
Storing and Accessing Live Mashup Content in the Cloud

Krzysztof Ostrowski
Cornell University

Ithaca, NY 14853, USA
krzys@cs.cornell.edu

Ken Birman
Cornell University

Ithaca, NY 14853, USA
ken@cs.cornell.edu

ABSTRACT
Today’sRich Internet Application (RIA) technologies such as Ajax,
Flex, or Silverlight, are designed around the client-server paradigm
and cannot easily take advantage of replication, publish-subscribe,
or peer-to-peer mechanisms for better scalability or responsiveness.
This is particularly true of storage: content is typically persisted in
data centers and consumed via web services. We propose acheck-
pointed channel (CC) abstraction as an alternative model for storing
and accessing content. CCs are architecture-agnostic: they could be
implemented as web services, but also as replicated state machines
running over peer-to-peer multicast protocols. They can seamlessly
span across the data center boundaries, or live at the edge. They are
a more natural way of consuming streaming content. CCs can store
hierarchical documents with hyperlinks to other CCs, thus forming
a web of interconnected CCs: a live scalable information space. We
discuss the advantages of the new abstraction, challenges it poses,
and the way it fits within the existing models for RIA development.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems—Distributed applications; D.2.11 [Software Engineering]:
Software Architectures—Data abstraction; E.2 [Data]: Data Stor-
age Representations—Linked representations; H.3.5 [Information
Storage and Retrieval]: On-line Information Services—Data shar-
ing

General Terms
Design, Languages, Standardization

Keywords
Scalability, Distributed Storage, Rich Internet Application, Cloud
Computing, Edge Computing, Peer-to-Peer, Hyperlink

1. INTRODUCTION
Rich Internet Applications (RIAs) and Web 2.0mashups are cur-

rently the most visible realizations of the cloud computingconcept.
In a nutshell, the idea is to run a sophisticated user interface (UI) –

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LADIS ’09 Big Sky, MT, USA
Copyright 2009 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

directly in the client’s browser – through which users can manipu-
late information stored outside of their personal computers (in the
cloud; typically on servers in data centers). The core distinguishing
features include the ability tointeractively modify live information
stored in the network,share it with others in real time, andcombine
content from multiple sources. A number of technologies targeting
this model have emerged, such as Ajax, Sun’s JavaFx, Adobe Flex
and AIR, Microsoft Silverlight, and most recently, Google Wave.

Depite the wide range of available RIA platforms, nearly allex-
isting technologies follow the same pattern of working withdata. A
typical RIA consists of three key components. First, a rich user in-
terface created in a markup language such as plain HTML, XAML
(in Silverlight), or MXML (in Flex), and compiled into an HTML
page. Second, a set of SOAP or RESTweb services (WS) at a data
center that deliver content on demand (via therequest-response pat-
tern). Third, scripts in a language such as JavaScript (JS) or Action-
Script (AS), embedded in the UI markup language, and runningin
the client’s browser. The scripts provide a link between theUI and
the WS backend. Typically, they initiate asynchronous WS calls to
fetch content. The response triggers an appropriate callback in the
script, and usually takes the form of an XML document. The script
deserializes the XML document, and uses DOM or a similar tech-
nology to navigate to indidivial UI components (such as fields in a
form or cells in a table) to populate them with the received content.
The latter is done by calling UI components’ setter/getter methods.

The approach just described has several disadvantages. First, it is
awkward to use for streaming content or asynchronous updateno-
tification from server to the clients. Although there exist technolo-
gies that provide this functionality, we are not aware of anywidely-
adopted and consistent standards. Most RIAs poll for updates syn-
chronously, which is inefficient and non-scalable. The issue stems
in part from the fact that the security model in the browser does not
allow listening on sockets; hence, even though SOAP WSs support
asynchronous callbacks, using them can be problematic; yetto dis-
play alive content in real-time, updates should be pushed to clients
continuously, as asynchronous streams (not unlike videos in Flash).

Second, although scripting logic could be sophisticated, usually
it deals with the mundane task of moving data back and forth: call-
ing WSs, calling UI setter and getter methods, etc. As noted above,
from a logical perspective, UI components in RIAs as well as their
backend WSs produce and consume streams of updates, yet they’re
forced into a PUT / GET interface, effectively leaving it to RIA pro-
grammers to implement the missing streaming behavior manually.
Switching to streaming interfaces could reduce the coding burden.

Finally, the established approach is incompatible with replication
and peer-to-peer protocols, which eliminates many types ofscalab-
le architectures that one might wish to use at the backend. Peer-to-
peer connectivity could offload the server, reduce latency,or enable

RIAs to work when clients are partitioned from data centers,but not
from one-another (e.g. in military and search and rescue scenarios).
The existing collaboration model assumes that all data is persisted
at the data center and all updated are routed through a central server.

