A Security Standard for AMI Smart Meters

Coalton Bennett coalton@enernex.com Darren Highfill darren@enernex.com Stephen B. Wicker wicker@ece.cornell.edu

Abstract -- There is a growing interest in 'Smart Grid' technologies in both industry and academic circles. Few attempts have been made to develop a written specification consummated with standards agreed upon by members of both coteries, due to lack of government support. Utilities in the state of California are obligated, by state legislature, to create a more: efficient, reliable, and intelligent electric power system. This initiative along with Florida Power & Lighting's 'Smart Grid' pilot program has created a sense of exigency within the industry regarding smart grid technologies and standardizations. Their accomplishments are beginning to shape the policies and standards with marginal input from academic societies, ushering in a very lopsided, and business acclimatized set of standards. We will present and analyze, a SCE 'Smart Grid' use case, in which the utilities back office applications interact with the customer's meter, and provide technical recommendations for system security improvements.

I. INTRODUCTION

THE need for a smart grid, and in particular: demand I response, outage management, disaster prevention, and disaster recovery systems, has become a growing concern in many circles-utilities, academics, and energy/environmentally conscience customers [1][2][3][4][5]. This has been a driving (key) factor in utility and vendor communities alike, to integrate legacy physical infrastructure with new an emerging technologies. Currently there are several utilities that have taken steps towards integrating more avant-garde telecommunications technologies with new and improved solid-state metering devices. Most new meters being installed across the country are comprised of: a solid-state device responsible for monitoring electricity consumption, in addition to a two-way communications device-this comprises the AMI meter [4]. No standards documents exist vet formally defining, the Smart Grid, let alone demand response systems. Although some efforts have been made on behalf of the state of California to better define such a system [4]. An AMI system consists of four major components, namely the: meter, in home portal/display provided by the collection gateway. а neighborhood data point (collector/access point), and the central office. While each component is vital to the correct operation of, the AMI and demand response systems, for the purposes of this paper we restrict our investigation to the first three components: the meter, portal, and access point.

Our first objective in writing this paper is to identify and review certain communication technologies that we believe are critical for future demand response systems. Our second objective is to provide a basis from which industry and academic participants can draw upon as a reference guide when implementing, testing, and or simulating a demand response system. The components, we have chosen to include in the demand response system description, are by no means standard components, however the UCAIug¹ has considered these components to be an integral part of any demand response system. Even though we will reference material, which has yet to be approved by an official standards body such as IEEE, we feel confident that most utilities, many of which have contributed to the development of this material, will adopt a similar AMI system design if they haven't already.

In this paper we will present a few technologies currently being considered, or used, in AMI system deployments throughout the country, and analyze the networks necessary for transporting demand response information. In addition we will identify possible security and privacy vulnerabilities inherent in such a demand response system consisting of 5000+ nodes, with a particular focus on maintaining customer anonymity.

II. WIRELESS HOME AREA AND NEIGHBORHOOD AREA NETWORK SOLUTIONS

In the author's previous work [6] they showed that it is possible to turn any appliance into a smart appliance, using a wireless radio and a relay, and network these appliances via PC using the 802.15.4 protocol. Two very forward thinking utilities in the United States, SCE (Southern California Electric) and FPL (Florida Power & Lighting), have began to deploy AMI meters equipped with 802.15.4 radios. An AMI meter is defined as a meter providing: two-way communications, automated meter data collection, outage management, dynamic rate structures, and demand response for load control [7]. These features make real time communication between appliances, the meter, and subsequently the utility a reality. Other technologies are also being considered as viable options for such communications [HomePlug references]. However this particular technology would have to send signals through transformers, which might prove to be problematic in an outage management situation, or something equally as important. Therefore a wireless link to the meter seems to be the most robust technology for a demand response system.

The work presented in this paper was supported in part by the Team for Research in Ubiquitous Secure Technologies (TRUST)

Affliations: Coalton Bennett is a graduate student at Cornell University in the Department of Electrical and Computer Engineering, Ithaca NY 14850 U.S.A.

Darren Highfill is with EnerNex Corporation, Knoxville TN 37932 U.S.A.

