
Adapting and Evaluating Distributed Real-time and
Embedded Systems in Dynamic Environments

Joe Hoffert, Douglas Schmidt, and Aniruddha Gokhale
Vanderbilt University, Nashville, TN, USA

{joseph.w.hoffert, d.schmidt, a.gokhale}@vanderbilt.edu∗

ABSTRACT
Quality of Service (QoS)-enabled publish/subscribe (pub/-
sub) middleware provides much needed infrastructure for data
dissemination in distributed real-time and embedded (DRE)
systems. It is hard, however, to quantify the performance of
mechanisms that support multiple interrelated QoS concerns,
e.g., reliability, latency, and jitter. Moreover, once an ap-
propriate mechanism is selected, it is hard to maintain QoS
properties as the operating environment fluctuates since the
chosen mechanism might no longer provide the needed QoS.
For DRE systems operating in such environments, adjust-
ments to mechanisms supporting QoS must be both timely
and resilient to unforeseen environments.

This paper describes our work to (1) define composite met-
rics to evaluate multiple interrelated QoS concerns and (2)
analyze various adjustment techniques (i.e., policy-based ap-
proaches, machine learning techniques) used for the QoS
mechanisms of a DRE system in a dynamic environment.
Our results show that (1) composite metrics quantify the sup-
port that mechanisms provide for multiple QoS concerns to
ease mechanism evaluation and creation of related composite
metrics and (2) neural network machine learning techniques
provide the constant-time complexity needed for DRE pub/-
sub systems to determine adjustments and the robustness to
handle unknown environments.

Keywords
C.2.4.b Distributed applications, C.3.d Real-time and em-
bedded systems, D.2.8 Metrics/Measurement,

1. INTRODUCTION
QoS-enabled pub/sub middleware, such as the OMG Data

Distribution Service (DDS) or the JAIN Service Logic Exe-
cution Environment (SLEE), is increasingly used in mission-
critical distributed real-time and embedded (DRE) applica-

∗This work is supported in part by the AFRL/IF Pollux
project, NSF TRUST, and SAIC.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DD4LCCI’2010, April 27, Valencia, Spain
Copyright 2010 ACM 978-1-60558-917-6/10/04 ...$10.00.

tion domains ranging from shipboard computing environ-
ments to air traffic management systems, telecom and frac-
tionated spacecraft constellations. Various mechanisms in
the middleware, such as transport protocols, can be used to
support QoS and provide desired behavior.

It can be hard, however, to quantitatively evaluate mul-
tiple QoS concerns that interrelate with each other. For
example, data reliability and jitter can be at odds since re-
liability often implies retransmission of data which can add
to jitter. Evaluating transport protocols to handle multiple
QoS concerns increases accidental complexity as compared
to a single QoS concern. Evaluators must keep track of the
different QoS aspects (e.g., reliability and jitter) that are
being evaluated and merge the results together.

Moreover, challenges arise when developing QoS-enabled
pub/sub systems deployed in dynamic operating environ-
ments. Transport protocols used by the middleware to sup-
port QoS properties for a given environment configuration
may not be applicable for a different environment config-
uration. For example, a simple unicast protocol, such as
UDP, may provide adequate latency QoS when a publisher
sends to a small number of subscribers but might incur un-
acceptable latency when having to manage a large number
of sessions due to an increase in subscribers.

Managing transport protocols manually is not feasible in
dynamic environments due to slow human response times,
which are further exacerbated by the complexity of deter-
mining appropriate adjustments. QoS-enabled pub/sub DRE
systems must be robust enough to anticipate that changes
will occur in the operating environment and handle those
changes appropriately. Several approaches to managing ch-
anges exist each with advantages and disadvantages.

This paper describes our ongoing work on composite met-
rics, which quantitatively measure multiple QoS concerns to
evaluate pub/sub mechanisms for DRE systems. Compos-
ite metrics provide multiple benefits including (1) reducing
the number of metrics comparisons by 50%—in the case of
combining two QoS concerns—or more and (2) reducing the
evaluation complexity of multiple metrics since the compos-
ite metric balances the importance of the QoS concerns.

