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The disconnect between meager user investments in security technology and the resulting potential
losses can be partially explained by negative externalities: that is, the level of effective protection that
security-conscious users obtain is considerably lowered by the insecure behavior from their peers, which
in turn provides a personal disincentive to invest in security primitives. Likewise, the lack of accurate un-
derstanding of threats is commonly held to significantly weaken the quality of security decision-making.

This paper moves toward a formal, quantitative evaluation of the impact of bounded-rational security
decisions in the presence of limited information availability and externalities. We investigate a mixed econ-
omy of an individual rational expert and several naı̈ve near-sighted agents in the security decision-making
context. We model three canonical types of negative externalities (weakest-link, best shot and total effort),
and study the impact of two information regimes on the threat level agents are facing.

We present a methodology to determine and compare strategies and payoffs between the different in-
terdependencies and information conditions. To quantify the agents’ valuation of better threat information
we propose a metric formalization: the payoff under complete information divided by the payoff under in-
complete information. We study this ratio metric analytically and numerically and isolate parameter regions
where being more informed creates a payoff advantage for the expert agent.

1 Introduction

Users frequently fail to deploy, or upgrade security technologies, or to carefully preserve and backup their
valuable data [26, 35], which leads to considerable monetary losses to both individuals and corporations
every year. A partial interpretation of this state of affairs is that negative externalities impede end-users’
investments in security technologies [43]. Negative network externalities occur when the benefit derived
from adopting a technology depend on the actions of others as is frequently the case in the context of
network security. For example, users who open and respond to unsolicited advertisements increase the load
of spam for all participants in the network, including participants who are making the effort to adopt secure
practices. Similarly, choosing a weak password for a corporate VPN system can facilitate compromises of
many user accounts, possibly including those of individuals with strong passwords if trust relationships
inside the VPN exist.

In other words, a rational user facing negative externalities could make the decision not to invest in se-
curity primitives given that their personal investment may only marginally matter if other users are adopting
insecure practices, or if the perceived cost of a security breach significantly exceeds the cost of investing in
security [24].

Moreover, this risk management explanation overemphasizes the rationality of the involved consumers
[25]. In practice, consumers face the task to “prevent security breaches within systems that sometimes exceed
their level of understanding” [8]. In other words, the amount of information users may be able to acquire
and/or to process, is much more limited than is required for a fully rational choice.
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We anticipate the vast majority of users to be non-expert, and to apply approximate decision-rules that
fail to accurately appreciate the impact of their decisions on others [3]. In particular, in this paper, we assume
non-expert users to conduct a simple self-centered cost-benefit analysis, and to neglect externalities. Such
users would secure their system only if the vulnerabilities being exploited can cause significant harm or a
direct annoyance to them (e.g., their machines become completely unusable), but would not act when they
cannot perceive or understand the effects of their insecure behavior (e.g., when their machine is used as
a relay to send moderate amounts of spam to third parties). In contrast, an advanced, or expert user fully
comprehends to which extent her and others’ security choices affect the network as a whole, and responds
rationally.

The first contribution of this paper is to study the strategic optimization behavior of such an expert user
in an economy of inexperienced users, using three canonical security games that account for externalities
[21]. That is, we investigate the extent to which expert users, who understand the nature of the externalities in
play, are in a better position to make informed security decisions compared to non-experts. We thus provide
a first step toward a formal, quantitative understanding of the impact of negative externalities on security
decision-making.

Our approach to capture bounded-rational behaviors of end-users differs significantly from research on
computability and approximation of economic equilibria. We argue that models of security decision-making
can benefit from a critical inquiry of the conceptual understanding users have of security problems. While
experts and unsophisticated users co-exist in the same networks, they do not share the same knowledge or
mental models about security problems and countermeasures [8], or the same identical perfectly rational
approaches to solve security issues [1, 13].

The second contribution of this paper is to address how the security choices by users are mediated by
the information available on the severity of the threats the network faces. We assume that each individual
faces a randomly drawn probability of being subject to a direct attack. Indeed in practice, different targets,
even if they are part of a same network, are not all equally attractive to an attacker: a computer containing
payroll information is, for instance, considerably more valuable than an old “boat anchor” sitting under an
intern’s desk. Likewise, a machine may be more attractive than another due to looser restrictions in the
access policies to the physical facility where the machine is located.

We study how the decisions of the expert and unsophisticated users differ if all draws are common
knowledge, compared to a scenario where this information is only privately known – that is, when each
player only knows their own probability of being attacked, but not the specific probabilities other users may
be targeted. We further evaluate the value of better information on the total expected payoff of the expert
agent. Specifically, we study the following metric: the payoff under the complete information condition
divided by the payoff under the incomplete information condition.

By evaluating the value of information for a range of parameters in different security scenarios, we
can determine which configurations can accommodate limited information environments (i.e., when being
less informed does not significantly jeopardize an expert user’s payoff), as opposed to configurations where
expert users and non-expert users achieve similar outcomes due to a lack of available information. This
analysis has implications for network designers that want to avoid undesirable hotspots that penalize users
for their lack of information about threats. Similarly, ISPs or other intermediaries may take influence on the
pricing and availability of security technologies to steer users to less harmful parameter configurations.

We first discuss selected work related to our analytic model (Section 2). In Section 3, we summarize the
security games framework and detail our assumptions about agent behaviors and information conditions.
We present our methodology and formal analysis in Section 4. We discuss the results and their implications
in Section 5, and conclude in Section 6.



2 Related work

In our prior work we have reviewed the research area of the economics of security in depth [21]. In this
paper we conduct a decision-theoretic analysis for a sophisticated (expert) agent who interacts with a group
of users that follow a simple but reasonable rule-of-thumb strategy.

Our research complements work on market insurance for security and privacy [5, 44]. In particular,
several researchers have investigated the impact of correlation of risks and interdependency of agents in net-
works on the viability of insurance [9, 10, 38]. We structure the remainder of the review of related literature
and background information into three selected areas in which we are making a research contribution.

