page. To
be useful (e.g., to isolate drawing on the screen), these
systems must share heavily restricted DOMAPI access
with gadgets. Current sharing protections are manual,
requiring considerable maintenance and review.

• Cross-origin sharing. If browsers were to permit
the sharing of objects, views could be used to mediate
and restrict object access. We present a user-level im-
plementation of object sharing atop the postMessage
browser primitive by marshaling objects into strings
and then controlling them with object views.

Our primary contributions are 1) the abstraction of an
object view for fine-grained object sharing patterns, 2) the
use of an aspect system to control shared object behavior,
and 3) a discussion of how to build a JavaScript wrapper in
an adversarial setting.

2. THREAT MODEL
We consider the security of object sharing between two

web principals who are initially isolated from one another



by a trusted platform. We examine gadget aggregators and
browsers as trusted platforms. Gadget aggregators isolate
gadgets from one another and the surrounding page, and
browsers isolate cross-origin frames from one another. We
want to enable rich sharing across these boundaries without
revealing additional privileges.

2.1 Web Security Model
Web pages have two primary components: static docu-

ment content and JavaScript scripts1. Documents are rep-
resented by the Document Object Model (DOM), a hierar-
chical tree of page objects. Scripts are included with the
original document or imported from a third party; imported
scripts are given the same privileges as native scripts.
The current basic web security model is known as the

Same Origin Policy (SOP). Under the SOP, a script in a doc-
ument may access everything in that document and other
documents from the same domain. All scripts in a docu-
ment share one DOM and a set of global variables; pages
in the same domain have separate sets of global objects,
but additional references may be exchanged between them.
A document’s scripts do not have any access to documents
from other domains.

2.2 Trusted Platforms
A trusted platform is responsible for separating principals

from one another. Each principal is a script (or set of related
scripts) that should have its own set of global objects and
prototype chain. We examine two trusted platforms:
Server-Side Script Rewriters. Gadget aggregators (e.g.,
the Facebook Platform) want to embed third-party web ap-
plications directly into their own web sites. Here, the princi-
pals are the gadgets and the aggregator. Under the SOP, the
browser does not provide any isolation guarantees between
third-party applications and the aggregator site. Gadget ag-
gregators therefore achieve isolation themselves with server-
side tools that automatically verify and rewrite third-party
scripts before they are added to the site [1, 25, 17]. Note
that this is a one-way notion of security: the aggregator has
full access to scripts, but scripts are restricted. Rewritten
scripts cannot access global state unless a global object is
specifically passed to them. Views are of interest to gad-
get aggregators because they need to provide gadgets with
restricted versions of DOM nodes.
Browsers. Views could also be used to safely share objects
between browser frames. Here, principals are frames. In this
scenario, the browser provides isolation between the frames’
principals as per the Same Origin Policy. Using views, prin-
cipals could share simple objects or even versions of their
documents. This could apply to both frames in separate
windows and nested frames.

2.3 Attacks
In our object sharing scenario, we have two web principals

separated by a trusted platform. One principal shares an ob-
ject by creating an object view with a policy and sending
the view to the other principal. Our attacker is the view re-
cipient. The view sender intends to only share the object as
restricted by the policy, but the attacker’s goal is to steal ad-
ditional privileges by manipulating the view in unexpected
1A page may contain many types of scripts (e.g., Flash sup-
ports a JavaScript variant), but we only discuss JavaScript.

ways. For example, if Alice were to send Eve a completely
unprotected DOM element, then Eve might be able to use
that element to navigate up the DOM tree and access Alice’s
document cookie. We try to prevent privilege escalation by
implementing a view as a wrapper around the shared ob-
ject. An attacker will attempt to exploit weaknesses in our
wrapper mechanism.
We identify four primary attack vectors that an attacker

could use against a wrapper mechanism. To exemplify these
vectors, consider this attempt to restrict an object. It is
based on proposals by others [27, 32, 8]. The intended pol-
icy is to limit postMessage so that subsequent scripts can
communicate with only the URLs specified by a whitelist:

<head><script>
(function () {

var orig = frame1.postMessage;
var wlist = {"msn.com": true};
frame1.postMessage = function (m, url) {

if (wlist[url])
orig.apply(this, arguments); };

})();</script> ... </head>

The method is reassigned early into loading a page to pre-
vent access to the original postMessage function. Wrapping
the policy code in a function is an attempt to keep other
scripts from accessing the wlist variable. However, this
code is vulnerable to attack:

1. Incomplete mediation. The postMessage function
is still accessible in other ways. The DOM and other
libraries often provide multiple ways to perform an ac-
tion, e.g., frame2.postMessage.call(frame1, m, url).

2. Unexpected parameter behavior. We must de-
fend against adversarial parameters. For example, con-
sider this type forgery attack: Instead of passing a
string for the parameter url, an attacker could pass
an object with a malicious toString method that re-
turns a different value each time it is invoked. Its first
invocation occurs at wlist[url], where it tricks the
whitelist by returning a safe URL. The second invoca-
tion of toString, after apply, can return a different
value not in the whitelist.