We build on previous composite metrics of reliability and
average latency [1] to include the concerns of jitter, aver-
age network bandwidth usage, and network burstiness, i.e.,
standard deviation of network bandwidth usage. Moreover,
we analyze the composability of various QoS concerns and
analyze techniques to manage adaptations for DRE systems
in dynamic environments. In particular, we analyze how
policy-based approaches and machine learning techniques

help determine appropriate QoS mechanisms in a chang-
ing operating environment in terms of (1) bounded time
complexity in searching for a solution, (2) accuracy of so-
lution for known operating environments, (3) robustness to
unknown operating environments, and (4) accidental devel-
opment complexity.

2. MOTIVATING EXAMPLE - AMBIENT AS-
SISTED LIVING IN SMART CITIES

To motivate the need for managing QoS interactions and
providing timely adjustments of transport protocols for QoS-
enabled pub/sub middleware, this section describes research
challenges associated with Smart City Ambient Assisted Liv-
ing (SCAAL) applications, which combine Ambient Assisted
Living (AAL) in the context of a smart city (SC). The goal
of a smart city is to dissolve the computational infrastruc-
ture and establish ubiquitous, context-aware services in a
metropolitan area [2].

An example SCAAL scenario involves elderly people nav-
igating a large metropolitan area equipped with multiple
technological devices that aid in various aspects of the per-
son’s mobility, sensory enhancement, communication, and
monitoring. In particular, 3 dimensional high-resolution
health monitoring equipment is periodically sending data.
A personal data center (PDC) publishes and subscribes to
the data that is being managed by the personal devices and
interfaces with the smart city by publishing and subscribing
to data from the ambient environment.

The environment in which the PDC operates is dynamic
since (1) the elderly people move through space in the smart
city and update personal information in time and (2) the
smart city enhances and updates the amount and kind of
data that it provides as it moves through time. Our research
focuses on (1) metrics to evaluate transport protocols in sup-
port of multiple QoS concerns and (2) adjustment techniques
for QoS that a PDC device must manage in a SCAAL ap-
plication. To support multiple QoS aspects of the ambient
data (such as 3-dimensional health monitoring information)
the PDC presents the following challenges:

Challenge 1: Managing interacting QoS require-
ments with constrained resources. The PDC must
manage multiple interacting QoS requirements, e.g., data
reliability so that enough data is received to be useful and
low latency and jitter for soft real-time data so that de-
tailed 3-dimensional health monitoring data do not arrive
after they are needed. The streamed data must be received
soon enough so that successive dependent data (such as de-
pendent MPEG B and P frame data being received before
the next I frame makes them obsolete) can also be used.
Moreover, the PDC must balance the interacting QoS re-
quirements with limited resources, e.g., network bandwidth.

Challenge 2: Timely Adaptation. Due to timeliness
concerns of DRE systems such as SCAAL applications, the
PDC must adjust in a timely manner as the environment
changes. If the PDC cannot adjust quickly enough it will fail
to perform adequately and critical data such as 3-D health
information will not be received in time. As the amount of
data relevant to the SCAAL application fluctuates and the
demand for information varies, the PDC must be configured
to accommodate these changes with appropriate responsive-
ness to maintain a minimum level of service. Configuration
changes must not only be timely in general but they must

also be bounded so that critical information (such as health
monitoring) is not impeded.

3. SOLUTION APPROACH: COMPOSITE
METRICS AND MACHINE LEARNING
FOR AUTONOMIC ADAPTATION

This section describes the research we are conducting with
(1) composite metrics to evaluate transport protocols as QoS
mechanisms and (2) adaptation techniques to determine ap-
propriate transport protocol adjustments in support of QoS
as the operating environment changes. This research is done
in the context of the ADAptive Middleware And Network
Transports (ADAMANT) project described next.

3.1 Overview of ADAptive Middleware And
Network Transports (ADAMANT)

ADAMANT leverages composite QoS metrics and ma-
chine learning along with several other technologies described
below to resolve the challenges presented in Section 2.

• Composite metrics allow several QoS properties to be
evaluated simultaneously. Composite metrics are used to
evaluate transport protocols in multiple operating environ-
ments to determine the best protocol and parameter settings
for a particular environment.