Our work significantly differs from prior decision-theoretic approaches. Gordon and Loeb present a
model that highlights the trade-off between perfect and cost-effective security [19]. They consider the pro-
tection of an information set that has an associated loss if compromised, probability of attack, and probability
that attack is successful. They show that an optimizing firm will not always defend highly vulnerable data,
and only invest a fraction of the expected loss. Cavusoglu et al. [12] consider the decision-making problem
of a firm when attack probabilities are externally given compared to a scenario when the attacker is explicitly
modeled as a strategic player in a game-theoretic framework. Their model shows that if the firm assumes
that the attacker strategically responds then in most considered cases its profit will increase. Schechter and
Smith [39] consider the decision-theoretic analysis from the perspective of the potential intruder. They high-
light several modeling alternatives for attacker behavior and their payoff consequences. The analytic work
on security investments and level of penalties for offenses is complemented by empirical research [37, 41].

2.1 Bounded rationality

Acquisti and Grossklags summarize work in the area of behavioral economics and psychology that is of
relevance for privacy and security decision-making [3]. Users’ decisions are not only limited by cognitive
and computational restrictions (i.e., bounded rationality), but are also influenced by systematic psychological
deviations from rationality.

Recent research has investigated agents that overemphasize earlier costs and benefits at the expense of
their future well-being [1, 4]. Christin et al. suggest that agents respond near-rationally to the complexity of
networked systems [13]. In their model individuals are satisfied with a payoff within a small margin of the
optimal outcome.

Different from the above work that considers all players to act the same, the current paper studies a
mixed economy, with expert and non-expert users co-existing. While expert users are as rational as possible,
non-expert users deviate from rationality by adopting approximate (rules-of-thumb) decision strategies. In
practice, users frequently have to rely on rules-of-thumb when a “quantitative method to measure security
levels” is not available [31]. Economic analysis including rule-of-thumb choices have been discussed outside
of the security context, e.g., [15] [16] [29].

2.2 Limited information

In the context of the value of security information, research has been mostly concerned with incentives
for sharing and disclosure. Several models investigate under which conditions organizations are willing to
contribute to an information pool about security breaches and investments when competitive effects may
result from this cooperation [18, 20]. Empirical papers explore the impact of mandated disclosures [11] or
publication of software vulnerabilities [42] on the financial market value of corporations. Other contributions
to the security field include computation of Bayesian Nash outcomes for an intrusion detection game [30],
and security patrol versus robber avoidance scenarios [36].



We conduct a comparative analysis of strategies and payoffs for a sophisticated agent in a security model
when the likelihood of a directed attack is either common or private knowledge. In particular, we evaluate
the influence of the lack of information given different organizational dependencies [43].

2.3 Heterogeneous agents

In our previous work we have analyzed both the case of homogeneous [21] and heterogeneous agents [22].
When considering heterogeneous agents, however, we have focused on differences in the costs agents may
face. We assumed that users differ in the price they have to pay for protection and self-insurance, and that
they have different perceived or actual losses associated with successful (uninsured) security compromises.
In the present paper we analyze the case of agents facing different attack probabilities, that may be a priori
unknown to other agents.

Given certain differences in the attractiveness of a particular target the question remains how a defender
is able to determine a reasonable estimate of the attack probability. Such a problem far exceeds the scope
of this paper, whose main goal is to study the impact of information (or lack thereof) on security strategies,
and we refer the reader to the threat modeling literature. (See [6] for an introduction and references.)

3 Decision Theoretic Model

We next summarize the security games we analyze, and extend models we previously proposed [21] to the
case of an economy consisting of an expert user and several unsophisticated users.

3.1 Basic model

Self-protection and self-insurance. In practice, the action portfolio of a defender may include different
options to prevent successful compromises and to limit losses that result from a breach. In Grossklags et al.
[21] we provide a model that allows a decoupling of investments in the context of computer security. On the
one hand, the perimeter can be strengthened with a higher self-protection investment (e.g., implementing or
updating a firewall). On the other hand, the amount of losses can be reduced by introducing self-insurance
technologies and practices (e.g., backup provisions). Formally, player i decides whether to invest in protec-
tion (ei = 1) or not (ei = 0). Similarly, each player can adopt a self-insurance technology (si = 1) or not
(si = 0). In other words, ei and si are two discrete decision variables.

Discrete choice decision-making captures many practical security problems. Examples include purchase
and adoption investments as well as updating and patching of protection and self-insurance technologies [7,
28, 32, 34].

We have further conducted a sensitivity analysis with respect to the discrete choice assumption and
find that, for the study in the present paper, the only differences between the discrete and continuous cases
(where ei and si are continuous variables over the interval (0, 1) as opposed to be mere binary variables)
arise when there is strict equality between some of the terms in our case-specifying inequality conditions
(see derivations in Section 4). We believe that focusing on these boundary cases is of limited practical
applicability, and could even be misleading. For comparison, we refer to our prior work where we considered
the continuous case in a full information environment [21].

We further denote by b ≥ 0 and c ≥ 0 the cost of protection and self-insurance, respectively, which are
homogeneous for the agent population. So, player i pays bei for protection and csi for self-insurance.

Interdependency. Decisions by one defender frequently influence the incentives for security investments
by her peers [2, 28, 33, 43]. For example, the lack of protection effort by a subset of agents will often allow
an attacker to also compromise resources of other agents if a common perimeter is breached. We focus in



this work on such tightly coupled networks [43].1 In a tightly coupled network all defenders will face a loss
if the condition of a security breach is fulfilled whereas in a loosely coupled network consequences may
differ for network participants [17]. We denote H as a “contribution” function that characterizes the effect
of ei on agent’s utility Ui, subject to the protection levels chosen (contributed) by all other players. We
require that H be defined for all values over (0, 1)N . We distinguish three canonical cases that we discussed
in-depth in prior work [21]. (Following common notation, e−i denotes the set of protection levels chosen by
players other than i in the equations below.)

Weakest-link (e.g., network access control): H = min(ei, e−i).
In the weakest-link game, the network participant with the least amount of protection defines the
protection level of the whole network. Weakest-link instances occur quite frequently in practice. For
example, most corporate networks are designed to be isolated from the Internet. However, in a vast
majority of cases, these corporate networks have a few hosts (e.g., firewall, web server, ...) that have
access to both the “public” Internet as well as the “private” networks. For an attacker interested in
penetrating the corporate network, compromising only one of these hosts connected to the public
Internet suffices to gain access to the private network.