One reason why the existing RIA frameworks offer poor support
for replication is that therequest-response and PUT / GET patterns
do not map in any obvious way to multicast send, receive, and state
transfer operations. Another problem is that in the existing model,
resources are identified by URIs that function as addresses,from
which data can be retrieved. Unlike server-hosted resources, a col-
laborative peer-to-peer session might not have a URI in the usual
sense, and the data that lives in that P2P session does not exist at
any particular location; rather, it would exist as a collection of repli-
cas distributed among a dynamically changing set of participants.
Our main point is that it would be convenient to be able to treat P2P
collaboration sessions ascontent in the same way as content stored
in data centers, and embed them as parts of RIAs and mashups.

This motivates our approach, which is to replace the existing pat-
tern of accessing content in RIAs and mashups with acheckpointed
channel (CC) abstraction described in Section 2.1, and to use this
abstraction uniformly at all levels from the UI to the storage back-
end. We propose to abandon theclient-server, request-response,
PUT / GET style of data access, and treat CCs as the basic unit of
storage, and the default way of accessing it. We have implemented
this approach as a part of ourlive distributed objects (LO) platform
([1]), and used it in classroom setting. We found CCs to be a natural
abstraction (and free of the limitations discussed earlier).

2. CHANNELS

2.1 Definition, Semantics, and Examples
A checkpointed channel (CC) is defined as a set ofproxies, soft-

ware components that run on multiple nodes distributed across the
network (Figure 1). Each proxy can have a private local state. CC’s
proxies may communicate with each other, e.g., execute an instance
of some distributed protocol; in this case, each proxy wouldbe an
instance of the distributed protocol stack. The proxies mayalso not
communicate at all. Proxies interact with local application compo-
nents via standardized event-basedchannel interface (Figure 2).

The interface between application components and CC proxies
consists of five types of events. Eventinitialize (TC checkpoint) is
the first event that an application component (A) receives after con-
necting to a proxy of the channel. The valuecheckpoint of typeTC

contained in this event represents thestate thatA should initialize
itself with; this is analogous tostate transfer in group communica-
tion. Following initialize , componentA receives from its channel
proxy a sequence ofupdate(TU update) events. Eachupdateevent
carries an incremental update of typeTU thatA should apply to its
local replica of the application state.A can also request updates by
issuing eventsubmit_update(TU update) to the channel proxy. Its
request may not be immediately satisfied; typically, updates will be
coordinated and ordered across the channel (we discuss thislater).
If the request is satisfied, all of the channel’s proxies issue update
events to deliver this update to their local application components.
Finally,A might occasionally receive eventrequest_checkpoint();
with this,A’s local proxy is requesting thatA provide a checkpoint
of its local state.A responds withcheckpoint(TC checkpoint). The
channel’s proxies use this interface to obtain checkpointsnecessary
to initialize new application components joining the channel. Prox-
ies may not request checkpoints if they maintain replicas ofthe ap-
plication state internally (in general, we make no such assumption).

Formally, letTC be the set of all possible checkpoints (applica-
tion states), letTU be the set of all possible updates in this channel,

checkpointed
channel

user

events

network msgs

m m

m

m m
node�

channel
interfaces

P� P�
P� node�

node�
proxy

software
on node�
application
component

A�
A�

A�
Figure 1: A checkpointed channel (CC) spans multiple locations
across the network: it consists of a set of communicatingprox-
ies (hereP1, P2, and P3). Internal local states of CC’s proxies,
and protocols that run between them, are encapsulated in the
CC; the latter interacts with application components viaevents
exchanged through standardized instances shown on Figure 2.

C�
application
component

initialize(T� checkpoint)
request_checkpoint()
update(T� update)

submit_update(T� update)
checkpoint(T� checkpoint)A

channel<T�	 T�>
channel

proxy

channel’s
imported
interface

channel’s
exported
interface

asynchronous
communication with the proxies

of a checkpointed channel

Figure 2: Interfaces exported and imported by a CC are mod-
eled after the APIs exposed by group communication systems.

and givenu ∈ TU , letFu : TC → TC be a function that transforms
any checkpoint (state) into one that results from applying updateu.
If A receives from its proxy initial checkpointc0 ∈ TC followed by
a sequence of updatesu1, . . . un ∈ TU , we say that after all of these
updates,A hasreached statecn , Fun

(Fu
n−1

(. . .Fu1
(c0) . . .)),

and ifA subsequently receives a checkpoint request, it must report
cn in its checkpoint event. It should be noted that when we men-
tion A’s application state, we mean a state associated with the given
channel. In general,A might be connected to multiple channels; it
would then exchange different parts of its state with each ofthem.

Note there are no explicit acknowledgements in this model. The
receipt of anupdate matching an earlier request serves as a posi-
tive acknowledgement. There is no need for negative acknowledge-
ments; we assume that channels are reliable: if an update submitted
by A can’t be accepted,A’s local proxy disconnects itself fromA.
All interaction with a proxy occurs between a pair ofconnectand
disconnectevents. Each connection with a channel’s proxy initia-
tes a new interactive session, entirely independent from the past.