• The Artificial Neural Network (ANN) machine learning
technique helps ADAMANT address Challenges 1 and 2 in
Section 2 by (1) using composite metrics to determine how
a transport protocol will address multiple QoS concerns for
a particular environment and (2) selecting an appropriate
transport protocol and protocol parameters at runtime in a
timely manner given a specified QoS and a particular envi-
ronment configuration.

The ANN is trained using features for several different en-
vironment configurations along with the evaluations of sev-
eral transport protocols using composite metrics. The ANN
interpolates and extrapolates its learning based on the cur-
rent environment configuration, which might not have been
included in the supervised training.

The architecture of the ADAMANT solution approach is
shown in Figure 1. The ADAMANT controller receives QoS
monitoring data and feeds the data to the protocol optimizer
which uses the ANN to determine the appropriate transport
protocol and settings. The protocol optimizer then sends
the protocol selection to the controller to make appropriate
adjustments to the system.

3.2 Evaluating Adaptation Approaches for SC-
AAL Applications

Several approaches can be used to adapt transport pro-
tocols for QoS-enabled pub/sub systems operating in dy-
namic environments. Below we evaluate (1) policy-based ap-
proaches, (2) reinforcement learning, and (3) supervised ma-
chine learning with and without bounded search times. We
focus on timely, bounded adaptation and leave other analy-
sis aspects of the approaches (e.g., memory requirements) as
future work. Moreover, ADAMANT includes leveraging the
QoS-enabled middleware to prioritize adjustments so that
transition times are acceptable. We also present evaluation
criteria relevant to developing and deploying an adaptation
approach for SCAAL applications, including (1) bounded-
ness in searching for a solution, (2) accuracy of solution for
known environments, (3) robustness to unknown operating

Health Monitor
Topic

Adaptive Network Transport
(ANT) Protocols

Data
Writer

Data
Reader

Data
Reader

Domain

…

QoS Monitor
Topic

Data
Reader

Data
Writer

Data
Writer

…

Autonomic
Adaptation
Controller

Protocol Optimizer (ANN trained
with composite metrics data)

Key:
Order of interaction between subsystems
Assoc. between reader/writer & topic

DDS

1
2

3

4

N

((

QoS Monitor Publisher QoS Monitor Subscriber

Elderly Patient Publisher Health Worker Subscriber

Figure 1: Architecture for ADAMANT

environments, and (4) accidental development complexity.

3.2.1 Evaluating Policy-based Adaptation Approaches
Policy-based approaches provide a straightforward way to

determine optimal transport protocols for a given operating
environment. After certain operating conditions are checked
and met, the system can be directed by the policies to alter
its behavior. Figure 2 shows an example where the appli-
cation checks for three environment aspects: (1) percentage
loss in the network (i.e., network loss percent), (2) number
of data receivers (i.e., num receivers), and (3) the rate at
which data is published (i.e., sending rate).

Figure 2: Policy-based Example

Policy-based approaches can be optimized since the bound-
ed number of (1) conditions that are checked and (2) the be-
haviors used to direct the system are explicitly identified. As
shown in Figure 2, a switch statement or nested if statements
in a programming language can be used to implement policy-
based approaches. In general, policy-based approaches can
provide boundedness in searching for an adaptation solution
and therefore address the boundedness evaluation criterion
for adaptation approaches (e.g., switch statements can be
optimized to constant time performance). Policy-based ap-
proaches also are highly accurate for known solutions since

developers can codify the exact behavior needed for a known
environment, thereby addressing the evaluation criterion for
accuracy in known environments.

Policy-based approaches, however, do not provide robust-
ness in the face of conditions not considered a priori. Policy-
based approaches must have complete knowledge of all con-
ditions that can affect the system so that this knowledge
can be imperatively codified. If conditions exist that were
not anticipated then unexpected system behavior can occur,
which can be disastrous for mission-critical pub/sub DRE
systems, so policy-based approaches do not address the ro-
bustness evaluation criterion for adaptation approaches.