¹ The UCA[®] International Users Group is a not-for-profit corporation consisting of utility user and supplier companies dedicated to promoting the integration and interoperability of electric/gas/water utility systems through the use of international standards-based technology.

A. IEEE Low Rate Wireless Personal Area Network Energy Specifications

The low-rate wireless personal area network standard, (LR-WPAN 802.15.4), was developed so as to provide the same functionality of a traditional sensor network, while optimizing the lifetime of the devices. Most traditional sensor networking stacks, which are based on the 802.11.x protocol, were not designed with this focus in mind. In order to maximize the lifetime of a battery powered 802.11 device, the physical(PHY) and media access control(MAC) layers must be modified [18][19][20]. The 802.15.4 MAC layer was designed to increase the expected lifetime of a device, thus making it the preferred solution. This becomes especially important for appliances that have higher duty cycles.

In [9] the authors state that, "application-specific energyaware cross-layer optimization can improve network performance." The Media Access Control (MAC) and Physical (PHY) layer standards of the 802.15.4 radio were created for a multitude of network organization designs. This serves as a driver for the development of a collection of different higher-level protocols. Zigbee is an open standard thus making it one of the more popular 802.15.4 networking solutions. There is also a proprietary solution offered by MicroChip, which also uses the 802.15.4 standard. However this solution limits vendors to MicroChip components when designing products for utilities, third parties, or consumers [21].

B. Overall System Design

In the system that we consider, the meter serves as a PAN (Personal Area Network) coordinator, or a full-function device (FFD), for each appliance, or reduced-function device (RFD) in the network [11]. In addition to the meter's ability to coordinate appliances within the Home Area Network(HAN), the meter will also provide a communication link to the Neighborhood Area Network(NAN) access point using an 802.15.4 radio. For this paper we have chosen the Zigbee networking standard because of its ability to form selforganizing self-healing mesh networks. Given the fact that 802.15.4 radios can successfully transmit packets a distance of 50 meters—nearly half the length of a football field—the meters can form either a mesh or star network with other meters in the neighborhood. Within an average size residential dwelling, the distance between the appliance and the meter will be at most 30 meters. Thus appliances can transmit packets using a lower power setting.

Appliance registration can also be accomplished, if a customer has enrolled in a direct load control program with their electric utility. This would in turn give the utility the ability to toggle the state of an appliance within the home. This being said the utility should keep customer data private and, under no circumstance should a utility release customer data to an unauthorized entity.

In the next section we will reference a system requirements specification document, which has been ratified by twelve investor-owned North American utilities, and endorsed by two others [22]. This document outlines the Guiding Principles, 2

Use Cases, System Requirements, Architectural Drawings, and Logical Device Mappings for platform agnostic Home Area Network devices. The OpenHAN System Requirements section of [22] provides information about five different fundamental components, however in this paper we will only address the system components necessary for successful communication between devices within the HAN. The neighborhood area network will be discussed in the second section, and the wide area network will be discussed in the third. In conclusion we show how all three sections can be tied to together to create a comprehensive network of smart appliances and AMI smart meters.

III. HOME AREA NETWORK

In this section we will briefly outline the communication and security requirements listed in [22] and show how the open standard networking protocols developed by the Zigbee Alliance satisfy the requirements in this specification with little, or, no modification.

A. Communication Requirements

There are two components necessary for "reliable message transmission" between the customer's HAN devices and the utility's back office systems. The first requirement is Commissioning: which is responsible for identifying new appliances(nodes) and adding/removing them from a selforganize network. The second requirement is Control: which is responsible for maintaining the communication link between appliances within the network.

The commissioning of a node to a network requires that thirteen criteria be met. In the table below we compare the rudimentary requirements for both the OpenHAN Network System Requirements Specification (NSRS) and the Zigbee Specification. Several of the OpenHAN requirements are met with the Zigbee specification. Although these are, at most, a very basic set of requirements we believe that as the OpenHAN (NSRS) is developed, a number of the requirements will coincide exactly with the Zigbee specification. Thus making the tasks for utilities and vendors much less complicated when offering demand response service and products. The only requirement is that the services and products meet the standards outlined below.