Best shot (e.g., censorship resilience): H = max(ei, e−i).
In the best shot game, the protection level of the whole network is equal to the protection level
of the most protected player. A practical instance of this game is in censorship-resilient systems,
where a number of end-hosts are sharing a copy of a document. To make this document unavailable
to anybody joining the network, the censor (attacker) has to remove all copies of the document
from the network. As such, the protection level of the most protected host having a copy available
conditions the protection level of the entire network.

Total effort (e.g., parallel file transfers): H = 1
N

∑
k ek.

The total effort game models a situation where the level of protection of the entire network depends
on the sum of all the network participants’ efforts. Parallel (“swarming”) file transfers in a peer-
to-peer network implement a form of total effort game, when the attacker is primarily interested in
degrading the download speeds users experience. Indeed, the more peers in the swarm the attacker
takes down, the more the overall file transfer speed decreases. As such, the overall level of protection
of the whole network is dependent on the number of participants to the network. Note that, if the
attacker wants to make the transferred file completely unavailable, the game then becomes a best-
shot game as discussed above.

Attack probabilities, network size and endowment. Each of N ∈ N agents receives an endowment M .
If she is attacked and compromised successfully she faces a loss L. We assume that each agent i draws an
individual attack probability pi (0 ≤ pi ≤ 1) from a uniform random distribution.2 This models the hetero-
geneous preferences that attackers have for different targets, due to their economic, political, or reputational
agenda. The choice of a uniform distribution ensures the analysis remains tractable, while already providing
numerous insights. We conjecture that different distributions (e.g., power law) may also be appropriate in
practice.

1 There is an ongoing debate whether researchers should assume full connectivity of a network graph given modern computer
security threats such as worms and viruses. (Personal communication with Nicholas Weaver, ICSI.)

2 Technically, our analysis does not require complete knowledge of the distribution on attack probabilities. The distribution informs
the probability that a given number of pj are above the rule-of-thumb threshold; but to conduct our analysis, it suffices to know
only these threshold probabilities, and not the full distribution.



3.2 Player behavior

At the core of our analysis is the observation that expert and non-expert users differ in their understanding of
the complexity of networked systems. Indeed, consumers’ knowledge about risks and means of protection
with respect to privacy and security can be quite varied [3], and field surveys separate between high and low
expertise users [40].

Sophisticated (expert) user. Advanced users can rely on their superior technical and structural under-
standing of computer security threats and defense mechanisms, to analyze and respond to changes in the
environment [14]. In the present context, expert users, for example, have less difficulty to conclude that the
goal to avoid censorship points at a best shot scenario, whereas the protection of a corporate network fre-
quently suggests a weakest-link situation [21]. Accordingly, a sophisticated user correctly understands her
utility to be dependent on the interdependencies that exist in the network:

Ui = M − piL(1− si)(1−H(ei, e−i))− bei − csi .

Naı̈ve (non-expert) user. Average users underappreciate the interdependency of network security goals and
threats [3] [40]. We model the perceived utility of each naı̈ve agent to only depend on the direct security
threat and the individual investment in self-protection and self-insurance. The investment levels of other
players are not considered in the naı̈ve user’s decision making, despite the existence of interdependencies.
We define the perceived utility for a specific naı̈ve agent j as:

PUj = M − pjL(1− sj)(1− ej)− bej − csj .

Clearly, perceived and realized utility actually differ: by failing to incorporate the interdependencies of
all agents’ investment levels in their analysis, naı̈ve users may achieve sub-optimal payoffs that actually
are far below their own expectations. This paper does not aim to resolve this conflict, and, in fact, there is
little evidence that users will learn the complexity of network security over time or are able to keep up with
the challenges of novel threats [40]. We argue that non-expert users would repeatedly act in an inconsistent
fashion. This hypothesis is supported by findings in behavioral economics that consumers repeatedly deviate
from rationality, however, in the same predictable ways [27].

3.3 Information conditions

Our analysis is focused on the decision making of the expert user subject to the bounded rational behaviors
of the naı̈ve network participants. That is, more precisely, the expert agent maximizes her expected utility
subject to the available information about other agents’ drawn threat probabilities and their resulting actions.
Two different information conditions may be available to the expert agent:

Complete information: Actual draws of attack probabilities pj for all j 6= i, and her own drawn probability
of being attacked pi.

Incomplete information: Known probability distribution of the naı̈ve users’ attack threat, and her own
drawn probability of being attacked pi.

The expert agent can accurately infer what each agent’s investment levels are in the complete informa-
tion scenario. Under incomplete information the sophisticated user has to develop an expectation about the
actions of the naı̈ve users.



4 Analysis methodology

In the remainder of this discussion, we will always use the index i to denote the expert player, and j 6= i to
denote the naı̈ve players. For each of the three games, weakest-link, best shot, and total effort, our analysis
proceeds via the following five-step procedure.

1. Determine player i’s payoff within the game for selected strategies of passivity, full self-insurance, and
full protection. As shown through a relatively simple analysis [21] [22], player i can maximize her utility
only by relying on (one or more of) these three strategies.

2. Determine the conditions on the game’s parameters (b, c, L, N , pi, and if applicable, pj for j 6= i) under
which player i should select each strategy.

3. Determine additional conditions on the game’s parameters such that the probability (relative to pi) of
each case, as well as the expected value of pi within each case can be easily computed.

4. Determine player i’s total expected payoff relative to the distribution on pi and all other known parame-
ters.

5. In the case of complete information, eliminate dependence on pj for j 6= i by taking, within each
parameter case, an appropriate expected value.

Diligent application of this method generates a table recording the total expected payoffs for player i,
given any valid assignment to the parameters b, c, L, N . In the process it also generates tables of selection
conditions, probabilities, and expected payoffs for each possible strategy; and in the complete information
case, gives results for total expected payoffs conditioned on the exact draws of pj by the other players. The
results are presented in Tables 1–9, located in the appendix.