Even when all relevant conditions are considered and all
appropriate responses are codified, manually managing the
conditions and responses for policy-based approaches in-
creases accidental complexity. Figure 2 presents only three
operating environment aspects that are checked. Since each
aspect can take an infinite range of values there is an in-
finite number of combinations that can be checked. Even
using ranges of values can lead to infinite number of com-
binations. Moreover, if the policies need to be modified the
chance of introducing an error increases with the number of
aspects considered along with the number of ranges of values
for each aspect. Policy-based approaches therefore do not
address the accidental development complexity criterion for
adaptation approaches.

3.2.2 Evaluating Reinforcement Learning
Reinforcement learning provides robustness and flexibil-

ity when not all conditions and appropriate system responses
are known a priori. Reinforcement learning approaches lever-
age high-level abstract guidance for a proposed solution, e.g.,
determining the solution to be good or bad. For example,
reinforcement learning sets certain system behaviors as goals
and uses positive and negative reinforcements to guide the
resolution of system behavior as change in an operating en-
vironment occurs [3].

Reinforcement learning explores the possible solution space
to determine generalized solutions of the negative and pos-
itive reinforcements given. Reinforcement learning is thus
unbounded in its determination of an appropriate response
due to online exploration of the solution space and modifica-
tion of decisions while the system is running. As indicated
in [4], performance of reinforcement learning benefits from
an additional run-time initialization period before system
startup. Reinforcement learning therefore does not address
the evaluation criterion for boundedness when searching for
an adaptation solution.

Reinforcement learning generalizes knowledge gained from
positive and negative reinforcements of multiple proposed
solutions. With this generalization comes a loss of informa-
tion for the specific solutions that have been tried. Rein-
forcement learning thus does not entirely address the crite-
rion for accuracy in known environments.

In contrast, the generalization of knowledge for reinforce-
ment learning does allow the approach to interpolate and
extrapolate from solutions of known environments to un-
known environments. Accordingly, reinforcement learning
addresses the criterion for robustness to unknown operating
environments.

Even when all conditions of the operating environment are
known and all appropriate responses determined, reinforce-
ment learning can manage the conditions and appropriate

responses rather than forcing developers to address these
areas programmatically. Knowing how to respond to vari-
ous operating environments is resolved by the reinforcement
learning approach itself. Reinforcement learning thus ad-
dresses the criterion of accidental development complexity.

3.2.3 Evaluating Supervised Machine Learning
Supervised machine learning techniques classify new ex-

amples while incorporating generalized knowledge from pre-
vious examples. These techniques are supervised by being
provided solutions to the problem which they use to ex-
pand the generalized knowledge. Supervised machine learn-
ing techniques generally have an offline training period to
build up knowledge and then are used online when a sys-
tem is running. Below we evaluate two common supervised
machine learning approaches of decision trees (DTs) and ar-
tificial neural networks (ANNs).

DTs build a tree structure that branches on decisions
which lead down to a leaf node that can accurately clas-
sify a new example [5]. A DT generates decision branches
that split the data. Decisions that split the data more evenly
are placed closer to the root of the tree. In general, a DT
can be unbounded in the levels of the tree that is generated.

The attributes that are used for classification to generate
the tree can be combined in an exponential number of ways.
These combinations are then used to determine branches in
the tree. As shown in Figure 3, the attribute network bytes
is used multiple places in the tree to branch the tree. DTs

Figure 3: A Decision Tree For Determining Appro-
priate Protocol

thus do not address the boundedness criteria for adaptation.
Moreover, as with machine learning in general, the knowl-

edge obtained is generalized to apply to a wide variety of
operating environments. This generalization of knowledge
implies that DTs do not perfectly address the accuracy cri-
terion for known operating environments. They can, how-
ever, provide solutions to environments not seen previously
and therefore address the robustness criterion. In addition,
DTs automatically capture branching decisions to determine
an appropriate transport protocol configuration, thereby ad-
dressing the criterion of accidental development complexity.

An ANN is a supervised machine learning technique that
is modeled on the interaction of neurons in the human brain [6].
As shown in Figure 4, an ANN has an input layer for relevant
aspects of the operating environment, e.g., percent network
loss, sending rate. An output layer represents the solution

Network % loss

receivers

Sending rate

protocol

parameters

Artifical Neural
Network

Figure 4: Artificial Neural Network For Determin-
ing Appropriate Protocol

that is generated based on the input. Connecting the input
and output layers is a hidden layer. As the ANN is trained
on inputs and correspondingly correct outputs, it strength-
ens or weakens connections between the layers to generalize
based on the inputs and outputs.

