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I n the US, a radical transformation of power-
distribution systems is well under way. Next-
generation supervisory control and data acquisition 
(NG-SCADA) architectures, now in develop-

ment, will precipitate an exponential increase in both 
data collection and the extent of control available to 
consumers and utilities. The latter are increasingly 
adopting automated metering, advanced demand-
response architectures, microgrids, and other systems 
that will provide cost savings in power generation, in-
crease grid reliability and flexibility, and create new 
modes of consumer-utility interaction.

Large utility companies have deployed several pi-
lot micro-grid projects (http://certs.aeptechlab.com) 
in recent years; they have also increasingly deployed 
advanced metering infrastructure (AMI) systems across the 
US. According to a 2008 Federal Energy Regulatory 
Commission staff report,1 5 percent of meters installed 
in the US are “smart” meters, and 8 percent of US 
customers participate in demand-response programs. 
Furthermore, the smart grid has recently become a 
presidential priority, receiving $4.5 billion that must 
be spent on its deployment within the next two years. 
This infusion of funding means that market penetra-
tion for both smart meters and demand response is 
likely to increase dramatically in the near term.

NG-SCADA projects could benefit utilities, con-
sumers, and new market players. For power compa-
nies, automated metering will reduce data collection 
costs and improve large-scale load planning and long-
term research through real-time energy consumption 
feeds. This research will let utilities improve planning 
and test the effects of various demand-side manage-

ment programs. 
For consumers, 
the projects will result in potentially lower costs, more 
information about consumption patterns, more control 
over power use, and the ability to actively participate 
in power generation. In addition, increased knowledge 
and management tools could reduce overall consump-
tion. However, the engine for these activities—per-
household consumption data—poses both privacy and 
security risks. 

The Team for Research in Trustworthy Systems 
(TRUST) Science and Technology Center aims 
to promote a robust, secure, and trustworthy smart 
grid. (TRUST is a multi-university National Science 
Foundation center focused on trustworthy systems; 
see www.truststc.org.) Its teams focus on the conflu-
ence of sensor networking, power distribution, and 
policy to address the privacy and security issues that 
emerge from a substantial increase in power system 
monitoring at the consumer level. Our main claim 
here is that in the present regulatory and judicial envi-
ronment, it’s both possible and probable that interest-
ed parties will repurpose the household consumption 
data gathered via advanced metering projects to reveal 
and exploit personally identifying information.

Here, we explore the technical aspects of this claim, 
focusing on data generated, what it reveals, and how 
and why it might be collected and repurposed. (The 
long-term legal and privacy implications of in-home 
monitoring are discussed elsewhere.2) We highlight 
the importance of certain algorithms for extrapolating 
activity information from power-consumption data, 
present a formal way to evaluate information dis-
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Demand-response systems provide detailed power-

consumption data to utilities and those angling to assist 

consumers in understanding and managing energy use. 

Such data reveals information about in-home activities that 

can be mined and combined with other readily available 

information to discover more about occupants’ activities.
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closure, and provide an illustrative proof-of-concept 
technical study. We also develop and substantiate cer-
tain aspects of our claim. 

Exploiting the Smart Grid
The smart grid is bringing new, nontraditional play-
ers into the energy-consumption market, and many 
of them aren’t abiding by existing privacy and secu-
rity regulations. The data flows’ real-time nature and 
increasing granularity will generate new interest in 
access and reuse by these players, which include law 
enforcement, marketing, and nefarious individuals.

Without proper technical, procedural, and legal 
safeguards, access to detailed household consumption 
data raises ethical concerns. Criminals could use it to 
facilitate burglary, marketers to initiate targeted ad-
vertising based on activities occurring wholly within 
the home, and law enforcement to monitor home-
based activities in real time. 