Due to space limitations, tables involving probabilities and expected payoffs for various strategies as
well as intermediate expected total payoff tables conditioned on other players have been omitted, but are
available in a companion technical report [23], along with related derivations.

In the remainder of this section we illustrate this method by considering, for each step listed above, one
game and one parameter case for which we have applied the appropriate step.

Step 1 example: Passivity payoff computation. Let us consider the challenge of determining payoffs
for player i’s passivity in the best shot game under the conditions of limited information and parame-
ter constraints b ≤ c. The general payoff function for the best shot game is obtained by substituting
H(ei, e−i) = max(ei, e−i) into the general utility function for all games, i.e. U(i) = M − piL(1− si)(1−
H(ei, e−i))− bei − csi. Doing this, we obtain U(i) = M − piL(1− si)(1−max(ei, e−i)− bei − csi. To
get the payoff for player i’s passivity we plug in ei = si = 0 to obtain

Ui =

{
M − piL, if maxj 6=i ej = 0
M, if maxj 6=i ej = 1

.

Now in the incomplete information case, we do not know any of the pj for j 6= i, so we do not know all
the parameters to compute the required payoff. However, since we assume that the pj are independently and
uniformly distributed in [0, 1], we can compute an expected value for this payoff as follows. The probability
(over pj) that none of the other players protects (i.e. that maxj 6=i pj < b/L) is exactly (b/L)N−1, and in this
case the payoff would be M − piL. The probability (over pi) that at least one of the other players protects
(i.e. that b/L ≤ maxj 6=i pj) is exactly 1 − (b/L)N−1, and in this case the payoff would be M . Thus, the
total expected payoff for selecting the passivity strategy is (b/L)N−1 · (M − piL) + (1− (b/L)N−1) ·M ,
which simplifies to M − piL(b/L)N−1. We record this as the payoff result for passivity in the incomplete
game, with b ≤ c, as can be seen in Table 4.

Step 2 example: Strategy selection. Let us next consider the challenge of determining parameter conditions
under which we should select player i’s strategy in the weakest link game. Since this is a second step,



consider the game payoffs in Table 1 as given. We are interested in determining player i’s strategic play for
any given parameter case. Select for consideration the case b ≤ c with incomplete information. (Note that
this is the most difficult case for this game).

To determine the optimal strategy for player i, we must select the maximum of the quantities Passivity:
M − piL, Self-insurance: M − c, and Protection: M − b − piL(1 − (1 − b/L)N−1). We should choose
passivity if it is better than self-insurance or protection, i.e. M − piL > M − c and M − piL > M −
b − piL(1 − (1 − b/L)N−1). We should choose self-insurance if it is better than passivity or protection,
i.e. M − c ≥ M − piL and M − c > M − b − piL(1 − (1 − b/L)N−1). We should choose protection
if it is better than passivity or self-insurance, i.e. M − b − piL(1 − (1 − b/L)N−1) ≥ M − piL and
M − b− piL(1− (1− b/L)N−1) ≥M − c.

Re-writing the above inequalities as linear constraints on pi, we choose passivity if pi ≤ c/L and
pi ≤ b

L(1−(1−b/L)N−1)
; we choose self-insurance if pi > c/L and pi > c−b

L(1−(1−b/L)N−1)
; and we choose

protection if c−b
L(1−(1−b/L)N−1)

≤ pi ≤ b
L(1−(1−b/L)N−1)

.
For simplicity of computation, we would like to have our decision mechanism involve only a single

inequality constraint on pi. To obtain this, it is necessary and sufficient to determine the ordering of the three
terms: c

L , b
L(1−(1−b/L)N−1)

, and c−b
L(1−(1−b/L)N−1)

.
It turns out that there are only two possible orderings for these three terms. The single inequality c <

b
(1−b/L)N−1 determines the ordering: c

L < c−b
L(1−(1−b/L)N−1)

< b
L(1−(1−b/L)N−1)

; while the reverse inequality
b

(1−b/L)N−1 ≤ c determines the reverse ordering on all three terms. This observation suggests we should add
sub-cases under b ≤ c depending on which of these two inequalities holds. See Table 2.

Within each new sub-case the criterion for selecting the strategy that gives the highest payoff can
now be represented by a single linear inequality on pi. If c ≤ b

(1−b/L)N−1 , then passivity wins so long

as pi < c/L; (because the new case conditions also guarantee pi < b
L(1−b/L)N−1 ). Similarly, self-insurance

is preferable if pi ≥ c/L. Protection never wins in this case because we cannot have c−b
L(1−(1−b/L)N−1) ≤

pi ≤ b
L(1−(1−b/L)N−1) when we also have b

(1−b/L)N−1 < c−b
L(1−(1−b/L)N−1) . The computations for the case

b
(1−b/L)N−1 < c are similar; the results are recorded in Table 2.

Step 3 example: Case determination. Now, consider the challenge of determining additional constraints
on parameters in the total effort game, so that in any given case the total payoffs can be represented by
simple closed-form functions of the game’s parameters. Since this is a third step, we assume the second
step has been diligently carried out and consider the strategy conditions presented in Table 8 as given. For
brevity, we consider only the incomplete information case under the assumption b ≤ c.

To illustrate the problem we are about to face, consider the condition for selecting passivity in the
incomplete information game and the case: b + b2(N − 1)/L < c. The condition here is that pi < bN/L.
This condition is possible if and only if bN < L. The case conditions determined thus far do not specify
which of these is the case; so for subsequent computations, we will need to know which it is, and therefore
must consider the two cases separately.

Going beyond this particular example, there are several other values in this table where a similar phe-
nomenon occurs. In particular, we need new cases to determine whether each of the following relations
holds: bN/L ≤ 1, c

b+(L−b)/N ≤ 1, and c−b
b−b/N ≤ 1. (See Table 8). To combine these with previous cases

in a way that avoids redundancy, we rewrite the conditions involving c as linear inequalities on c; obtaining
c ≤ b + (L− b)/N and c ≤ 2b− b/N .