3. Function prototype poisoning. All JavaScript func-
tions inherit basic properties and methods from the
Function prototype. In this example, orig.apply()
resolves to Function.prototype.apply. However, an
attacker may maliciously reassign that prototype func-
tion to eval. After redefining apply, the attacker can
add a forged entry to the whitelist:

frame1.postMessage("wlist[‘m.com’] = 1", "msn.com")

4. Object prototype poisoning. All JavaScript ob-
jects inherit basic properties and methods from the
Object prototype. The attacker could add a new field
Object.prototype.fake and assign it to be true. When
"fake" is passed as a URL parameter, wlist["fake"]
will refer to the prototype property because the whitelist
does not have its own property "fake". Consequently,
it will evaluate to true.

In Section 5, we describe how we systematically design
our wrappers to defend against these attack vectors.



3. VIEWS FOR FINE-GRAINED SHARING
We present object views, a mechanism for securely sharing

objects between principals. Views are used in place of the
original object, and they support an aspect system. The as-
pect system lets developers install advice on views to control
their behavior. We then build a declarative policy system
on top of the advice system to make policy definition easier.

3.1 View Design
An object view proxies access to the original object and

constrains access to it with a fine-grained policy. When Alice
shares an object with Bob, she can create a view to share
with Bob instead of the original object. We implement a
view as a wrapper that enforces Alice’s policy code on every
attempt to access the object.
In Figure 1, Alice creates a view for her account ob-

ject and gives it (account_control.view) to Bob using the
communication primitive send. Calls through the view,
if allowed, are proxied to the original object. Alice con-
trols access to her view object by setting a policy, using
account_control.definePolicy. As long as Alice does not
share account_control, she is the only one who can control
the view. In the example, she uses low-level abstractions
to encode a behavioral whitelist: Bob may read the amount
property and invoke the deposit method, but he cannot re-
define either. Alice’s access to the original account is not
restricted, and Alice could make a different view for the
same object by making a new control variable.
A view is a composition of a proxy and a policy. In our

implementation, the proxy is a wrapper and the policy is
a function. We create a new wrapper object for every ob-
ject accessed through a view. A wrapper object is created by
installing accessors (getter and setter methods) on the wrap-
per that correspond to all of the properties of the original ob-
ject, including those inherited from the prototype chain. For
each wrapped function object, we define a new proxy func-
tion object that calls a policy function instead of the origi-
nal function. All operations on an object view go through a
property accessor. Reading and invoking a method are dif-
ferent operations: assigning v = obj.deposit will trigger
a getter, whereas invoking a method obj.deposit() will
trigger a getter and run the proxy function. Running an
unattached function object will only run a proxy function.
A wrapper is applied recursively to return values. Note that
a wrapped method can unwrap a wrapped parameter if the
method and parameter are part of the same view.
Let us consider the property read foo_v.bar.xyz, where

foo_v is a view of foo. First, the getter that we have as-
signed to the property foo_v.bar will be invoked. The get-
ter will return a wrapped version of bar. Next, the getter
that we have assigned to bar_wrapper.xyz will be invoked.
If xyz is a primitive, then the getter will return that result.
Otherwise, it will return a wrapped version of xyz.
For typical use, our wrappers are consistent with the orig-

inal objects except where policies change view behavior.
However, the level to which we can make our wrappers indis-
tinguishable from original objects is limited by the semantics
of JavaScript accessors; we cannot represent fields that are
added after the view has been created.
We take care to preserve reference equality. If Bob re-

peatedly requests the same object from Alice, our system
will repeatedly wrap it. If we were to create a new wrap-
per every time or reuse a wrapper from a different object,
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var account = { deposit: function(v){ }, amount: 800 };
var account_control = makeView(account);
var permit = function (action, ctx, args) {

return action.apply(ctx, args); };
account_control.definePolicy(

[[account, {getters: {amount: permit},
{deposit: permit}}],

[account.deposit, {methCall: permit}}]]);
Bob.send(account_control.view);

Figure 1: Alice shares a view of her account object.

Bob would not have a consistent view of the object with
respect to reference equality. Instead, we store a dictionary
that associates wrappers and the objects they wrap so that
we only generate a new wrapper for an object if it is not
in this dictionary. Consequently, wrapping the same object
twice yields the same wrapper each time, thereby preserving
reference equality. We do not support reference equality in
the presence of multi-principal delegation chains [24], refer-
ring to a scenario where an object is passed around between
multiple parties.