Although the sanctity of the home holds a special 
place among constitutional privacy protections in the 
US, businesses’ capture and storage of information 
about private activities have eroded the protections 
afforded to it. In United States v. Miller, the Supreme 
Court held that individuals have no reasonable expec-
tation of privacy in data voluntarily given to and held 
by third parties.3 Since this ruling, several state consti-
tutions have been interpreted to provide some privacy 
protection for information about consumers captured 
in business records. Additionally, a leading Supreme 
Court case interpreted the Fourth Amendment as re-
quiring law enforcement to obtain a warrant prior to 
aiming a thermal imaging device at a residence be-
cause it revealed detailed information about occupants’ 
activities.4 However, it’s unclear what, if any, consti-
tutional limitations will apply to the government’s 
potential access to and use of detailed energy records. 
Regardless, robust privacy protections are best pro-
duced through a mix of technology, regulations aimed 
at the private sector, and regulations—hopefully codi-
fied as constitutional limitations—on government use.

This issue came to prominence in a 2009 report 
by the US National Institute for Standards and Tech-
nology (NIST)5 that highlights the need for industry 
and policymakers to attend to privacy while develop-
ing smart grid standards and implementing plans. In 
addition, a recent ruling from the California Public 
Utilities Commission (CPUC)6 grants consumers the 
right to control many uses and disclosures of house-
hold-level consumption data. The technical design of 
and policies for the smart grid that the US and other 
areas of the world are currently working out will have 
a lasting impact on the privacy of in-home behavior. 
Consequently, we need a sustained and thoughtful 
research-based approach to establishing appropriate 
technical and legal protections.

Technology Overview
To familiarize readers with the technical aspects of this 
issue, let’s first examine demand-response technolo-
gies, including AMI systems and non-intrusive load-
monitoring (NILM) systems, a fundamental tool for 
extrapolating in-home activity. (More complete over-
views of AMI and NILM are available elsewhere.7,8)

Advanced Metering
In a typical advanced metering setup, the customer 
is equipped with solid-state electronic meters that 
collect time-based consumption data at daily, hour-
ly, or sub-hourly intervals. These meters then trans-
mit the collected data to the meter-data management 
system (MDMS), which manages data storage and 
analysis, shaping the information into a form useful 
for the utility.7

Non-Intrusive Load Monitoring
An NILM system collects data much like its AMI 
counterpart but goes a step further by processing the 
data to determine individual electrical loads’ operating 
schedules. The system typically does this by disaggre-
gating the collected data stream into individual load 
signatures and matching each signature with reference 
signatures stored in a database. For private residences, 
these loads are usually appliances such as refrigerators, 
air conditioners, or water heaters. These systems are 
used for a wide variety of purposes, including collect-
ing load research and implementing incentive pro-
grams for particular appliance usage patterns.9

Current NILM systems require electrical data sam-
pled at second or sub-second intervals. Consequently, 
processing usually occurs locally at the electricity me-
ter. However, we run data extraction remotely and 
obtain useful results even with the sparse data an AMI 
system provides. So, when considering how various 
players can repurpose power-consumption data and 
what kinds of information they can extract from it, 
we should consider an NILM algorithm as an essential 
building block. We develop this thought further in a 
later section.

Players, Use Cases, and Motivations
Utilities typically have policies that protect utility 
records and personal information. For example, the 
California Energy Commission requires the consum-
er’s written consent before utilities can release per-
sonal data related to billing, credit, and power usage.10 
Companies may release utility records in certain cir-
cumstances if the customer isn’t identified, and excep-
tions exist for law enforcement access. 

Given these policies, agencies, organizations, and 
individuals have natural motives for using power-
consumption data for purposes other than load re-
search and demand response.
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Law Enforcement Agencies
Federal and state law enforcement agencies currently 
access utility records for a range of purposes. Cur-
rent jurisprudence allows easy access to public utility 
records and provides legal precedent for their use in 
prosecuting criminal cases. (See the Stanford Law Re-
view article2 for a more in-depth discussion of current 
law on this topic.)