OpenHAN	Zigbee Device	
Device Commissioning	Commissioning	
Requirements	Requirements	
Comm.Commision.1	Capability Information Bit-	
HAN Device shall accept	Field.7	
network configuration data	The joining device must be	
which allows for private	issued a 16-bit network	
Utility networking (e.g.	address, except in the case	
private address/ID)	where a device has self-	
	selected its address while	
	using the network rejoin	
	command, to join a network	
	for the first time in a secure	
	manner.	

Comm.Commission.2	Mining Standard	information in the line	requests The Jania June
HAN Device shall accept	Mixing Standard and	information, including network ID, gateway ID, and	requests. The device address of interest field enables
commissioning configuration	Proprietary Profiles	Utility ID, if pre-configured	responses from the device
data by the manufacturer	If manufacturer extensions	with Utility information.	regarding the device and the
(e.g., link key).	(e.g. commissioning	with Othity information.	services that it offers. ³
(e.g., mik key).	configuration data) are not	Comm.Commission.7	Application Support Sub-
	supported, or the type of	Energy Services Interface	
	desired manufacturer	shall have the ability to	Layer Management Entity
	extensions are not in a public	accept or reject a request	(APSME) Key
	profile, then the manufacturer	based on device type.	Establishment
	may deploy the extensions in	based on device type.	This primitive provides the
	a separate manufacturer-		responder with an
	specific profile identifier		opportunity to determine
	within the same physical		whether to accept or reject a
	device. ²		request to establish a key
Comm.Commission.3	End Device Binding		with a given initiator, based
HAN Device shall accept	Provides the ability for an		on any number of different
commissioning configuration	application to support a		criteria (e.g. device type).
from the Installer.	simplified method of binding	Comm.Commission.8	Trust Center
	where user intervention is	Energy Services Interface	The trust center can be
	employed to identify	shall have the ability to	configured such that devices
	command/control device	accept or reject device	without an identifiable IEEE
	pairs. Typical usage would be	requests based on Utility-	address will be either
	where a user is asked to push	specific information (e.g.,	accepted or rejected. [23]
	buttons on two devices for	network ID, gateway ID, or	
	installation purposes.	Utility ID).	
Comm.Commission.4 When	Network Layer	Comm.Commission.9 HAN	An acknowledgement is
Energy Services Interface is	Management Entity	Device shall acknowledge	issued per frame.
triggered (e.g., Allow Join	(NLME)	successful commissioning	
Command), HAN Device	Neighbor discovery: this is	requests (i.e., provide acknowledgement to the	
location-/contact-specific data shall be provided to	the ability to discover, record,	requesting HAN Device).	
other HAN Devices in the	and report information	Comm.Commission.10	Network Management
premise.	pertaining to the one-hop	When a HAN Device is	This includes several
1	neighbors of a device.	communicating with the	capabilities including: energy
Comm.Commission.5 When	Creating a Zigbee Profile	Energy Services Interface,	detection scan results for link
a HAN Device is triggered	The key to communicating	HAN Device shall indicate	connectivity between devices.
(e.g. Power-on, button), HAN Device shall provide the	between devices on a ZigBee	link connectivity.	connectivity between devices.
Energy Services Interface	network is agreement on a profile. An example of a	Comm.Commission.11	End Device Binding
with device-specific	profile would be home	HAN Device shall provide	Provides the ability for an
information including device	automation. This ZigBee	notification to the	application to support a
ID and device type.	profile permits a series of	Installer of the	simplified method of binding
in und device type.	device types to exchange	commissioning status. Status	where user intervention is
	control messages to form a	conveyed shall be either:	employed to identify
	wireless home automation	successful/unsuccessful.	command/control device
	application. These devices		pairs. Typical usage would be
	are designed to exchange		where a user is asked to push
	well-known messages to		buttons on two devices for
	effect control such as turning		installation purposes.
	a lamp on or off.	Comm.Commission.12	Trust Center Application
Comm.Commission.6 When	Device and Service	Energy Services Interface	The center is required to
a HAN Device is triggered	Discovery	shall maintain an updated list	maintain a list of: devices,
(e.g. power on, button), HAN	Device and Service	of commissioned (i.e.,	master keys, link keys, and
Device shall provide the	Discovery are distributed	connected) HAN Devices.	network keys that it needs to
Energy Services Interface	operations where individual		control and enforce the
with device specific Utility	devices respond to discovery		policies of network key
			updates and network