3.2 Aspect System
Views support fine-grained policies. To accomplish this,

we implement an aspect system [19]. The getters, setters,
and proxy functions on wrappers provide interpositioning
points for three actions: reading a field, setting a field, and
calling a function. A policy author specifies an object and
registers an advice function for each object action. Advice
is a function that is applied “around” an object action. Ad-
vice might change arguments, choose not to perform the
action, perform a different action, throw an exception, etc.
An object’s wrapper passes a property’s advice function the
original property or method, the this object, and any ar-
guments. Unlike permit/deny policies, advice-based policies
can significantly change behavior.
By default, we implement whitelisting: an action must

be explicitly enabled. Whitelisting an action can be accom-
plished with the permit advice function shown in Figure 1.
More sophisticated advice can perform actions like transla-
tion, encryption, and censorship. Advice can compare an
argument to a whitelist or sanitize it to ensure it is purely
alphabetic or numeric. For example, consider Alice sending
Bob a Spanish-translated version of her object:

function translate (ctxt, fn, args) {
return fn.apply(ctxt, args).toSpanish(); }

function say_hi () { return "hello"; };



var c = makeView(say_hi);
c.applyPolicy([say_hi, {funCall: translate}]);
bob.send(c.view);

Alice makes a view of her function object say_hi with advice
that translates the result. Bob will see “hola” when he runs
his view’s version of say_hi.

3.3 Document Sharing Policies
The DOM API provides scripts with access to a docu-

ment’s structure and contents. It is large and complex,
so programmatically expressing DOM policies as functions
would likely be difficult and error-prone. To address this, we
built a policy specification system that accepts declarative
policies and translates them into advice.
Figure 2 presents an example policy that enforces read-

only access to subtrees of a document. The policy author
first specifies a collection of DOM elements and a set of re-
strictions to apply to these elements; in the example, the
restrictions would apply to all elements with a class name
“example”. Object interactions (read, write, “funCall” for
function objects, and “methCall” for methods) can be asso-
ciated with predefined advice (e.g., permit) or custom policy
functions. Giving a method a “methCall” rule will by default
also set read: permit for that property; this is not neces-
sary for function objects. Every rule specifies the following:

1. Selector. An XPATH expression selecting a set of de-
scendent nodes to apply the rule to.

2. Enabled. To allow any access to a node, the rule must
specify that the node is enabled. We later will intro-
duce the disabled state obscure as an alternative.

3. Default and specific rules. (Optional.) Default rules
apply to all fields of the element. Specific rules such
as shake in Figure 2 will apply to only the named field
and have precedence over default policies. If multiple
rules apply to the same element, all of them will be
applied.

4. Error. (Optional.) Exception handler.

There are also policy-wide parameters, such as a default
error handler.

Error-Free DOM Traversal. If done naively, restricting
access to a document node could break expected invariants.
Consider the task of disallowing all interaction with a single

var m = makePolicyView(makeView(document));
var policy =
[{"selector": "(//*[@class=‘example’])

| (//*[@class=‘example’]//*)",
"enabled": true,
"defaultFieldActions": {read: permit},
"fields": {shake: {methCall: permit}}}];

m.applyPolicy(policy);
return m.view;

Figure 2: A policy with one rule that restricts subtrees to
read-only if their root’s class name includes example. If a
method shake exists, a more specific control list specifies
that it may be invoked as well as read.

DOM element. If the view were to throw exceptions when-
ever that element is accessed, then the view recipient would
experience unexpected exceptions while performing innocent
tasks like iterating through the restricted element’s parent
node’s children. We believe a better sharing policy would
allow the view recipient to correctly navigate through the
DOM tree even if an element is restricted.
We address this need with a rule that obscures elements.

An obscured element is not accessible, and we generate ad-
vice to prevent other DOM elements’ methods from return-
ing references to the obscured node. Figure 3 demonstrates
how a node in a linked list can be hidden by rerouting
edges. Instead of specifying an enabled:false rule, the
value "obscured" may be set. Our policy system then gen-
erates advice so that neighboring nodes’ traversal methods
return the next node in the list instead of the obscured node.
Our prototype does not yet handle the full DOM API; for
instance, we do not yet change how frame elements are mir-
rored in the document-level frame array.

A B C

(a) normal linked list

A B C

(b) shared view

Figure 3: A view hiding the existence of a linked list node.

Two peculiar cases arise when we discuss sharing the DOM
in terms of views. First, actions on the view may have un-
clear mappings to raw objects. Consider Figure 3: it is
unclear what should happen when a view recipient inserts a
new node between a and c. On what side of node b should
it be positioned in the original list? This scenario has an
application-level solution: the view can be modified to ex-
pose a placeholder for b. A dual difficulty occurs when ac-
tions on the underlying object do not map clearly to the
view. Suppose Alice shares a view that allows access to a
tree but later obscures a part of it. If the view recipient
has already stored a reference to the now obscured node,
it is unclear what the parent pointer of the obscured node
should be. For error-free hiding of nodes, an application
should obscure a node upon its introduction.

4. VIEW-SHARING PLATFORMS
We examine how our view sharing primitive can be used

with two different object sharing platforms: gadget aggrega-
tors with server-side script rewriting for same-origin sharing,
and browser frames for cross-origin sharing. We do not limit
the usefulness of views to these two scenarios; there are other
settings (e.g., extensions and plug-ins) where partial DOM
access and safe object sharing are desirable.