Figure 4 also shows how an ANN can be configured stat-
ically in the number of hidden layers and the number of
nodes in each layer that directly affects the processing time
complexity between the input of operating environment con-
ditions and the output of an appropriate transport protocol
and settings. This static configuration structure supports
bounded response times. ANNs thus address the bounded-
ness criterion for generating a solution.

As ANNs generalize the knowledge from the supervised
training, they provide interpolation and extrapolation of
known training sets to handle conditions for which the tech-
niques have not been trained. Although ANNs do not en-
tirely address the accuracy criterion for known environments
they do address the robustness criterion for unknown operat-
ing environments. Moreover, since ANNs automatically en-
capsulate the generalization of knowledge across supervised
training data, they address the criterion of accidental de-
velopment complexity since developers need not determine
appropriate transport protocol configurations given operat-
ing environment features. Since ANNs address more of our
objectives than the other approaches, we have chosen ANNs
in the remainder of our work. We are also researching ways
to increase the accuracy of ANNs for known environments.

3.3 Composite Metrics for SCAAL Applica-
tions

Challenge 1 in Section 2 outlines the interacting QoS con-
cerns of reliability, latency, and jitter for SCAAL applica-
tions. Our prior work [1] showed how to quantitatively eval-
uate reliability and average latency via the ReLate2 metric,
which multiplies the average latency by the percent packet
loss as follows:

ReLate2p =

∑r
i=1 li

r
× (

t − r

t
× 100 + 1)

where p is the protocol being evaluated,
r = number of packets received,
li = latency of packet i,
and t = total number of packets sent.
This metric produces a numeric value that increases with

either an increase in the average latency of packets received
or an increase in the percentage of packets lost. When there

are no lost packets ReLate2 values become the average la-
tency. Lower ReLate2 values are desirable.

This paper extends the ReLate2 metric to include other
QoS properties relevant to DRE systems. In particular, jit-
ter (i.e., standard deviation of the latency of network pack-
ets) is also an important QoS consideration for applications
using multimedia data, such as SCAAL’s personal surveil-
lance video or 3-dimensional health monitoring information.
For example, as outlined in Section 2, late arriving MPEG
data can be worse than not receiving the data at all. Jit-
ter provides a way to measure the variance of data arrival
times and is an important QoS consideration for data that
depends on preceding or succeeding data.

Our new ReLate2Jit metric extends the original ReLate2
metric to include jitter. ReLate2Jit yields a numeric value
that can quantifiably compare the performance of transport
protocols wrt reliability, average latency, and jitter. Re-
Late2Jit values increase with an increase in jitter and low
values are more desirable than high values. We calculate the
standard deviation of the packet arrivals and multiply this
value by the ReLate2 metric as follows:

ReLate2Jitp = ReLate2p × σp

where p is the protocol being evaluated and
σp = standard deviation of packet latency times for pro-

tocol p.
We multiply the various QoS concerns (e.g. latency, reli-

ability) to give fair weighting (e.g., latency time units, per-
centage loss for reliability). We present experimental results
using the ReLate2Jit metric. Our experimental environment
is similar to the one used for our ReLate2 results [1], except
that we use the OpenSplice DDS rather than OpenDDS.
We send data from a publisher to subscribers while varying
the sending rate, the percent loss in the network, and the
number of subscribers.

We focus only on the transport protocols from previous
work that balanced reliability and latency, e.g., (1) the NAK-
cast protocol, which is a NAK-based multicast protocol,
with a retransmission timeout set to 0.05 and 0.025 seconds
and (2) the Ricochet protocol, which is a lateral error correc-
tion protocol, with the R parameter set to 4 and 8 and the
C parameter set to 3. Ricochet’s R value determines how
many packets are received before an error correction packet
is sent out to the other receivers. Ricochet’s C value deter-
mines how many other receivers are sent the error correction
packet.