We are thus left to reconcile these additional cases with the current cases b ≤ c ≤ b + b2

L (N − 1)
and b + b2

L (N − 1) < c. To do this efficiently we must know the order of the terms b + L−b
N , 2b − b

N ,
and b + b2

L (N − 1). Fortunately, it turns out that there are only two possible orderings on these terms; and



furthermore, which of the two orderings it is depends on the relation bN < L which we already needed to
specify as part of our case distinctions. If bN ≤ L, then b+ b2

L (N −1) ≤ 2b− b
N ≤ b+ L−b

N and if bL > N ,
then the reverse relations hold.

Assuming limited information, b ≤ c, and dividing all cases according to bN ≤ L, it requires a total of
5 cases to determine all important relationships among important parameters for this game. We may have
bN ≤ L and b ≤ c ≤ b + b2

L (N − 1); bN ≤ L and b + b2

L (N − 1) < c < 2b− b
N ; bN ≤ L and2b− b

N ≤ c;
bN > L and c ≤ b + L−b

N ; and bN > L and b + L−b
N < c. For reference, see Table 9.

Step 4 example: Total payoff computation. Let us determine the total expected payoff for the expert player
with incomplete information in the best shot game with b ≤ c. As intermediate steps we must compute the
probability that each strategy is played, along with the expected payoff for each strategy. The total payoff
is then given by (Probability of passivity · Expected payoff for passivity) + (Probability of self-insurance ·
Expected payoff for self-insurance) + (Probability of protection · Expected payoff for protection).

The expected probability of passivity in this case is 1, with a payoff of M − piL(b/L)N−1. To get an
expected payoff, we compute the expected value of pi within this case. Since there is no constraint on pi and
it is drawn from a uniform distribution its expected value is 1/2. Thus the expected payoff for this case is
M − (L/2)(b/L)N−1. The total expected payoff is thus M − (L/2)(b/L)N−1.

Step 5 example: Eliminating dependencies on other players. Consider the challenge of examining the
total expected payoff for player i, who has complete information, and rewriting this payoff in a way that is
still meaningful as an expected payoff, but does not depend on any pj for j 6= i. The reason we want to do
this last step is so we can compare complete information payoff results with incomplete information payoff
results. We can only do this if the direct dependence on privileged information is removed from the complete
information case payoff. Our method of information removal involves taking an appropriate expected value.

For this example, we consider the best shot game with complete information in the case b ≤ c. Since
this is a fifth step, we should assume that the fourth step (i.e., computing the expected payoff for player i as
a function of parameters that may include pj for j 6= i) has been accomplished.

Indeed, by following Steps 1–4, the total expected payoffs for player i (conditioned on other players) in
the case b ≤ c can be derived, subject to two additional sub-cases. If maxj 6=i pj ≤ b/L, then the expected
payoff is M − c + c2/L; while if b/L < maxj 6=i pj , then the expected payoff is M − b + b2/L.

To generate an appropriate “a posteriori” expected payoff over all choices of pj , we compute the proba-
bility (over choice of pj) that we are in case maxj 6=i pj ≤ b/L times the payoff for that case, plus the proba-
bility (over pj) that we are in the case b/L < maxj 6=i pj times the payoff for that case. We obtain (b/L)N−1 ·[
M − c + c2/L

]
+
[
1− (b/L)N−1

]
·
[
M − b + b2/L

]
. The end result is M − b (1− b/2L) (b/L)N−1. See

Table 6.

5 Results

5.1 Strategies and payoffs

Our results provide us with insights into security decision-making in networked systems. We can recognize
several situations that immediately relate to practical risk choices. We start with basic observations that are
relevant for all three games, before discussing the different games and information conditions in more detail.

General observations applicable to all three security games. Every scenario involves simple cost-benefit
analyses for both sophisticated and naı̈ve agents. Agents remain passive when the cost of self-protection and
self-insurance exceeds the expected loss. Further, they differentiate between the two types of security actions
based on their relative cost. This behavior describes what we would usually consider as basic risk-taking that
is part of everyday life: It is not always worth protecting against known risks.



One important feature of our model is the availability of self-insurance. If c < b the decision scenario
significantly simplifies for all games and both information conditions. This is because once self-insurance
is applied, the risk and interdependency among the players is removed. The interesting cases for all three
games arise when b ≤ c and protection is a potentially cost-effective option. In this case self-insurance has
a more subtle effect on the payoffs.

There are important differences between the two agent types. The expert agent considers the strategic
interdependencies of all agents’ choices. For example, consider b < piL and b ≤ c (that is, protection would
be the preferred choice in the absence of interdependencies) then the expert agent sometimes rather prefers
to self-insure, or to remain passive while naı̈ve agents would always protect without further consideration.
The more nuanced strategies of the expert agent attest to her realization that the group protection goal is
sometimes not achievable. Note that we model the agents’ incentives to invest in protection in canonical
scenarios when security is critically dependent on a group effort (see examples in Section 3). For example,
with full cooperation of all agents the incentives to send unsolicited bulk email could be significantly re-
duced. However, if naı̈ve users open, respond, or otherwise interact with spam then other users have little
choice but some form of mitigation of the resulting inconveniences. Otherwise, the expert agent will com-
monly invest in security for a resource when its safety is not subject to peers’ (in)actions (i.e., if N = 1).

If b > pjL for some agents j, then the naı̈ve users do not fully internalize how the inactions of those
agents can impact system-wide security. This naı̈veté is coming back to haunt them. In fact, surveys of
average end users’ security experiences show that 66 percent lost data permanently due to lacking backup
provisions [26]. Similarly, 54 percent have had their computers infected by a network-propagated malicious
code [35]. For example, the success of the Conflickr/Downadup worm is dependent on users not applying
available patches to their operating system.

The naı̈ve agents face a payoff reduction as a result of their limited understanding of correlated threats,
but even the sophisticated agent can experience a similar payoff reduction due to limited information. On
the one hand, she might invest in self-protection or self-insurance when it is not necessary because the naı̈ve
agents collectively or individually secured the network. On the other hand, she may fail to take a security
action when a (relatively unexpected low probability) breach actually occurs. It is important to mention that
she acted rationally in both situations, but these additional risks remain.