Police routinely use public utility records to seek out 
drug producers. The Austin Chronicle recently reported 
that the Austin Police Department has an agreement 
that lets it access Austin Energy power-usage records 
without a search warrant.11 Investigators have used their 
access to screen consumers for possible drug production, 
relying on the fact that the heat lamps and watering 
systems used to grow marijuana indoors can increase a 
consumer’s energy consumption far beyond the norm. 
Although the Austin case appears to be exceptional 
given that many utilities require a subpoena for releas-
ing records, the program hints at the growth in use we 
might expect as increasingly detailed consumption data 
becomes available. As more granular consumption data 
begins to flow to utilities in real time, law enforcement 
interest in it is quite likely to grow.

Marketing Partners
Marketing firms can potentially use behavior and 
appliance usage information for directed advertise-
ments. For example, some NILM systems are power-
ful enough to identify specific appliance brands and 
might even identify malfunctioning appliances.8 A 
marketing company partnering with a utility could 
use this data to send customers targeted advertise-
ments for repairs or upgrades, or more generally de-
rive demographic data for broader advertising claims. 
Targeted advertising based on in-home activities 
transgresses the current norms of information flow 
and creates new privacy concerns. The exposure of 
in-home activities and the resulting marketing might 
meet with strong consumer disapproval.

Criminals
In a previous article,2 our TRUST colleagues give an 
excellent scenario for criminal abuse of power-con-
sumption data: criminals could tap into an interme-
diate AMI node or simply monitor the unencrypted 
traffic between it and the individual meters. They 
could process the data to compile lists of household 
appliances or determine the occupancy patterns in an 
entire neighborhood. Such knowledge would facili-
tate burglary or some other property crime, whereas 
appliance lists will help with choosing targets.

Quantifying Information Disclosure
The previous section showed through examples that 
monitoring technology’s evolution creates new risks 

to individual privacy by exposing data previously held 
within the home to various parties. However, it isn’t 
apparent just how we can quantify these risks, espe-
cially as a function of available data. A need exists for 
a “privacy metric” that associates the degree of data 
availability with potential privacy risks. Evaluating 
these risks is a complex process that must necessarily 
take into account common industry practices regard-
ing data privacy, the state of current jurisprudence, 
consumers’ privacy expectations, and the relationship 
between utilities and interested parties. Although we 
feel that such an analysis isn’t within our purview, we 
believe that we can provide a crucial technical com-
ponent for it—a “disclosure metric” that associates 
data quality (accuracy of readings, time resolution, 
types of readings, and so on) from a particular source 
with the information that the data could reveal. 

To construct this disclosure metric, we need to bet-
ter understand the nature of the information various 
players can extract from available sensor data. Thus, 
we start by suggesting a formal framework for extrap-
olating activity, then use it to construct our metric. 
We also suggest various privacy-theoretic frameworks 
that can be used in conjunction with the disclosure 
metric to move toward a robust privacy metric.

Extrapolating Activity
We can think of extrapolating activity as having two 
stages: the first “intermediate” stage uses NILM, in 
combination with data from other sensors, to extract 
appliance usage, track an individual’s position, and 
match particular individuals to particular observed 
events. During the second stage, we combine this in-
termediate data with demographic data, such as the 
number, age, or sex of individuals in the residence, 
tax and income records, and models of typical human 
behavior. We can use these data together to identify 
activities, behaviors, preferences, and so on. The two 
stages aren’t cleanly separated—we might use raw data 
directly to estimate a parameter of interest, and the 
determination of some intermediate parameters might 
rely on contextual information. However, many pa-
rameters in the second stage rely on the same inter-
mediate data (for example, we might extrapolate both 
sleeping and eating habits from tracking data).