² A profile identifier permits the profile designer to define the following:
Device descriptions

[•] Cluster identifiers

 $^{^3}$ A complete listing of the values reported by the device can be found in section 2.4.2.1 of the Zigbee Specification document.

	admittance.		this, routers exchange link
Comm.Commission.13	Remove Device Commands		cost measurements with their
Energy Services Interface	There are command frames		neighbors by periodically
shall have the ability to	designed in the APS for		transmitting link status
remove HAN Devices from	removing devices.		frames as a one-hop
the Utility HAN.	removing devices.		broadcast. The reverse link
			cost information is then used
			during route discovery to
B. Control Requirements			ensure that discovered routes
HAN technologies should provide autonomous functions,			use high-quality links in both
enabling: efficient, robust, and reliable communication paths.			directions.
These qualities can be ensured if control primitives are		Comm.Control.4	
implemented. In this section we provide a comparison		HAN Device shall only use Utility designated routes	
	between the requirements outline in the OpenHAN SRS		
	document and the standard features offered within the Zigbee		Network Interference
stack.		HAN Device shall have the	Reporting and Resolution
		ability to automatically adapt	A single device can become
OpenHAN Device Control	Zigbee Device Control	to communications	the Network Channel Manager. This device acts as
Requirements	Requirements	interference through detection	the central mechanism for
Comm.Control.1	-	and analysis of environmental	reception of network
HAN Device shall accept	Establishing a New Network	conditions (e.g., channel	interference reports and
network organization		hopping, channel avoidance,	changing the channel of the
messages from the Energy	Each device which is not a	signal-to-noise ratio).	network if interference is
Services Interface (e.g.,	Zigbee coordinator, and		detected. The default address
gateway location, routing	hence a parent device, is a		of the network manager is the
table, address).	child device, and network		coordinator.
table, address).	organizational tasks are	Comm.Control.6	Message Integrity Code
	disseminated from parent to	HAN Device shall include a	Each Zigbee network frame is
	child accordingly. 4	data integrity mechanism for	accompanied by an integrity
Comm.Control.2	Joining a Network (Child	all communications (e.g.,	code, which is responsible for
HAN Device shall accept	Procedure)	checksum).	protecting network
network organization	All child devices which,	,	information during transit
messages from peer devices	attempt to join a new	Comm.Control.7	Network Manager
(e.g., hidden node).	network, are required to use	Energy Services Interface	The network management
	the information provided in	shall have the ability to	
	their neighbor table entry in	activate and deactivate its	function provides support for essential elements of the
	order to determine which	HAN communication.	
	available parent devices	In the communication.	network (e.g. Network
	would work best. ⁵		Discovery, Network
Comm.Control.3	Link Status Messages		Formation, Association and
HAN Device shall use the	Wireless links may be		Disassociation, Radio
most reliable path to the	asymmetric, that is, they may		Receiver State
Energy Services Interface	work well in one direction		Enable/Disable) amongst
(e.g., based on signal	but not the other. This can		other things.
strength/quality).	cause route replies to fail,	Comm.Control.8 HAN	Network List Record
	since they travel backwards	Device shall communicate its	The network list record
	along the links discovered by	availability (i.e., 'heartbeat')	provides a field, which allows
	the route request.	to the Energy Services	users to specify the beacon
	^	Interface at least once per	order. The beacon order
	For many-to-one routing and	day.	specifies how often the MAC
	two-way route discovery, it is		sub-layer beacon is to be
	a requirement to discover		transmitted by a given device
			on the network
	routes that are reliable in both		on the network.
		Comm.Control.9 HAN	Network List Record
	routes that are reliable in both	Device shall have a	
	routes that are reliable in both directions. To accomplish	Device shall have a configurable availability	
parent device can exist on the network	routes that are reliable in both directions. To accomplish be a parent device, and more than one t. However in the design of this system	Device shall have a configurable availability communication (i.e.,	
parent device can exist on the network it was seemingly efficient to include	routes that are reliable in both directions. To accomplish	Device shall have a configurable availability communication (i.e., heartbeat) frequency to the	
parent device can exist on the network it was seemingly efficient to include device of the network.	routes that are reliable in both directions. To accomplish be a parent device, and more than one t. However in the design of this system	Device shall have a configurable availability communication (i.e.,	