4.1 Server-Side Script Rewriting
Gadget aggregators use server-side script rewriters to iso-

late untrusted scripts from the rest of the page. Server-side
script rewriters share two security goals:

1. Untrusted scripts should only be able to reference ob-
jects that they created or have explicitly been given
access to. E.g., access to global variables is restricted.

2. DOM access must be protected. Scripts should only
be able to access the DOM nodes that they created



or have been explicitly granted permissions for. They
should also be restricted from API calls that would let
them circumvent the aggregator’s security policy (e.g.,
add uninstrumented JavaScript to the page).

In order to accomplish the second goal, script rewriting
tools provide scripts with restricted versions of DOM nodes.
For example, Google Caja [25] uses a set of handwritten
DOM wrappers known collectively as Domita. The Caja de-
velopers have manually implemented a different wrapper for
each node type. Their wrappers encode whether an object’s
fields are writable, readable, or invokable; and, if so, what
arguments are acceptable. Unfortunately, the wrappers con-
sist of thousands of lines of code (4111 lines of JavaScript in
Caja as of this writing) and therefore require a significant
amount of maintenance and review.
We advocate automatically generating views from declara-

tive policies instead of handwriting wrappers. This approach
more directly represents DOM policies and eliminates com-
mon attack vectors. While our current implementation fo-
cuses on DOM policies, our system could easily accommo-
date policies for other APIs (like the OpenSocial API) that
an aggregator might want to share with a gadget.
An early version of our library was developed as a Caja

library. Caja and similar rewriters provide more control
over JavaScript features than vanilla JavaScript. For exam-
ple, vanilla JavaScript does not provide a way to detect the
addition of a new property to an object, which can cause
a consistency bug between a view and the original object.
However, Caja’s accessors can be used to proxy an attempt
to add a new field to a view.

4.2 Browser Frames
In this scenario, we use views to control cross-origin object

sharing between frames. However, browsers do not currently
provide a channel for reference passing across origin bound-
aries; this is the first work to propose safe object sharing
between frames. Instead, browsers provide an inter-frame
string passing mechanism named postMessage. Objects can
be “shared” across this primitive by marshaling objects into
strings and vice versa [2].
Although using postMessage means that no actual ref-

erences are passed between windows, a marshaling library
can still leak capabilities. Suppose that Alice implements
a marshaling library that will carry out any operation on a
shared object. Alice shares a form object foo with Bob,
and then Bob asks the marshaling library for the value
of foo.parentNode.parentNode.parentNode.cookie. This
would reveal the value of the document cookie. If Alice had
shared a view over the marshaling library, the view could
enforce a policy that only whitelists foo’s safe properties.
Object marshaling over postMessage has been proposed be-
fore [2]; our contribution is how to apply policies to objects
shared over postMessage using views.

4.2.1 System Design
We present the use of views to safely share objects through

a user-level postMessage marshaling library. Figure 4 shows
views in use with a marshaling library. Sender Alice creates
a view tree_v and restricts it with a policy as described in
Section 3. The view creation library exists in sender Alice’s
frame because recipient Bob can manipulate any of the li-
braries in his frame, and Alice trust Bob. When Alice shares
tree_v with recipient Bob, our sender library converts it
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Figure 4: Cross-origin sharing diagram and source struc-
ture. Light elements are our JavaScript libraries, dark are
developer-provided. We show the automatic CPS transfor-
mation of the recipient code.

to a string and sends it to Bob’s frame using postMessage.
Our recipient library receives the message via a callback and
turns the string into an object to give to Bob. When Bob
later requests tree_v.prop, our system forwards the prop-
erty get request to Alice’s frame, gets the result pursuant to
the view’s policy, and sends it back to Bob.
Figure 4 shows the basic one-way communication scenario,

where the sender’s state needs to be protected from an ad-
versarial recipient. This is satisfactory in some scenarios,
such as typical DOM interactions where DOM methods only
accept primitives as arguments. However, Alice might share
a function that accepts objects from Bob. If Bob wants pro-
tection from Alice, he should turn all of the non-primitive
parameters that he passes to Alice into views as well. This
could be automated by Bob’s library so that all of his non-
primitive parameters are converted to a view with a default
policy, although our prototype does not implement this.
Marshaling Library. Our marshaling library performs all
of the necessary tasks related to converting objects and set-
ting callbacks so that developers do not need to do it them-
selves. The library initializes sessions, converts object de-
scription messages to objects, and keeps a cache to preserve
reference equality for previously transmitted objects. Cur-
rently, the first level of an object is passed eagerly and the
rest are passed lazily (i.e., an object’s immediate child prop-
erties are transferred but not grandchildren). Our sharing
and receiving libraries also encode the basic JavaScript op-
erations of calling functions, getting and setting fields, and
throwing exceptions. Potential future optimizations include
sending further levels in anticipation of future requests, de-
lay evaluation with promises [22], and manually delayed
message bundles[2], but these present consistency and us-
ability challenges.
Serialization systems are a potential point of attack. How-

ever, each message is a JSON object so we can rely on calls
to standard browser support for JSON objects. The use
of existing JSON APIs prevents unexpected code execution.
We also want to ensure that our postMessage sender library
does not leak additional information. This can be accom-
plished by not using any global state in the sender library:
it only needs access to a view and a way to communicate
with the intended primitive. The library can therefore only



provide access to the view.
It should be noted that functions and methods will always

execute in the frame that defined the function or method.
No code is ever passed between frames. When Bob asks to
execute Alice’s function foo, it will execute in Alice’s frame
and Bob will receive the result. Additionally, if Bob has
redefined a method on an object of Alice’s, all invocations
of that method will execute in Bob’s frame.