We can more readily quantify the first stage—for 
a particular algorithm, parameters take definite form 
(such as appliance use or condition, or location track-
ing), and we can evaluate performance in statistical 
or information-theoretic terms. However, defining 
an absolute performance limit for the second stage 
is more difficult—the number of specific preferences 
and beliefs that we could estimate is virtually limit-
less. To develop a comprehensive disclosure metric, 
we must carefully define a list of important param-
eters, basing importance both on how fundamental a 
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parameter is (how many other parameters we can de-
rive from it) and on home or business owners’ privacy 
expectations. Such expectations, in turn, are partially 
based on previous incidents of abuse and repurposing 
(such as the one described in the previous section). 
The list of second-stage parameters can be hierarchi-
cal, with more specific parameters used to evaluate 
more general ones. Once we define an appropriate list 
and assign importance values, we can determine the 
sufficiency of available data based on the requirements 
of current and future NILM, tracking, and other rel-
evant algorithms.

A list of important, second-stage parameters estab-
lishes the evaluation criteria. Algorithms for estimat-
ing these parameters, along with the corresponding 
data requirements, provide a method for evaluating 
the available data’s sufficiency. Together, these provide 
a metric for how much information a particular moni-
toring system could reveal. 

Such a metric doesn’t aspire to be an absolute 
measure, in the sense of encompassing all existing 
disclosure scenarios or anticipating all future ones. 
However, if thoughtfully implemented, it provides 
a valuable tool for evaluating privacy risks associat-
ed with a particular system, as well as allowing for 
comparison between similar systems. We construct a 
sample disclosure metric later.

Using the Disclosure Metric  
to Assess Privacy Loss
We can use the disclosure metric in conjunction with 
one of several privacy theories to assess actual privacy 
loss. For example, we can use Helen Nissenbaum’s the-
ory of privacy as contextual integrity12 to examine how 
the new system’s data loss relates to context-dependent 
norms of information appropriateness and flow. We 
could also use the principles laid out in Harry Surden’s 
“Structural Privacy Rights” essay,13 along with Law-
rence Lessig’s “What Things Regulate” chapter in 
Code 2.0,14 to explain how the new data flow removes 
a structure that once afforded privacy protection for 
in-home activities (that is, the walls, combined with 
a low level of detail about energy consumption) and 
replaces it with a system that breaches the home’s walls 
and exposes real-time consumption data.

Experiment
Although we already know we can accurately estimate 
first-stage parameters such as appliance usage (see the 
performance chart elsewhere9), and others have ex-
plored repurposing sensor data,15 to our knowledge, 
our group is the first to attempt extrapolating activity 
from power-consumption data. We want to prove that 
activity extrapolation is feasible, thus lending credibil-
ity to our main claim and providing an experimental 
precedent that others can cite in future efforts. To do 

this, we conducted a small-scale monitoring experi-
ment on a private residence.

Experimental Setup
We conducted our experiment in a typical student 
residence. We used the Brultech EML energy usage 
monitor for data gathering and attached it to the resi-
dence’s breaker panel to send real-time power-usage 
information to a workstation responsible for data col-
lection. The station recorded power usage at 1- or 
15-second intervals and with a 1-watt resolution. The 
same workstation then ran the NILM and behavior-
extraction algorithms. To evaluate the system’s per-
formance, we placed a network of cameras around the 
residence. We elected to use the Axis 206 network 
camera, which we connected to a workstation using 
an Ethernet switch. The workstation ran the Axis 
Camera Station software and recorded motion events 
for later processing. Figure 1a shows the residence’s 
floor plan and the camera placement; Figure 1b shows 
the camera control and data-gathering setups.

Experimental Protocols
We ran the experiment semi-continuously over a two-
week period. This timeframe let us obtain repeated 
data for pattern matching while accounting for time 
constraints. We shut down power and camera data 
collection software on a semi-daily basis for archiving, 
maintenance, and manual video data processing.