Services Interface shall store	This is a reference to an
a list of available,	enumeration of clusters
commissioned HAN Devices	within a specific application
in the premise and make that	profile or collection of
list available to the AMI	application profiles. The
System upon request.	cluster identifier is a 16-bit
	number unique within the
	scope of each application
	profile and identifies a
	specific cluster. Conventions
	may be established across
	application profiles for
	common definitions of cluster
	identifiers whereby each
	application profile defines a
	set of cluster identifiers
	identically. Cluster identifiers
	are designated as inputs or
	outputs in the simple
	descriptor for use in creating
	a binding table. ⁶
L	

We believe that if vendors adhere to, at the least, the OpenHAN SRS document when developing products it will provide customers with the opportunity to be more flexible in their selection of appliances. The Zigbee standard is open as well and meets the criteria outlined in the SRS document, thus simplifying the vendor's task when developing products that must comply with the OpenHAN standards. However there are other standards such as Bluetooth, which with the help of the Bluetooth Special Intrest Group (SIG), has become an open standard and is readily available for download on Bluetooth's website. This would be an ideal candidate for such an application, however Zigbee is the preferred choice because of the network lifetime [33]. The foremost difference between Zigbee and Bluetooth is the ability for Zigbee radios to consume far less power than Bluetooth radios. The obvious result is an increase in the life expectancy of the network. The lifetime of a Zigbee device is approximately 3.1 days, greatly contrasting with that of a Bluetooth device, which lasts for roughly 2.2 hours. The throughput, bandwidth, and spectral efficiency specifications for Bluetooth devices are greater than those of a Zigbee device. These quantities are not particularly relevant in our application, because the devices in the network will not be required to report large quantities of data. The most notable Zigbee attribute is it's exceptional transmission range. It is greater than twice the maximum range of a Bluetooth device making it extremely attractive for home automation applications. This would eliminate the need to include extra nodes in the network, which are not monitoring appliances, but rather serving exclusively as a router.

IV. NEIGHBORHOOD AREA NETWORK

A. Neighborhood Area Network Basics

In this section we introduce the next component of the demand response system, which is the Neighborhood Area Network. This consists of the meters attached to the houses, along with the access point, which forwards customer data to the utilities local office. Although a standard NAN definition does not exist yet, a few members of the UCAIug have identified components, which they deem necessary for successful communication between the residence and the utility. The network would consist of an AMI meter equipped with an 802.15.4 radio using the Zigbee Pro networking stack along with the Smart Energy(SE) profile. The SE profile defines the standard behavior of secure, easy-to-use, Home Area Network (HAN) devices [24]. The radio is responsible for the appliance-to-meter communication and meter-to-access point communication. Due to the ubiquitous nature of TCP/IP, and the shortage of IPv4 addresses, an IPv6-Zigbee internetworking solution has been proposed. The reason for this is simply because the neighborhood access points will communicate directly with a WAN access point, which is responsible for sending all polled meter data to the utility using a robust backhaul network such as: Ethernet, GSM, CDMA, 3G etc. The meter would be required to interface with two networks requiring two different protocols, which presents a network translation problem. IPv6 over Zigbee [25] is a promising solution.

B. NAN Address Translation

IPv6 over Zigbee works by placing the IPv6 stack on top of the Zigbee network layer. The nodes(meters) are assigned a unique global unicast IPv6 address, the NAN access point should have a Zigbee address, and packet translation in the meter should easily be accomplished without violating the end-to-end model above the network layer. In reality however, the nodes only have a Zigbee address and the access point only has an IPv6 address. If for example the utility were to send a packet to the meter, then the access point would receive a standard IPv6 packet, which would consist of an IPv6 delegation prefix along with an IPv6 host ID—each 64 bits in length. The latter of the two represents the Zigbee address of the polling computer. After receipt of the packet, the access point removes the prefix and then forwards the packet to the designated Zigbee address.