Figure 5 shows results of using the ReLate2Jit metric for
an operating environment with 3 receivers, 1% network loss,
and a sending rate of 100Hz. The results show that the Ric-
ochet protocol performs well when considering reliability,
average latency, and jitter compared against NAKcast. The
ReLate2Jit values between Ricochet and NAKcast are not
as profound for lower sending rates although Ricochet gener-
ally outperforms NAKcast. As sending rates increase Rico-
chet’s jitter decreases proportionately accounting for greater
disparity between Ricochet and NAKcast at higher rates.

Being able to predict and provision for adequate resources
is an important aspect of DRE systems. If allocated re-
sources are inadequate then DRE systems running in re-
source constrained environments will not perform as intended,
so that related QoS (such as reliability and latency) will
not be met. Network bandwidth is an important resource

0

10,000,000

20,000,000

30,000,000

40,000,000

50,000,000

60,000,000

70,000,000

80,000,000

90,000,000

100,000,000

1 2 3 4 5

Re
La

te
2J

it
 V

al
ue

s

Experiment

3 receivers, 1% loss, 100Hz

NAKcast 0.05

NAKcast 0.025

Ricochet R=4

Ricochet R=8

Figure 5: ReLate2Jit for 3 Receivers, 1% Network
Loss, and 100Hz Sending Rate

consideration in DRE systems since it must be provisioned
and managed appropriately. Moreover, as ultra-large-scale
systems [7] become more prevalent, changes in network re-
sources, e.g., bandwidth, will become more dynamic and
require more online adjustments.

To evaluate the concerns of reliability, latency, and net-
work bandwidth we also have developed the ReLate2Net and
ReLate2Burst composite metrics. ReLate2Net multiples the
ReLate2 metric by the average network bandwidth usage
per second to determine how a transport protocol balances
reliability, latency, and network bandwidth. ReLate2Burst
multiples the ReLate2 metric by the network bandwidth’s
burstiness, i.e., the standard deviation of average bandwidth
usage per second of time, to determine how a transport pro-
tocol balances reliability, latency, and packet burstiness.

The inclusion of network bandwidth information with the
ReLate2 metric provides guidance for DRE systems in eval-
uating transport protocols and appropriately provisioning
constrained DRE systems to function as needed in dynamic
environments. Moreover, for ULS systems that must man-
age fluctuating network bandwidth capacity the ReLate2Net
and ReLate2Burst metrics can be used to select an appro-
priate transport protocol.

Figures 6 and 7 show results of using the ReLate2Net and
ReLate2Burst metrics respectively for an operating environ-
ment with 3 receivers, 1% network loss, and a sending rate
of 100Hz. The ReLate2Net results highlight that the Ric-
ochet protocol uses considerably more network bandwidth
on average than NAKcast which is to be expected. Note
that NAKcast with a shorter retransmission timeout, i.e.,
0.025 seconds, has a consistently lower ReLate2Net value
than does NAKcast with a longer retransmission timeout,
i.e., 0.05 seconds. While NAKcast 0.025 does use more net-
work bandwidth on average than NAKcast 0.05, it also has
a lower average latency since lost messages are requested
sooner. The ReLate2Burst results mimic the ReLate2Net
results for this environment configuration.

4. RELATED WORK
This section compares our work on composite metrics and

evaluating adaptation approaches within ADAMANT for
dynamic applications like SCAAL with related work.

Grace et al. [8] describe an architecture metamodel for

0

100,000,000

200,000,000

300,000,000

400,000,000

500,000,000

600,000,000

700,000,000

1 2 3 4 5

Re
La

te
2N

et
 V

al
ue

s

Experiment

3 receivers, 1% loss, 100Hz

NAKcast 0.05

NAKcast 0.025

Ricochet R=4

Ricochet R=8

Figure 6: ReLate2Net for 3 receivers, 1% network
loss, and 100Hz sending rate

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

1 2 3 4 5

Re
La

te
2B

ur
st

 V
al

ue
s

Experiment

3 receivers, 1% loss, 100Hz

NAKcast 0.05

NAKcast 0.025

Ricochet R=4

Ricochet R=8

Figure 7: ReLate2Burst for 3 receivers, 1% network
loss, and 100Hz sending rate

adapting components that implement coordination for re-
flective middleware distributed across peer devices. This
work also investigates supporting reconfiguration types in
various environmental conditions. The architecture meta-
model, however, only provides infrastructure for autonomic
adaptation and reconfiguration and does not directly address
the challenges in Section 2.