We collected electrical data from the house break-
er and passed it to our behavior-extraction algorithm 
through a bridge program. The Axis Camera Station 
collected the camera data and stored it in MPEG for-
mat at a 320 × 240 resolution at 4 frames per second. 
At regular intervals, we manually analyzed video data 
and processed it into activity logs. Upon log comple-
tion, we deleted the original video data. Activity logs 
had the following format:

Date/time subject activity

The subject could be any of the house’s three resi-
dents or a guest. Possible activities included turn-
ing any household appliances on or off (for example, 
kitchen_lamp_1_on), entering or leaving the residence, 
sleeping, preparing meals, taking a bath, or having a 
party. Because we didn’t put cameras in individual 
rooms, the resulting activity logs weren’t fully com-
plete. However, this arrangement respected the res-
idents’ privacy and led to more natural behavior in 
areas under visual observation, whereas the collected 
data were sufficient to estimate parameters of interest 
(which we detail in a later section).

After collection, we subdivided the experiment 
data into two sets: a smaller three-day “training” set 
and a larger seven-day “experimental” set. Although 
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we actively modified our algorithms to increase per-
formance on the training set, we kept them complete-
ly unchanged on the experimental set. Figure 2 shows 
the information flow between various components for 

both the training and experimental stages (please refer 
to it as you read the subsequent sections).

Threat Model
For experimental purposes, we assume an adversary 
that has access to the real power data from a single 
household at a 1-watt power resolution and at least 
a 15-second time resolution. We further assume that 
the adversary has a list of appliances present inside, 
as well as their turn-on/turn-off profiles (not an un-
reasonable assumption—the Enetics NILM system9 
has a built-in library of generic appliance profiles 
that you can match to unknown load signatures). Ad-
ditionally, we assume that the adversary can distin-
guish between intermittent and periodic loads. We 
need not manually obtain this information—we can 
compile a list of intermittent appliances via reference 
software9 or through automated means,16 and we can 
automatically identify periodic loads using existing 
NILM algorithms.17

Parameters for Estimation
We chose several parameters that were both reveal-
ing and possible to estimate using our data-gathering 
equipment and processing algorithms:

• presence/absence—whether someone is present at the 
house;

• appliance use—status of the microwave, stove, water 
heater, TV, or miscellaneous appliances;

• sleep/wake cycle—when the household’s occupants 
wake up and fall asleep; and

• other significant events—breakfast, dinner, showers, 
parties, and so on.

More formally, we begin by combining all the data 
into a single timeline. For each parameter, we parti-
tion this timeline into segments, with each segment 
assigned some value. For most parameters, the value 
is binary, indicating whether a person is present or 
absent, asleep or awake. For a specific parameter, we 
define the ith “on” interval by Ti

on  and Ti
off .

Performance Metrics and Evaluation
Once we gather energy-use data and process it using 
behavior-extraction algorithms, we wish to compare 
the results against reference results obtained from 
camera data. To do this, we employ two classes of 
metrics. The first is event-based and consists of each 
parameter’s failure-to-detect and misdetection per-
centages. We compute these percentages using the 
following procedure: 

1. Define the cutoff threshold Tthresh, choosing it 
based on experimentation with training data.

2. For each parameter, examine the sequence of 

LAN

AXIS camera
station

(a)

(b)

Camera

Data
collection/processing

Breaker panel Energy monitor

Figure 1. Experimental setup. We can see (a) the residence’s floor plan along 

with (b) the camera and electrical data-gathering setups.

Electrical
data

Contextual
info

NILM/behavior
extraction

Parameter and
heuristics modi�cations

Comparison/
analysis

Load events Performance
results

Behavior events

Camera data

Figure 2. Flow of information between experiment components. We removed 

the parameter modification loop used during training for the experiment.
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turn-on/turn-off events on both the reference 
and estimated intervals.

3. If a camera event occurs but a corresponding elec-
trical event doesn’t occur within Tthresh seconds, 
declare a failure to detect.

4. If an electrical event occurs but a corresponding 
camera event doesn’t occur within Tthresh seconds, 
declare a misdetection.

The second class of metrics takes a broader perspective 
by computing the percentage of the reference interval 
that is correctly classified. This might in some cases be 
a better indicator of long-term performance because 
the algorithm could miss several short-duration events 
while classifying most of the interval correctly. 

Together, these metrics help us get a well-rounded 
picture of the algorithm’s performance, providing 
both detail and global perspective.