4.2.2 Asynchrony
postMessage is an asynchronous communication channel

where messages are received through a callback. View ac-
cess is therefore asynchronous in implementation, though
developers often expect tasks like reading a field to be syn-
chronous. Consider when Bob calls alert(obj_v.prop).
Retrieving the value of obj_v.prop is asynchronously made
over postMessage, so there is no immediate value to pass to
alert. One option would be to modify postMessage to be
blocking; however, frames are single-threaded so this would
freeze the frame. We want to stop just the current execution
context while waiting on the call, allowing other events on
the event loop to proceed. When the postMessage callback
is invoked, the value of obj_v.prop becomes known and can
now be passed to alert, etc.
Continuations are a well-established linguistic mechanism

for saving the current execution context as a value that can
be stored and later resumed. Currently, they are only di-
rectly supported by the Rhino JavaScript engine. In place
of language support, we can translate source code into con-
tinuation passing style (CPS) using a client-side JavaScript
library [7, 26]. Figure 4 shows Bob’s code being automat-
ically transformed. In CPS form, functions are called with
an extra continuation argument that specifies what func-
tion should be called when the computed value is available
(instead of directly returning the result). The transformed
version of Bob’s code would pass a continuation function
to the getter on obj_v.prop; when the value is available,
then the postMessage callback will invoke the continuation
function with the result, thereby resuming execution.
JavaScript is typically written in a synchronous style, us-

ing callbacks only to react to user events and server events.
However, some APIs are largely asynchronous because their
methods do not have meaningful results. If an application
only has a few points of inter-origin synchronicity, then a de-
veloper can manually CPS the program. Following the pre-
vious example, Bob would write obj_v.prop(function(p)
{ alert(p); ... }) instead of alert(obj_v.prop); ...
This approach does not scale well, however. Going forward,
we advocate better language-level support for concurrency
in browsers, even if not through continuations.
CPS does not remove all sources of concurrency errors in-

duced by sharing objects over postMessage. If Alice takes
a long time to respond to Bob, the user might trigger a
GUI event in Bob’s frame while Bob’s code execution is sus-
pended. Bob might have established an invariant before the
call that he expects upon resumption, and the GUI event
handler could violate this invariant. It might be possible to
delay all events received while waiting for a response, but
the GUI would appear unresponsive.

5. VIEW SECURITY
Wrappers enforce view security. The security goal of our

wrapper mechanism is to ensure interposition on the shared

object, which is equivalent to not leaking unwrapped refer-
ences. As described in Section 2, we rely on trusted plat-
forms to separate principals and provide each principal with
its own private global objects and prototype chain. Here, we
discuss how our wrappers defend against the attack vectors
described in Section 2.3. We describe how we extend the
basic wrapper design that was introduced in Section 3.1.
The design of our wrapper mechanism is motivated by in-

securities in previous secure object sharing attempts. For ex-
ample, one proposal [5] fails to protect the __proto__ field of
a shared function object, thereby opening up the frame to at-
tack [2]. Another proposal presents self-protecting JavaScript
wrappers [27], but we discovered several attacks by auditing
their wrapper code examples. For example, their wrappers
are vulnerable to at least two function prototype poisoning
attacks, and their type forgery “solution” is vulnerable to a
type forgery attack.

Complete Mediation. The basic recursive wrappers de-
scribed in Section 3.1 wrap all of an object’s properties and
return values. We assign accessors or proxy functions to all
fields on an object, including inherited ones; we also recur-
sively wrap return values. Our wrappers also use reference
equality to detect and restrict alternate access paths. Re-
consider the example from Section 2.3 that tries to restrict
access to postMessage by redefining frame1.postMessage.
One reason this fails is because alternate access paths to
postMessage exist. We can accomplish mediation correctly
with a view. A view is made of the page document, and
a policy is set on the view to restrict frame1.postMessage.
The untrusted script receives this view. If the restricted
script tries to access frame1.postMessage through an al-
ternate path like frame2.postMessage(frame1,m,url), our
wrappers will detect reference equality between the two and
apply the correct restrictions. In Caja, we use a simple
dictionary lookup to check for reference equality; with our
marshaling library, we associate object IDs with references.