Basic payoffs for different security actions: We can immediately observe that the additional risk due
to limited information results from different mechanisms for each security scenario. In the weakest-link
game (Online appendix: Table 1 [?]) we find that self-protection carries a risk for the expert agent with
limited information that at least one naı̈ve agent chooses not to protect. This would result in a break-down
of system security and a waste of self-protection expenditure. In contrast, in the best shot game (Table 4)
the investment in preventive action always secures the network but with limited information this may be a
duplicative effort. In the total effort game these risks are more balanced (Online appendix: Table 7). The
expert can add or withhold her N -th part of the total feasible security contribution. Depending on the cost
of security she has to estimate the expected number of naı̈ve contributors K in order to respond adequately.

Conditions for choice between different security actions: In the weakest-link game and complete infor-
mation, the expert agent can utilize the lowest attack probability that any naı̈ve agent has drawn. If this value
is below the required threshold for protection, (i.e. if minj 6=i pj < b/L), then the sophisticated agent will
never protect. Otherwise, depending on her own draw she will make or break a successful defense. Under
incomplete information she has to consider the likelihood (1− b/L)N−1 that all naı̈ve agents protect. In all
cases there is now a residual likelihood that she might self-insure (Online appendix: Table 2).

In the best shot game the fully informed expert can simply determine the highest likelihood of being
attacked for any naı̈ve agent to decide whether she should contribute to system protection. With full or
limited information, it is obvious that she will only have to contribute very rarely, and can mostly rely on
others’ efforts. Nevertheless, it is surprising to find that in the incomplete information scenario the expected



payoff from passivity always dominates the expected payoff for protection, even when the expected loss
is near total (pi ∼ 1). The sophisticated user with limited information will never protect. Under neither
information condition is it optimal to self-insure if b ≤ c. See Table 5 for details.

Next consider the total effort game (Online appendix: Table 8). Under full information with b ≤ c, all
conditions depend non-trivially on K, the number of contributors to protection. Under incomplete informa-
tion the expert must compute the expected value of K, which is (1 − b/L)(N − 1). The case differences
between complete and incomplete conditions reflect the replacement of K with E[K], and subsequent sim-
plification. In all cases, the critical factor for the decision to protect is whether the potential loss is N times
greater than the cost of protection (i.e. piL ≥ bN ).
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Fig. 1. Strategy boundaries in the incomplete information scenario for the sophisticated player. The cases refer to b) Table 6 and
a,c) Online app. Tables 3/9 (with L = M = 1 and N = 4).

Case boundaries for choice between different security actions: In Figure 1, we plot the cases used to
record total expected payoffs for the expert agent.

In the weakest-link game only cases 3 and 4 allow for investments in self-protection. We find that
increasing the number of agents, N , results in a shrinkage of both cases 3 and 4 to the benefit of case 2.
In contrast, the determination of case boundaries in the best shot game is independent of the size of the
network. Finally, in the total effort game only cases 3 and 4 allow for rational self-protection investments.
Again an increase in the network size reduces the prevalence of these cases (since bN ≤ L is a necessary
condition).

Payoffs: Table 6, and online appendix Tables 3 & 9 contain the total expected payoff for decisions made by
the sophisticated agent, but also for the naı̈ve agents.

We have already highlighted that for c < b all agents follow the same simple decision rule to decide
between passivity and self-insurance. Therefore, payoffs in this region are identical for all agent types in the
case of homogeneous security costs. But, there are payoff differences among all three information conditions
for some parts of the parameter range when b ≤ c.

Consider the graphs in Figure 2. We plot the payoff functions for sophisticated agents types under the
different information conditions, as well as the payoff output for the non-expert agent. It is intuitive that the
naı̈ve agents suffer in the weakest-link game since they do not appreciate the difficulty to achieve system-
wide protection. Similarly, in the best shot game too many unsophisticated agents will invest in protection
lowering the average payoff. In the total effort game, sophisticated agents realize that their contribution is
only valued in relation to the network size. In comparison, naı̈ve agents invest more often in protection. This
reflects the fact that the naı̈ve agent ignores the self-insurance option whenever protection is cheaper.

We can observe that the sophisticated agents will suffer from their misallocation of resources in the
weakest-link game when information is incomplete. In the best shot game this impact is limited, but there is
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Fig. 2. Total expected payoffs for the strategic player under different information conditions, compared with that of the naı̈ve agents
(with L = M = 1, N = 4, and b is fixed to b = 0.20).

a residual risk that no naı̈ve agent willingly protects due to an unlikely set of draws. In such cases the fully
informed expert could have chosen to take it upon herself to secure the network. In the total effort game we
observe a limited payoff discrepancy for expert users as a result of limited information.

5.2 Value of information

From a system design perspective it is important to select parameter settings (e.g., making available specific
security technologies) that maximize user utility and are robust to changes in the environment. The security
games we analyze in this paper are a significant challenge in both aspects. In particular, from Figure 2 we
can infer that the penalty for the lack of complete information about attack threats can be highly variable
depending on the system parameters. We argue that the reduction of this disparity should be an important
design goal. To further this goal we propose a mathematical formulation to measure the value of better
information. We then apply this metric to the analysis of the three canonical security games.

Definition: We are interested in a mathematical measure that allows us to quantify the payoff loss due
to incomplete information for sophisticated agents, that can be applied to a variety of decision-theoretic
scenarios. It is nontrivial to arrive at a definitive answer for this problem statement, therefore, we consider
our analysis as a first step towards this goal. We define the value of information metric as the ratio:

Expected payoff in the complete information environment
Expected payoff in the incomplete information environment

Observations: Consider Figure 3 which gives, for all three security games, a heat plot for the value of
better information over all choices of b and c with L, M, N fixed at L = M = 1 and N = 4. The most
remarkable feature of these graphs are the different hotspot regions. In the weakest-link game we find that
higher ratios are located within the boundaries of cases 3 and 4. Both cases allow for self-protection in the
presence of incomplete information and therefore cover risks more directly than the remaining cases. (Case
1 and 2 associate zero probability with self-protection.)