Vienne and Sourrouille [9] present the Dynamic Control of
Behavior based on Learning (DCBL) middleware that incor-
porates reinforcement machine learning in support of auto-
nomic control for QoS management. System developers pro-
vide an XML description of the system, which DCBL then
uses together with an internal representation of the man-
aged system to select appropriate QoS dynamically. How-
ever, DCBL’s focus on single computers does not address
the challenge of distributed systems. Moreover, DCBL does
not address the challenge of timely adjustments (i.e., Chal-
lenge 2 in Section 2) as reinforcement learning can exhibit
unbounded time complexities.

David and Ledoux have developed SAFRAN [10] to en-
able applications to become context-aware themselves so
that they can adapt to their contexts. SAFRAN provides
reactive adaptation policy infrastructure for components us-
ing an aspect-oriented approach. The SAFRAN component
framework, however, only provides development support for

maintaining specified QoS. The adaptive policies and com-
ponent implementations are the responsibility of the appli-
cation developer. Moreover, SAFRAN does not provide sup-
port for timely adaptation (i.e., Challenge 2 in Section 2).

5. CONCLUDING REMARKS
Transport protocols satisfy needed multiple QoS proper-

ties for pub/sub DRE systems in dynamic environments.
This paper presents (1) composite metrics to evaluate trans-
port protocols in the context of multiple QoS concerns and
(2) evaluations of adaptation approaches for pub/sub DRE
systems in changing operating environments. Additional
ADAMANT papers and all its source code are available at
www.dre.vanderbilt.edu/~jhoffert/ADAMANT.

6. REFERENCES
[1] J. Hoffert, A. Gokhale, and D. Schmidt, “Evaluating

Transport Protocols for Real-time Event Stream
Processing Middleware and Applications,” in
Proceedings of the 11th International Symposium on
Distributed Objects, Middleware, and Applications
(DOA ’09), Vilamoura, Algarve-Portugal, Nov. 2009.

[2] M. Chandy, O. Etzion, R. von Ammon, and
P. Niblett, “07191 summary – event processing,” in
Event Processing, ser. Dagstuhl Seminar Proceedings,
M. Chandy, O. Etzion, and R. von Ammon, Eds., no.
07191. Dagstuhl, Germany: Internationales
Begegnungs- und Forschungszentrum für Informatik
(IBFI), Schloss Dagstuhl, Germany, 2007.

[3] R. Sutton and A. Barto, Reinforcement Learning: An
Introduction. The MIT Press, March 1998.

[4] X. Bu, J. Rao, and C.-Z. Xu, “A reinforcement
learning approach to online web systems
auto-configuration,” in ICDCS ’09: Proceedings of the
2009 29th IEEE International Conference on
Distributed Computing Systems. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 2–11.

[5] T. M. Mitchell, Machine Learning. New York:
McGraw-Hill, 1997.

[6] D. W. Patterson, Artificial Neural Networks: Theory
and Applications. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 1998.

[7] S. E. Institute, “Ultra-Large-Scale Systems: Software
Challenge of the Future,” Carnegie Mellon University,
Pittsburgh, PA, USA, Tech. Rep., June 2006.

[8] P. Grace, G. Coulson, G. S. Blair, and B. Porter, “A
distributed architecture meta-model for self-managed
middleware,” in Proceedings of the 5th workshop on
Adaptive and reflective middleware (ARM ’06). New
York, NY, USA: ACM, 2006, p. 3.

[9] P. Vienne and J.-L. Sourrouille, “A middleware for
autonomic qos management based on learning,” in
SEM ’05: Proceedings of the 5th international
workshop on Software engineering and middleware.
New York, NY, USA: ACM, 2005, pp. 1–8.

[10] P.-C. David and T. Ledoux, Software Composition.
Berlin / Heidelberg: Springer LNCS, 2006, ch. An
Aspect-Oriented Approach for Developing
Self-Adaptive Fractal Components, pp. 82–97.