Controlling Untrusted Parameters. The basic wrap-
per described in Section 3.1 is concerned with not letting
references out, which we call “exporting”. However, we must
also be conscious of the effects of letting untrusted code in,
which we call “importing”. We import code when a view
method accept parameters or permits a property reassign-
ment. We do not want to pass privileged objects to callbacks
on untrusted parameters. Parameters can also mount type
forgery attacks. A reassigned property must not execute
with a privileged object as its this parameter.
Our solution to protect views from imported code is to

use dual import and export wrappers. An object defined
by Alice will have an export wrapper: this is the basic
wrapper based on membranes that we introduced in Section
3.1. Import wrappers surround any object introduced by
another party (parameters and redefined properties). They
are again recursive. Import wrappers prevent any of Alice’s
unwrapped objects from being passed into them, and im-
ported methods execute with an export-wrapped version of
its parent object as its local scope. To illustrate how import
wrappers work, consider the following policy:

var x = {y: function () {}, secret: "secret"};
var c = makeView(x);
c.definePolicy([[x, {getters: {y: permit},

setters: {y: permit}}]]);
mallory.send(c.view); //x_w



Object x has two properties, one of which (secret) is not
meant to be readable by the recipient of the wrapper. Now,
the attempted attack:

x_w.y = function () { broadcast(this.secret); }; //Mallory
x.y(); //Alice

The view recipient redefines a property y to be a method
that leaks the secret. If we did not have import wrappers,
the new y function would broadcast the secret when the
owner of x calls the method y. Consider how import wrap-
pers prevent this attack:

1. x_w is an export wrapper for x, so the attempt to “set”
field y of view x_w is subject to mediation.

2. The setter proxy sees that the function on the right
hand side of the assignment is not wrapped. The setter
applies an import wrapper to the untrusted function
before assigning it to x.y.

3. When x.y is executed, the import wrapper’s proxy
function sets the context of Function.apply to be x_w.
This means that the this object inside the function is
export wrapped, and secret is protected.

By wrapping imported objects, we can prevent raw privi-
leged objects from being passed to untrusted code and en-
sure that Alice’s restrictions remain in place.
Wrapper and advice code must also be careful when han-

dling shared objects because a malicious principal could re-
define methods or properties that typically would have been
inherited from Object or Function. Consider again the at-
tack of adding a malicious and unexpected toStringmethod
to an object. We can enforce a policy that resets inherited
methods to be the trusted versions of those methods.
Our trusted platform ensures that redefined methods have

the correct global scope when they execute. With server-
side script rewriting, a redefined method will still be subject
to the original rewriting rules that define the global scope.
With postMessage, code always executes in the frame that
did the assignment, so it has the correct global scope.

Tamper-Proof Wrapper Methods. A wrapped object
has one extra method beyond what is present on the origi-
nal object: every wrapped object must have an unwrapping
method for when an untrusted principal passes a protected
argument to a protected method. Otherwise, the view owner
loses pointer equality and faces restrictions on its own ob-
ject. However, the unwrapping mechanism cannot be usable
by an attacker. Our solution [29] is to communicate through
a variable lexically scoped to the view controller. Calling
x_w.unwrap() will set a variable in the view controller’s
scope to the original object and not return anything. Wrap-
per code can access the view controller’s variable to retrieve
that unwrapped object, but the attacker cannot. Invoking
x_w.unwrap therefore leaks nothing to an attacker. Chang-
ing x_w.unwrap would only render the wrapper useless, since
it would break its functionality. Additionally, it should be
noted that deleting wrapper properties is not a concern for
us. Server-side script rewriting tools can interpose on dele-
tions, and we can prohibit cross-frame deletions.

Prototype Poisoning. A view wrapper’s prototype can
be accessed in two ways. First, Object.prototype is the
root prototype for all of a given principal’s objects. If an

attacker could edit a view owner’s Object.prototype, that
change would be inherited by the view’s wrapper. How-
ever, our trusted platforms provide initial isolation of prin-
cipals, which protects the prototype chain. Server-side script
rewriting provides this with rewriting rules. With the cross-
frame system, all security-critical code runs in the sender’s
frame, which by the SOP is isolated from the recipient.
Access to the inheritance chain is also possible through

the __proto__ field of object instances, but we mediate this
property the same way we mediate other properties.

We do not provide a formal proof of security; we leave this
to future work since a usable formal semantics of JavaScript
is still being formulated [20]. Alternately, a flow analysis
could check that references do not leak. However, analysis
has thus far been limited to small 50-250 line scripts [13] of
subsets of JavaScript [14] and imprecisely model the DOM.

6. EVALUATION
All benchmarks are on a 2.4GHz Intel Core 2 Duo Mac-

Book Pro with 2GB of RAM. Our measurements, unless
otherwise noted, are Firefox 3.5.4 with JavaScript tracing
optimizations enabled.

6.1 Prototype Status
Our view creation, policy definition, and postMessage

communication libraries conform to web standards. They
have all been tested on Firefox, Safari, and Opera. We have
synchronization bugs in our view creation library due to in-
consistent introspection support by ECMAScript: we can-
not detect new properties added to object property lists or
prototype chains. Additionally, the lack of weak references
in ECMAScript delays garbage collection.
Our library for sharing objects through postMessage is

subject to the above challenges plus two additional problems
related to the CPS transformer. The CPS transformer for
our prototype is incomplete, as it ignores getters and setters.
Until we fix the compiler, our proof-of-concept uses a library-
level patch to attach semantically equivalent set and get
methods. The transformer also might violate encapsulation;
this is a problem when a principal both creates and receives
views, since we need to transform our trusted view creation
library into CPS style. We plan to either review the code and
verify that encapsulation is maintained or manually CPS the
library code to avoid the issue.