In the best shot scenario the peak region is located trivially within the boundaries of case 2. We know
that the expert player will never protect under incomplete information but is subject to the residual risk of
a system-wide security failure. For N = 4 the likelihood of such a breakdown is already very small, and
decreases with N . Still this outcome is feasible and most pronounced for protection costs that are about a
half to two-thirds of the loss, L. For higher b the disincentive of buying self-protection and the potential loss
are more balanced resulting in a lower penalty for limited information.

In the total effort game we observe multiple hotspot regions. Cases 4 and 6 are unaffected by limited
information. They are characterized by the absence of self-insurance as a feasible strategy. This eases the
decision-making problem of the expert, and reduces the likelihood of a misspent security investment.



 1.18

 0.2  0.4  0.6  0.8  1
Self−protection cost (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
S

el
f−

in
su

ra
nc

e 
co

st
 (

c)

 1
 1.02
 1.04
 1.06
 1.08
 1.1
 1.12
 1.14
 1.16

 0

(a) Weakest link

 1.02

 0.2  0.4  0.6  0.8  1
Self−protection cost (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

S
el

f−
in

su
ra

nc
e 

co
st

 (
c)

 1

 1.005

 1.01

 1.015

 0

(b) Best shot

 0.2  0.4  0.6  0.8  1
Self−protection cost (b)

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

S
el

f−
in

su
ra

nc
e 

co
st

 (
c)

 1

 1.005

 1.01

 1.015

 1.02

 1.025

 1.03

 0

(c) Total effort

Fig. 3. The value of information for the various games (with L = M = 1, N = 4).

6 Conclusions

In our work we emphasize that security decision-making is shaped by the structure of the task environment
as well as the knowledge and computational capabilities of the agents. In our model, decisions are made from
three distinct security actions (self-protection, self-insurance or passivity) to confront the security risks of
weakest-link, best shot and total effort interdependencies [21, 43]. In these environments, we investigate the
co-habitation of a single fully rational expert and N−1 naı̈ve agents. The naı̈ve agents fail to account for the
decisions of other agents, and instead follow a simple but reasonable self-centered rule-of-thumb. We further
study the impact of limited information on the rational agent’s choices, and provide a detailed overview and
examples of our methodology to compare strategies and payoffs.

We find that in general, the naı̈ve agents match the payoff of the expert when self-insurance is cheap,
but not otherwise. Even with limited information, the sophisticated agent can generally translate her better
structural understanding into decisions that minimize wasted protection investments, or an earlier retreat to
the self-insurance strategy when system-wide security is (likely) failing.

A notable exception is the weakest link game with incomplete information, where the payoff of the
sophisticated agent degrades to that of the naı̈ve agent as self-insurance becomes more expensive. A practical
implication of this result is that, in corporate network access control, having a lot of information about the
various potential vulnerabilities that may exist at network access points actually only marginally enhances
security; the key factor is whether self-insurance (e.g., data backups) provide adequate security or not.
When some items, such as trade secrets, cannot be self-insured, they simply should not be stored on a
publicly accessible network. Common sense tells us that much; a contribution of this paper is to provide a
mathematical foundation to justify such policy recommendations.

Our analysis also shows that an expert user never provides a positive improvement to system-wide
security (in comparison to her replacement by an unsophisticated agent). While our expert agent is rational,
she is not benevolent. Instead she acts selfishly, and the set of scenarios for which protection is her best
option is always a subset of the set of scenarios for which the naı̈ve agent chooses protection. In other
words, assuming that competent CISOs may be interested in enhancing security at all costs may be a tall
order; they may, in fact, be much more interested in finding optimal security investments, which may not
result in improved security.

To complement our study we are interested in studying properties of a network with varying fractions of
expert to naı̈ve users. Further, we want to address the desire of some computer experts to sacrifice individual
resources to improve system resilience to attacks, by introducing benevolent agents. As discussed above, our
analysis thus far evidences the need for such benevolent agents. As a practical example, censorship-resilient
networks are run by volunteers; without these benevolent participants, the whole network collapses. This
paper shows that there is little hope for strong security if all participants are either naı̈ve, or selfish.



To analyze the impact of the different information conditions we have proposed a new mathematical
formalization. We measure the value of complete information as the ratio of the payoff in the complete
information environment to the payoff in the incomplete information environment. Our analysis of Figure 3
is a first step in that direction, however, a more formal analysis is deferred to future work.

Finally, a system designer is not only interested in the payoffs of the network participants given different
information realities (e.g., due to frequent changes in attack trends). He is also concerned with how well-
fortified the organization is against attacks. To that effect we plan to include a more thorough presentation
of the parameter conditions that cause attacks to fail due to system-wide protection, and when they succeed
(due to coordination failures, passivity, and self-insurance).
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A Appendix: Tabulated results

Table 1. Weakest link security game: Payoffs for different strategies under different information conditions

Case Information Payoff Payoff Payoff
Type Passivity Self-Insurance Protection

c < b Complete M − piL M − c M − b− piL

b ≤ c and minj 6=i pj < b/L Complete M − piL M − c M − b− piL

b ≤ c and b
L
≤ minj 6=i pj Complete M − piL M − c M − b

c < b Incomplete M − piL M − c M − b− piL

b ≤ c Incomplete M − piL M − c M − b− piL
“
1−

`
1− b

L

´N−1
”



Table 2. Weakest link security game: Conditions to select protection, self-insurance or passivity strategies

Case Information Conditions Conditions Conditions
Type Passivity Self-Insurance Protection

c < b Complete pi < c
L

pi ≥ c
L

NEVER!
b ≤ c and minj 6=i pj < b

L
Complete pi < c

L
pi ≥ c

L
NEVER!

b ≤ c and b
L
≤ minj 6=i pj Complete pi < b

L
NEVER! pi ≥ b

L

c < b Incomplete pi < c
L

pi > c
L

NEVER!
b ≤ c ≤ b

(1− b
L )N−1 Incomplete pi < c

L
pi ≥ c

L
NEVER!