Another possible configuration is 6LowPAN. 6LowPAN adds an adaptation layer to the 802.15.4 stack doing away with the Zigbee standard altogether [26]. The adaptation layer provides the same network translation described above although the application and transport layers are different from those offered in the Zigbee standard. IPv6 over Zigbee simply inserts an IPv6/UDP layer between the Zigbee network layer and the Zigbee application layer. This allows developers who want to comply with the OpenHAN standards the opportunity to do so, without having to reinvent the wheel. The exact opposite procedure is performed when sending information from a node to the access point.

⁶ The ESI would serve as the Cluster Identifier

C. Network Management

Currently most deployments are using a mesh network to transport data from the endpoints to the access point. During normal operation this might be suitable for extracting data from the network, however during periods of irregular energy consumption and or during an emergency this might not suffice. The nodes closest to the access point will suffer from bottlenecking and as a result the entire system will become backloggedTake for example, a current deployment of AMI meters in FPL's Miami service territory, which include most of the components mentioned above. The meters are equipped with Zigbee Pro along with the Smart Energy (SE) Profile [27]. The network access point has two Network Interface Cards. One is used for WAN media, consisting of an EV-DO modem, and the other for NAN media, which consists of a Silver Springs Network 900MHZ Frequency Hopping Spread Spectrum (FHSS) technology using IPv6 and SNMP. The access point is capable of querying the meter in one of two ways, either asynchronously or by polling. Currently FPL is using the polling method, and the meter data rates peak at about 17-19Kbps, but is capable of a maximum data rate of 100Kbps [28]. The average meter to access point ratio is about 5000:1, which with the given data rate would be suitable under normal conditions, however in more mission critical situations (e.g. broadcasting messages to customers to reduce their demand in order to prevent a potential blackout) this might not be sufficient. This might suggest that additional access points might be necessary, however before considering this, it has been suggested that an asynchronous/exception based polling scheme be utilized [29]. This would allow high priority messages, which are critical for system survival, to reach their destinations in a timely manner. In a situation as such an alternate routing protocol might be necessary in order to relieve some of the pressure, and help with mission critical objectives [15][16].

D. Security

Given that the meters will have to communicate with one another, data of the network as a whole must be protected which means that communication between meters will have to be secure. Considering the fact that the utilities will be responsible for providing the customer with a meter equipped with the aforementioned functionalities, key management should not be an issue. The vendor could pre-install the key beforehand so that keys do not have to be exchanged before secure communication can occur. Each meter has a link key and a network key, both of which are 128-bits in length, and they are used for unicast and broadcast communications respectively.

Zigbee provides security services at both the network and application layer. Each of which is responsible for secure transport of data frames from one device to another. The application layer is responsible for the establishment and maintenance of the security relationships amongst devices. The network layer uses the Advanced Encryption Standard (AES) along with the Counter Cipher Block Chaining Message Authentication Code (CCM), which provides authenticity as well as privacy. This is important because HAN device vendors [30] are capable of providing real time information about their neighbor's energy consumption habits, constituting an invasion of privacy. As for the application layer frame security is based on either link keys or networks.

Key establishment is based on a piece of trusted information. Usually this is the master key, which should be installed prior to meter use. Using this key all other keys (i.e. link key and network key) can be created. Zigbee provides a transport key command allowing a sending device to send a: master, link, or network key, obtained from a trusted device within the network, to a receiving device. The trusted device is referred to as the Trust Center in the literature, and the sole purpose of the Trust Center is to provide keys for the network.

Zigbee security hinges on the ability of devices in the network to: secure frames generated at each layer of the stack, exchange keys between a source and destination device, and also to provide end-to-end security without encrypting and decrypting data at each hop. These attributes along with the requirements mentioned above fit together nicely providing a solution for the smart meter networking challenges that utilities are facing now.