6.2 File size
File size is important for networked application perfor-

mance: a small file loads faster. Our view creation and
advice library is 445 lines of well-commented code. Our
declarative policy system is 110 lines. The postMessage li-
brary is 334 lines, and it would not be necessary if browsers
natively supported object marshaling.
Using standard JavaScript minifiers and ZIP file genera-

tors, our view creation library is 2.0KB. Including our pol-
icy library, it is 3.1KB. Adding the postMessage library in-
creases the size to 7.4KB. To avoid the transformation cost
of the CPS conversion, which is linear in application size, we
can perform rewriting at runtime at a total size of 21.3KB.
Our policies incur a constant, application-specific increase
in code size. In contrast, weaving policies into the source
increases application size from 1.5x to 5x [32, 25].
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Figure 5: Bubblemark benchmark with and without views.
Views in all cases stay above the smooth animation thresh-
old. Also, JavaScript execution time is dominated by other
factors.

6.3 Speed Macrobenchmark
The Bubblemark benchmark for comparing user interface

frameworks is an n-body animation of colliding balls [10]
(Figure 5b). We compare a standard version of the UI
benchmark against one in which every ball is wrapped in a
view. All manipulations by the Ballmark JavaScript physics
engine and the browser-provided layout engine go through
views. Views in all cases stay above the smooth animation
threshold (Figure 5a). Our postMessage library is not used.
JavaScript execution time is dominated by browser li-

braries like the layout engine. Using the Shark profiler, we
sampled Safari 4.0.3’s callstack at 20µs intervals over 2 sec-
onds for the Bubblemark test and while loading post-login
screens forfacebook.com and netflix.com (Figure 5c). We
found that the Bubblemark test is more JavaScript-intensive
than those two sites, yet our view version still performs well
enough to be unnoticeable (since we stay above the thresh-
old). We expect that typical applications would be signifi-
cantly less demanding than the Bubblemark test, but views
still have sufficient performance in this worst case scenario.

6.4 Function Call Microbenchmarks
We examine four types of basic function calls (Figure

6), contrasting views with plain function calls and shallow
(‘lightweight’) wrappers [27]. We implemented the shallow
wrappers by setting accessors on object properties; as in
their benchmarks [27], we simulate the cost of checking a
policy by mutating a global variable in the accessor func-
tion. Note that the comparison is not apples-to-apples; our
implementation does more work, such as wrapping return
values and parameters. For each of the four function calls,
we ran 20 trials consisting of 10,000 invocations of the call
of interest:

• In the first test, we measure the overhead of making
two DOM calls to set the font size of a paragraph. We
found that the shallow wrappers impose an overhead
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Figure 6: A comparison of unwrapped, shallowly wrapped,
and deeply wrapped (view) performance on different mi-
crobenchmarks. The red lines show the relative slowdown
of our views vs. the shallow wrappers.

of 53%, and views impose another 83% overhead (so
2.81x slower than the unwrapped version). This over-
head is higher than would be expected because it is
only JavaScript interpreter time. All modern brow-
sers batch layout commands for later bulk processing;
this means that the relevant (and expensive) browser
library calls will occur sometime after the benchmark
finishes.

• In the next test, a DOM write call is followed by a
DOM read. By following a font size change with a
read, we force the layout re-computation during the
benchmark. We see interpreter time overhead is now
only actually 6% for shallow wrappers and 22% over-
head on deep ones.

• In the last two calls (a user-defined JavaScript function
and a DOM call that does not use the layout engine),
we see that shallow and deep wrappers have a cost
linear in the number of calls, but do not significantly
depend on the type of call.

Overall, we see that the overhead of enforcing a policy,
when considering expensive JavaScript calls, is dominated
by the calls themselves. While our system does have sophis-
ticated runtime mechanisms, we only found the overhead rel-
ative to the lightweight approach to be 15% to 2.36x on im-
pacted microbenchmarks. We do not perform microbench-
marks for postMessage object marshaling performance; au-
thors of previous work provide this [2].

6.5 Memory
Strict use of ECMAScript delays garbage collection. The

problem manifests itself when an object from Alice repeat-
edly passes through her view to Bob. As Bob repeatedly
receives views of this object, he expects reference equality
for them. Thus, the view controller maintains a map from
raw objects to views. Consider when Alice does not refer-
ence the raw objects nor Bob the views. If Alice references
the view controller, she also has an indirect reference to the
map. To collect the map entries, the controller must also be
gone. A fix enabled by a common ECMAScript extension is
to encode a dictionary with weak values.