Behavior-Extraction Algorithms
We implemented our behavior-extraction system 
in Matlab; it comprises two major components: an 
NILM algorithm and a suite of functions that esti-
mate the high-level parameters mentioned in the pre-

vious section. The NILM algorithm we implemented 
is based on an early MIT prototype.18 It analyzes the 
electrical data the load monitor gathers (see Figure 3a), 
performing edge detection, and cluster matching.

During edge detection, the algorithm computes a 
difference series D(t) = P(t) – P(t – 1) from the electri-
cal data P(t). It merges adjacent D(t)’s of the same sign 
and greater than a certain threshold into switch events 
(see Figure 3b).

During cluster matching, the algorithm matches 
switch events against a database of load signatures and 
classifies them as either “on” or “off” events. A load sig-
nature might be a switch event of a certain magnitude 
(a 40-watt light bulb has a step turn-on signature of D(t) 
= 40 watts) or a series of such events (a refrigerator has a 
turn-on signature of D(t) = 1,100 watts, D(t + 1) = –960 
watts). The algorithm either discards unclassified events 
as noise or labels them with a catchall “misc. event” clas-
sifier. Figure 3c shows a sample of classified events.

Once the load events are classified, behavior-
extraction routines use them to determine presence 
schedules, sleeping cycles, shower and bathroom use, 
mealtimes, and other activities. We briefly describe 
the most important routines:
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Figure 3. Behavior-extraction algorithm. We can see (a) the aggregate power-consumption data, (b) the derived switch 

events, (c) several identified load events, and (d) a comparison between reference and estimated intervals.
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• Presence. Because the refrigerator is the only load 
in the residence with automated turn-on/turn-off 
events, we assume that any nonrefrigerator event in-
dicates presence. On the other hand, we can define 
absence by low power usage and a lack of events. 
An extended interval with low power usage during 
which no events occur implies that all subjects have 
left the residence.

• Sleep cycle. Intervals of inactivity occurring between 
late evening and early morning imply that all people 
are sleeping (as opposed to absent). So, we reclassify 
all such absence intervals as sleep intervals.

The last major component of our system is the analysis 
suite. Reference data derived from camera logs is au-
tomatically processed into reference intervals, which 
are then compared against estimated intervals using 
metrics described in the previous section. 

Results
As mentioned, we ran our algorithms on a three-day 
training set and a larger seven-day experimental set. 
Table 1 shows the results. For each quantity, the table 
shows the number of events recorded, the percentage 
of successfully detected reference events, the misde-
tection percentage, and the percentage of the refer-
ence interval correctly classified.

One important appliance Table 1 leaves out is the 
refrigerator, which autonomously cycles between high 
and low states. Unfortunately, we didn’t observe these 
state transitions directly, which would have required 
a separate energy monitor exclusively for the refrig-
erator. However, we can comment on the algorithm’s 
performance by manually examining the electrical 
data readout (a refrigerator has a distinctive operating 
profile—see Figure 3c). For the training data set, 101 

out of roughly 104 refrigerator events (more than 97 
percent) were correctly classified. The success rate was 
similarly high for the experimental data set. 

Generally, the algorithm performed quite well in 
determining presence and sleep cycles. In both cases, 
it correctly classified more than 90 percent of the to-
tal interval length for both training and experimental 
data. We believe this is due to our success in identify-
ing the refrigerator load, the small number of autono-
mous appliances in the residence, and the consequent 
simplicity of the presence and sleep-wake heuristics.

The algorithm was also relatively successful at clas-
sifying microwave and bathroom light events, support-
ing our hypothesis that it’s possible to predict both meal 
times and shower times with moderate success. Living 
room light detection was unreliable, partly due to the 
presence of other 40-watt light bulbs in the residence.