b

(1− b
L )N−1 < c Incomplete pi < b

L(1− b
L )N−1 pi > c−b

L
“
1−(1− b

L )N−1
” b

L(1− b
L )N−1 ≤ pi ≤ c−b

L(1−(1− b
L

)N−1)

Table 3. Weakest link security game: Total expected game payoffs, not conditioned on other players

Case Information Total Expected Payoff for player i
Type (not conditioned on other players)

c < b Complete M − c + c2

2L

b ≤ c Complete M − c + c2

2L
+ (c− b)

`
1− c+b

2L

´ `
1− b

L

´N−1

c < b Incomplete M − c + c2

2L

b ≤ c ≤ b

(1− b
L )N−1 Incomplete M − c + c2

2L

b

(1− b
L )N−1 < c < b + L

“
1−

`
1− b

L

´N−1
”

Incomplete M − c + b2

2L(1− b
L )N−1 + (c−b)2

2L
“
1−(1− b

L )N−1
”

b

(1− b
L )N−1 < b + L

“
1−

`
1− b

L

´N−1
”
≤ c Incomplete M − b− L

2

“
1−

`
1− b

L

´N−1
”

+ b2

2L(1− b
L )N−1

c < b Naive M − c + c2

2L

b ≤ c Naive M − b + b2

2L
− L

2

“
1− b2

L2

”“
1−

`
1− b

L

´N−1
”

Table 4. Best shot security game: Payoffs for different strategies under different information conditions

Case Information Payoff Payoff Payoff
Type Passivity Self-Insurance Protection

c < b Complete M − piL M − c M − b

b ≤ c and maxj 6=i pj < b
L

Complete M − piL M − c M − b

b ≤ c and b
L
≤ maxj 6=i pj Complete M M − c M − b

c < b Incomplete M − piL M − c M − b

b ≤ c Incomplete M − piL
`

b
L

´N−1
M − c M − b

Table 5. Best shot security game: Conditions to select protection, self-insurance or passivity strategies

Case Information Conditions Conditions Conditions
Type Passivity Self-Insurance Protection

c < b Complete pi < c/L pi ≥ c/L NEVER!
b ≤ c and maxj 6=i pj < b/L Complete pi < b/L NEVER! pi ≥ b/L

b ≤ c and b/L ≤ maxj 6=i pj Complete ALWAYS! NEVER! NEVER!
c < b Incomplete pi < c/L pi ≥ c/L NEVER!
b ≤ c Incomplete ALWAYS! NEVER! NEVER!



Table 6. Best shot security game: Total expected game payoffs, not conditioned on other players

Case Information Total Expected Payoff
Type

c < b Complete M − c + c2

2L

b ≤ c Complete M − b
`
1− b

2L

´ `
b
L

´N−1

c < b Incomplete M − c + c2

2L

b ≤ c Incomplete M − L
2

`
b
L

´N−1

c < b Naive M − c + c2

2L

b ≤ c Naive M − b + b2

2L

Table 7. Total effort security game: Payoffs for different strategies under different information conditions

Case Information Payoff Payoff Payoff
Type Passivity Self-Insurance Protection

c < b Complete M − piL M − c M − b− piL (1− 1/N)

b ≤ c Complete M − piL (1−K/N) M − c M − b− piL (1− (K + 1)/N)

c < b Incomplete M − piL M − c M − b− piL (1− 1/N)

b ≤ c Incomplete M − pi (b + (L− b)/N) M − c M − b− pi (b− b/N)

Table 8. Total effort security game: Conditions to select protection, self-insurance or passivity strategies

Case Information Conditions Conditions Conditions
Type Passivity Self-Insurance Protection

c < b Complete pi < c
L

pi ≥ c
L

NEVER!
b ≤ c ≤ b(N −K) Complete pi < c

L(1−K
N )

pi ≥ c

L(1−K
N )

NEVER!

b(N −K) < c Complete pi < bN
L

pi > c−b

L(1−K+1
N )

bN
L
≤ pi ≤ c−b

L(1−K+1
N )

c < b Incomplete pi < c
L

pi ≥ c
L

NEVER!
b ≤ c ≤ b + b2

L
(N − 1) Incomplete pi < c

b+ L−b
N

pi ≥ c

b+ L−b
N

NEVER!

b + b2

L
(N − 1) < c Incomplete pi < bN

L
pi > c−b

b− b
N

bN
L
≤ pi ≤ c−b

b− b
N



Table 9. Total effort security game: Total expected game payoffs, not conditioned on other players

Case Information Total Expected Payoff
Type

c < b Complete M − c + c2

2L

bN ≤ L and b ≤ c Complete
PbN− c

b
c

k=0 Pr[k] ·
„

M − c + c2

2L(1− k
N )

«
+
PbN−1−N

L
(c−b)c

k=bN− c
b
+1c Pr[k] ·

„
M − c + b2N

2L
+ (c−b)2

2L(1− k+1
N )

«
+
PN−1

k=bN−N
L

(c−b)c Pr[k] ·
“
M − b− L

2

`
1− k+1

N

´
+ b2N

2L

”
L < bN and b ≤ c Complete

PbN− cN
L
c

k=0 Pr[k] ·
„

M − c + c2

2L(1− k
N )

«
+
PN−1

k=bN− cN
L

+1c Pr[k] ·
`
M − L

2N
(N − k)

´
c < b Incomplete M − c + c2

2L

bN ≤ L and b ≤ c ≤ b + b2

L
(N − 1) Incomplete M − c + c2

2(b+ L−b
N )

bN ≤ L and b + b2

L
(N − 1) < c < 2b− b

N
Incomplete M − c + b2N

2L
+ (c−b)2

2(b− b
N )

bN ≤ L and 2b− b
N
≤ c Incomplete M − b− 1

2

`
b− b

N

´
+ b2N

2L

L < bN and b ≤ c < b + L−b
N

Incomplete M − c + c2

2(b+ L−b
N )

L < bN and b + L−b
N

≤ c Incomplete M − 1
2

`
b + L−b

N

´
c < b Naive M − c + c2

2L

b ≤ c Naive M − b− 1
2

`
b− b

N

´
+ b2

L

`
1− 1

2N

´