We measured the impact on memory. We ran two 20
minute trials at 99% CPU intensity, creating as many wrap-
pers as it could to stress test the worst case scenario. The
first trial created, used, and discarded views so that mem-
ory could be reclaimed. As expected, the browser cycled
between 160MB and 200MB of RAM, signifying successful
garbage collection. The second trial reused the same view,
preventing reclamation of objects passing through it. We
observed real memory use monotonically grew to 220MB,
representing a 20MB increase despite full CPU load over
a prolonged period. We conclude memory use is low and
delayed collection is not inherent.

7. RELATED WORK
Membranes. Views are inspired by the membrane pat-
tern, which controls an object by creating a recursive wrap-
per and tying it to an access control gate [22]. We extend
the membrane pattern with an aspect system for sophisti-
cated policies instead of a coarse access control gate. We
also add pointer equality and many JavaScript security de-
fenses to the canonical recursive membrane wrapper. A re-
lated mechanism was proposed for enforcing contracts that
take developer-provided type annotations for functions and
returns shared versions that enforce the signature [15]. Un-
fortunately, it is hard to write types for JavaScript programs
and even a small developer mistake in such a signature may
expose the entire system to attack. We conjecture that sup-
porting policies like whitelists is less error-prone.
Aspects. One of our contributions is a notion of per-
principal advice for multi-principal software. Prior aspect
systems for web applications do not completely mediate ac-
cess. One proposal [31] is not designed for an adversarial
setting, and another [32] does not explain how it prevents
the attack vectors identified in this paper. Two related pro-
posals [27, 8] have vulnerabilities in their code samples. In
general, these approaches suffer from incomplete mediation
because their wrappers are installed directly on API prop-
erties and methods; this is a potential problem if the policy
author fails to observe an unexpected path to a capability.
Instead, we apply a single recursive wrapper to the whole
API that checks reference equality on every operation.
Dantas et al. [6] also propose secure advice systems. Their

security goal is to guarantee that malicious advice cannot
interfere with certain program invariants. By requiring ref-
erences to the raw object and the view in order to add advice
– as opposed to global type-based pointcuts – we can assume
advice has proper authority over the impacted objects and
do not need to worry about their threat model. Instead,
we concern ourselves with protecting advice from malicious
view recipients.
Secure Browser Environments. Recent proposals like
BEEP [18] and MashupOS [16] seek to tailor the granularity
of the Same Origin Policy to the needs of a web site, e.g.,
to prevent unauthorized script execution or allow one-way
DOM access. We are also interested in application-specific
policies for sharing, but our sharing mechanism operates
at a finer level. Other browser proposals have focused on
improving isolation between principals [12]; we look at the
next step of controlled sharing without violating isolation.
OMash [5] lets a frame define a public “interface” so that

other principals may interact with it in a restricted fashion.
This is similar in spirit to a view, but OMash limits value

passing to primitives, whereas views support arbitrary ob-
jects. Our views could be used in conjunction with their
framework to provide share objects over an interface. Post-
Mash [2] encodes objects with object-to-string marshaling,
and our postMessage library extends this idea with view
advice to apply policies to marshaled sharing. Additionally,
our view mechanism is broader and allows for the secure
passing of actual references in scenarios where an object
sharing communication channel is available.
Server-Side Script Rewriting. Our work on views orig-
inated as part of Google Caja [25]. Other server-side script
rewriters (Facebook JavaScript [1] and Microsoft Web Sand-
box [17]) have developed their own automated DOM wrap-
ping systems since we began this research.
Lenses. Concurrent to our work, secure lenses were pro-
posed [9] as a way to verify confidentiality of strings. Our
focus is on supporting policies for sharing objects in web
applications; how to embed lenses in languages used for ap-
plications is still unclear [11].

8. CONCLUSION
We propose object views as a user-level mechanism for

fine-grained JavaScript object sharing. A view is an object
proxy controlled by advice functions, which permits the ex-
pression of policies that govern access to the original object.
Instead of sharing the actual object, a principal would share
a view of the object. We build a policy system for devel-
opers to declaratively specify view restrictions; the policy
system automatically generates advice functions from the
declarative rules.
We present how views can be used in two settings: gad-

get aggregators with server-side script rewriting and cross-
domain browser frames. Server-side script rewriters isolate
gadgets from the rest of the page but need to provide re-
stricted DOM access to gadgets; we propose views as a mech-
anism for partial DOM access. For cross-domain browser
communication, we discuss how views can be exchanged over
a postMessage object-to-string marshaling library. Marshal-
ing objects over postMessage is not new [2]; we extend the
idea with views to add advice-based policies.
Our security goal is to ensure that a view recipient can-

not circumvent a view’s restrictions or gain unauthorized
access to additional references through a view. To this end,
we implement views using a recursive wrapper that has been
specialized to prevent JavaScript attacks. One of our contri-
butions is an in-depth discussion of how to build JavaScript-
safe wrappers.
Future work could examine further applications of views

(e.g., partial DOM access for extensions), policy usability,
security testing, and native browser support for views. We
are particularly interested in examining the possibility of
browser support for views.
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