It’s worth noting the high percentage of misdetec-
tions. We believe this is caused in equal part by the 
limited capabilities of our data-gathering system and 
algorithms, and by our camera monitoring setup’s im-
perfections. On the behavior-extraction side, our data 
logger recorded only real power and only at 15-sec-
ond intervals, while our algorithm was tilted toward 
false alarm rather than failure to detect. On the camera 
side, our camera wasn’t in a position to observe all 
loads directly, which meant that we sometimes missed 
turn-on/turn-off events during manual processing. 
Consequently, for appliances, the percentage of refer-
ence points detected is the most credible measure of 
algorithm performance.

Also, for appliances, percent interval correctly classi-
fied isn’t necessarily meaningful because the zero-per-
formance point, defined as the performance when the 
entire estimated interval is set to 0, is still 50 percent 
for microwave and bathroom lights.

Table 1. Algorithm performance.

Sample size 
(referenced /estimated)

Reference 
events detected Misdetects (%) Interval (%)

Training data
Presence 8/8 100 0 97.3

Sleep cycle 6/6 100 0 93.4

Microwave 8/8 50 78 43

Bathroom lights 8/8 72 44 52

Passage light 8/82 38 90 57

Living room lights 8/8 55 88 58

Experimental data
Presence 10/10 80 20 97.4

Sleep cycle 12/10 83 0 92.3

Microwave 10/58 80 83 99

Bathroom lights 60/103 63 42 81

Passage light 8/82 38 90 57

Living room lights 19/179 21 89 52
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Degree of Disclosure
Figure 4 shows an implementation of the disclo-
sure metric whose construction we discussed previ-
ously. We select eight important parameters that our 
NILM-based behavior-extraction algorithm could 
reveal, then rate the amount of information disclosure 
for each as negligible, slight, fair, high, or severe. Where 
possible and appropriate, we also provide a numerical 
measure from one to 100.

We begin with aggregate presence and sleep schedules—
these are useful to a broad range of players, and their 
performance transfers directly from Table 1. Based on 
arguments made previously for balancing the short- 
and long-term perspectives, we average performances 
in columns three and five. The resulting performance 
numbers—more than 90 percent in both cases, seem 
quite good. However, we can’t track the number of 
people currently present or asleep, which detracts 
from the performance somewhat. We rate the degree 
of disclosure for both as high.

However, the algorithm’s tracking ability is only 
fair—it can localize occupants to the kitchen or bath-
room, but can’t reliably localize individual movement 
within the house. Without the prior behavioral pro-
files and ancillary sensor data, the algorithm’s ability to 
assign events to individuals is practically nonexistent.

For appliances and appliance-derived parameters, 
we calculate performance by averaging all relevant 
entries in column three of Table 1 and subtracting 
an average of entries in column four weighted by .2 
(because misdetects are indicative but unreliable for 
reasons we listed earlier).

The algorithm’s overall ability to identify applianc-
es is only fair, due to both the fairly low detection rate 
and the high percentage of misdetects. However, its 
ability to identify large, distinctive appliances—in this 
case, the refrigerator and microwave—is high. Disclo-
sure about meal times, which we obtain by window-
ing the microwave use detection/misdetection ratio 

with likely timeframes for meals, is fair. Information 
about shower times, derived directly from bathroom 
light and fan use, is also fair. Overall disclosure is the 
weighted (in our case equally) average of all these pa-
rameters; we qualify it as fair. 

We can now evaluate the overall threat to individ-
ual privacy by taking these results on potential disclo-
sure from consumption data, qualifying them with the 
likelihood and degree of disclosure, historical prece-
dent for repurposing, and the relationship between the 
data holders (utilities) and interested parties. We don’t 
presume to conduct such an analysis in this article, 

Discussion
Our experiment shows that the algorithm can esti-
mate presence events and sleep cycles with high con-
fidence, at least for a household with few appliances 
and relatively infrequent switching events. However, 
although the experiment illustrates the system’s po-
tential, it doesn’t comprehensively characterize its 
capabilities. First, the experiment’s scale—a week’s 
worth of data from a single residence—is too small 
to draw conclusions on the system’s limitations. Con-
versely, the adversarial model might also be too strong; 
in practice, an adversary might not have an actual list 
of the appliances inside a home, which would lead to 
less reliable presence and sleep predictions.