Although these components are useful in ensuring security at a very low level, security must be maintained overall so that the network is not compromised. This requirement can be met, by ensuring that the following security principles be upheld. The first is availability of the desired resource. In our case this would be the availability of all components necessary for the communication between a utilities back office network and the meter in their service territory. The second is integrity, which is provided by the integrity code attached to each of the frames leaving the meter. Confidentiality must be maintained and is accomplished by ensuring that only designated entities can access the meter under designated conditions. The fourth principle is access control, which ensures that only designated entities have the ability to establish and execute management mechanisms such as the: establishment, modification, or removal of meters or other criteria. Lastly, all transactions that take place should be accounted for. In a situation where a customer, whether knowingly or not, reduces their demand in response to a pricing signal there are three immediate security concerns-confidentiality, access control, integrity, and availability. The customer's meter obviously has to be available when the utility decides to poll it, but it also must provide a correct reading to the utility—integrity. This implies that the meter should not be capable of reporting false values under any circumstance. This is almost impossible to guarantee because there will inevitably be some human interaction because the customer "owns" the meter-access control. The last security concern is safeguarding against potential eavesdroppers who may attempt to access customer revealing data by sniffing the packets as they leave the residence. This can be accomplished through the use of the security protocols

implemented in the Zigbee standard. This is just one of many use cases [34] which have been outlined by SCE and considered to be the basis from which all other utilities might begin to develop their demand response networks. A much more thorough investigation of these use cases is required in order to determine which entities in the system will be responsible for upholding these five core security requirements. As it stands now all of these responsibilities would be delegated to the access point, thus further constraining it's resources. This would defeat the purpose of having the system in the first place.

V. WIDE AREA NETWORK

Perhaps the most undefined part of the demand response system is the backhaul portion of the network. This could include any number of technologies from Ethernet to simple mobile phone standards such as GSM or CDMA2000 to carry the information extracted from the NAN to it's final destination—the utilities local office. In the latter case the utility would have to lease the lines from a private company (e.g. AT&T or Verizon), which could be costly. FLP is currently doing this because their access point uses EV-DO technology, which is a part of the CDMA2000 3G standard.

Another possibility is the one in which the NAN access point uses a broadband connection to transport data back to the utility. The type of connection could be one of many: Ethernet, Satellite, Cellular, Broadband over Power Lines (BPL), and possibly WiMAX in the future. In urban areas some technologies, take for instance Ethernet, Cellular, and WiMAX might be slightly more feasible options. However in more rural areas, Satellite and BPL are much more appealing options, because of their ability to reach remote areas.

VI. CONCLUSION

In this paper we discussed the three major components of what might become the national standard for a public utilities demand response system. However before this can happen there are several questions, which need to be answered. In particular if the Zigbee protocol, is indeed the best option for the Home Area and Neighborhood Area Networks. If not then what other technologies should be considered. An obvious contender would be 802.11.x, which is used in several different industries, and would be a more than suitable candidate for the public utility space. Especially since most customers will be using a computer, equipped with 802.11.x, as an in-home display of the energy consumption habits. Another possible concern is that customers might be reluctant to have a meter installed which allows their neighbors to monitor their energy usage because of the network's dependency on a mesh network [30]. One might ask why their neighbor's meter should have to communicate with theirs, which is a fair question. A more attractive solution would be one in which relays collect data for a certain subset of houses directly and forward this information to the NAN access point [31]. In addition to this there are standards being developed now, which will be

compulsory, for all communications to and from any device connected to the grid [32]. There is a tremendous disconnect between the requirements outlined in the ANSI C12.22 standard and what the Zigbee devices are capable of. Many of the protocols outlined in C12.22 assume that the communicating devices are wired, which would have to be the case when requiring a device to send tables of tables. There are thirteen decades, each of which might have multiple tables of varying size, that store relevant network information. Thus it is plausible to assume that the memory available on the devices, as it stands now, would be insufficient to hold the information let alone transmit it. However, it still remains to be shown whether or not the size of the decade and tables being accessed, require a bandwidth exceeding the amount available on a Zigbee device. Although for now Zigbee seems to be a feasible solution, a more in depth study is required in order to determine whether or not the energy and memory constraints of the device can support the storage and transmission of these tables. Armed with this information we will then be able to confirm whether or not Zigbee will be an ANSI certifiable solution.