Despite these caveats, we believe that our results are 
sound and that, moreover, our approach has the po-
tential for significant refinement. First, we note that 
the residence didn’t have an electric stove or a water 
 heater—two readily identifiable loads whose “on” 
intervals directly correspond to meal times, laundry, 
and showers. Second, we used only electrical data; 
a behavior-extraction algorithm can combine data 
streams from electric, water, gas, humidity, and any 
other available sensors. Third, our data resolution (15 
seconds in most cases) was relatively low, and our be-
havior-extraction algorithms were relatively unsophis-

Presence

Sleep schedule

Tracking

Person-to-event assistance

Appliance use

Large appliance use

Meal times

Presence

Overall disclosure

89, high

92, high

Slight

Neglible

49, fair

72, high

59, fair

67, high

60, fair

Figure 4. Degree of disclosure. This metric measures the ability of our behavior extraction system to reveal various in-home activities by 

associating data quality (accuracy of readings, time resolution, types of readings, and so on) with the information that the data can reveal.
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ticated, because our aim was to prove feasibility and 
not to optimize performance. NILM and behavior-
extraction systems of the near future will surely surpass 
our effort in performance, enabling person-to-event 
assignments and perhaps even limited tracking.

On the other hand, we believe less potent technol-
ogy can still extract useful data. Various players could 
use hourly power averages, such as those that Cali-
fornia’s AMI system produces, to determine presence 
and sleep cycles (although to a coarser degree) and 
identify major appliances with substantial steady-state 
power consumption (such as heat lamps). 

Note that future concerns aren’t limited to these 
systems’ performance at an individual household level. 
Because the algorithms are fully automated, interested 
parties could do analysis on extremely large scales, in-
volving hundreds or thousands of residences. Easy access 
to information will inevitably generate a market for it.

Data-Handling Guidelines 
A report recently submitted to the California Energy 
Commission19 makes several recommendations for 
power-data handling, including

• multiple tiers of control and oversight, both by the 
utilities themselves and state and federal governments;

• explicit guidelines regulating access to data for cus-
tomer service, load research, and other functions;

• strong user control over information leaving the 
residence; and

• protocols that do most of the data processing at sta-
tions located inside the residence, as well hard pro-
hibitions against relaying certain types of data.

One of the report’s main points is that state and fed-
eral goverments should carefully regulate the mining 
of hourly usage data. The authors advise policymakers 
to adopt more stringent rules on the use, release, and 
reuse of energy consumption data as data mining prac-
tices develop and new information in which consum-
ers have a reasonable expectation of privacy is exposed.

T his article details the sorts of conclusions that 
various players can readily draw from power-con-

sumption data. Our discussion of motivations shows 
that the decrease in the time interval between read-
ings of energy consumption—likely to real or near-
real-time—will create new interest in repurposing 
consumption data. Our technology discussion and 
proof-of-concept demonstration show that even the 
simplest data mining and pattern-matching tools can 
convert power consumption data into information 
about events within “the sacred precincts of private 
and domestic life,”2 illustrating the extent to which 
such players could violate residential privacy by col-

lecting and using power-consumption data. Finally, 
the disclosure metric we propose and implement fa-
cilitates privacy risk violation, which could let policy 
makers more precisely define the permitted and pro-
hibited uses of data mining.

Discussion and advocacy efforts are already under 
way to address this problem. Jack Lerner and Diedre 
Mulligan have written an article2 chronicling court 
opinion’s evolution toward energy-data privacy and 
calling for its constitutional protection. They’ve also 
collaborated with the CPUC to develop a set of draft 
guidelines19 for a secure and privacy-preserving de-
mand-response infrastructure. We hope that this article 
helps those seeking to create NG-SCADA technologies 
that respect and safeguard consumer privacy. 
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