VII. REFERENCES

- Sergel Rick, Executive Remarks Critical Infrastructure Protection, NAURC Summer Meeting, July 20th, 2008
- Sergel Rick, Executive Remarks Demand Response & Reliability, NAURC Summer Meeting, July 20th, 2008
- [3] Senator Padilla, Senate Bill No. 1438, Legislative Counsel's Digest, February 21st, 2008
- [4] Woychick, C, E., "Optimizing Demand Response: A comprehensive DR business case quantifies a full range of concurrent benefits.," *Public* Utilities Fortnightly. 52-57 May 2008
- [5] NERC News Feature Focus: Demand Response
- [6] Bennett S.C., Cardell J., Wicker B.S., "Residential Demand Response Wireless Sensor Network", Fourth Annual Carnegie Mellon Conference on the Electricity Industry, Future Energy Systems: Efficiency, Security, Control, March 10th, 2008.
- [7] SAIC Smart Grid Team, "San Diego Smart Grid Study Final Report", October 2006
- [8] Tomic, S., "Network-Growing Scenarios in IEEE 802.15.4 Wireless Sensor Networks"
- [9] Lewis, L.F., "Wireless Sensor Networks", Smart Environments: Technologies, Protocols, and Applications John Wiley Press, New York, 2004
- [10] Adams, J.T. "An introduction to IEEE STD 802.15.4," Aerospace Conference 2006 IEEE. March 2006
- [11] Adams, J.T. "An introduction to IEEE STD 802.15.4," Aerospace Conference 2006 IEEE. March 2006
- [12] Lipson F. H., Fisher A. D., "Survivability—A New Technical and Business Perspective on Security," NSPW 1999
- [13] Nagaraja S., Anderson, R., "The topology of covert conflict," CITRIS Europe Research Symposium 2007
- [14] Khandani E., Modiano E., Abounadi J., Zheng L., "Reliability and Route Diversity in Wireless Networks." *Conference on Information Sciences* and Systems, The Johns Hopkins University March 16th-18th 2005
- [15] D. Ganesan, R. Govindan, S. Shenker, and D. Estrin, "Highly-Resilient, Energy-Efficient Multipath Rounting in Wireless Sensor Networks," *Mobile Computing and Communications Review (MC2R)*, 1, 2, 2002
- [16] Krishnamachari B., Networking Wireless Sensors Cambridge University Press 2005
- [17] Kjk
- [18] Ye W., Heidemann J., Estrin D., "An Energy-Efficient MAC Protocol for Wireless Sensor Networks," *Infocom 2002. Twenty-First Annual*

Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE

- [19] Ye W., Heidemann J., Estrin D., "An Energy-Efficient MAC Protocol for Wireless Sensor Networks," *Infocom 2002. Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies. Proceedings. IEEE*
- [20] T. van Dam and K. Langendoen. "An adaptive energy-efficient mac protocol for wireless sensor networks." In *Proceedings of the First ACM Conference on Embedded Networked Sensor Systems*, Nov. 2003.
- [21] http://www.microchip.com
- [22] UtilityAMI 2008 Home Area Network System Requirements Specification
- [23] Chipcon Products from Texas Instruments, Z-Stack Developers Guide Document Number: F8W-2006-0022
- [24] http://www.eetasia.com/ART_8800525232_499488_NP_2bc24fd0.HT M
- [25] Wang C.R, Chang S.R, Chao C.H, "Internetworking Between Zigbee/802.15.4 and IPv6/802.3 Network" ACM SIGCOMM 2007 Data Communication Festival August 27th-31st 2007
- [26] Montenegro, G., Kushalnagar, N., Hui, J., and Culler, D. Transmission of IPv6 Packets over IEEE 802.15.4 Networks. IETF Internet Draft draftietf-6lowpan-format-13 (work in progress), April 2007.
- [27] http://www.zigbee.org/en/markets/zigbee_smart_energy.asp
- [28] http://www.silverspringnetworks.com/pdfs/SSN-DS-NIC-kv2c.pdf
- [29] UCAIug Face-to-Face meeting
- [30] Olsen, Erik "Smart Meter Opens Market for Smart Apps", New York Times
- [31] Miller, R.R., "4G Neighborhood Area Networks", IEEE 802 Plenary Tutorials, Atlanta GA. March 14th-18th
- [32] American National Standard "Protocol Specification for Interfacing to Data Communication Networks" August 19th 2007
- [33] http://www.bluetooth.com/Bluetooth/Technology/Works/Compare/Tech nical/
- [34] http://www.sce.com/PowerandEnvironment/smartconnect/openinnovation/usecasechart.htm