Although in general, the semantics of channels one might want
to use in practice might vary, our discussion in this paper focuses
on one particular class of channels: reliable and totally ordered. We
assume that all updates delivered via theupdateevent by any of the
proxies come from the same totally ordered sequence –u1, u2, . . . ,
and that each proxy delivers to the connected component an initial
checkpointcn (as defined earlier) followed by a contiguous (finite
or infinite) sequence of updatesun+1, un+2, un+3 . . . , for somen
(perhaps differentn for different proxies). We further assume that
every pair of components that never disconnect from their proxies
eventually reaches the same states (in the sense defined earlier), and
that all updates they submit are eventually included inu1, u2,

Based on the discussion so far, we can of think of each CC as an
entity that has state, much in the same sense as a variable in apro-

gramming language: each application componentAi that interacts
with such channel (through its local proxyCi) observes (a part of)
the same linear sequence of values. The only difference is inthe in-
terface: instead of explicitset andget (or PUT and GET) requests,
characteristic of the traditional client-server approach, one now has
to think in terms of asynchronous updates and checkpoints.

In the context of RIA and mashups, we are particularly interested
in channels that hold structured content. We define anXML channel
to be a CC in which the checkpointsc ∈ TC are well-formed XML
documents, and updatesu ∈ TU are a standardized set of edits that
can be performed against such documents (the exact representation
of these does not concern us here). By further restricting the valid
types of checkpoints, one could distinguish XHTML, RSS, XAML,
MXML, and other classes of channels that hold structured content,
such as a particular class of Java/.NET objects serialized into XML.
RIAs and mashups built in our prototype platform typically involve
a hierarchy of XML CCs, in which individual CCs store different
parts of a hierarchical document. This is discussed in Section 2.2.

To conclude this section, let’s look at example architectures that
fit the CC abstraction. The simplest type of a CC is one based on
a back-end SOAP or REST web service, RSS feed, or other client-
server protocol (Figure 3, left). Here,submit_updateevents might
translate to SOAP calls or POST requests, whereasinitialize and
updatemight be triggered after synchronous GET, web sevice call-
backs (if supported), or RSS notifications. One issue with this sce-
nario is that for many content sources, such as RESTful WSs, RSS
and ATOM feeds, there is no obvious way to distinguish between
checkpoints and updates. One solution would be for proxies of the
channel to repeatedly fetch content and issuecheckpoint events
instead of updates. Another, more expensive, would be for proxies
to compare subsequent checkpoints and generate incremental up-
dates; this may be feasible for RSS feeds and other XML sources,
where updates might be as simple as inserting items to a collection.
In the long run, we believe it necessary to extend the existing Web
standards to support asynchronouscheckpoint / update semantics.

Another example of a CC would be an instance of a reliable mul-
ticast protocol or a replicate state machine (Figure 3, right). Chan-
nel events map in a straightforward manner to multicasts andstate
transfers. Proxies of the CC that carries data (Q on Figure 3) might
need to use an externalmembership service to discover one-another
and obtain a consistent view of the membership of their group, but
the actual data (checkpoints and updates) would travel directly be-
tween the clients’ machines. Membership information can also be
represented as a channel: checkpoints in this case map to full mem-
bership views, and updates to individual joins and leaves. The en-
tire membership infrastructure can thus be implemented using any
of the techniques discussed here (centralized, P2P, etc.).To allevi-
ate the issue with NATs and firewalls blocking peer-to-peer traffic,
the membership service could act as a STUN or rendezvous server.

The main problem with the “pure” P2P multicast scenario is that
the state can be retained for only as long as there exist clients using
the CC. Once the last client closes its browser window, all instances
of components that held application state and their associated prox-
ies are terminated, at which point all updates are permanently lost.

To prevent this from happening, the service provider could auto-
matically instantiate proxies of the channel on infrastructure servers
(Figure 4). The role of these servers would be to ensure that some
number of state replicas always stay active. The number of servers
could be adjusted based on the channel’s fault-tolerance needs and
the average duration of the users’ interactive sessions.

One can easily imagine combinations of these schemes. For ex-
ample, instead of using infrastructure servers for persistence, prox-
ies could use reliable multicast when their number grows large, and

P
 P�P� M
 M�M�
Q�Q�Q

web service membership service

channel
(data) channel

(data)

channel
(memb.)

Figure 3: Left: CC based on a web service. Updates translate to
SOAP or REST requests, and changes are detected by callbacks
or via polling. Right: CC based on a reliable multicast protocol
with state transfer. Updates/checkpoints flow directly between
channel proxies. An internalmembership channel (also a CC in
our approach) is used to byQ’s proxies to achieve consistency.

M M�M�
Q�Q�Q

memb. service

channel
(data)

channel
(memb.) M�

Q� M�
Q�

infrastructure nodes

persistence
manager

persistence
layer

Figure 4: Persistence in peer-to-peer settings could be achieved
by automatically joining infrastructure servers to the channel.

fall back to the client-server scheme and route all updates through a
centralized service when their number falls below a threshold. The
analysis of such scenarios is beyond the scope of this paper.

For use in our target environment, it’s important that the CCab-
straction be scalable. In past work [11], we proved that strong prop-
erties, such as reliable atomic delivery, can be implemented without
reliance on a single global membership service, and we proposed a
hierarchical architecture that instead uses a large numberof (inde-
pendent) membership services that control portions of the network.
Hence at least in theory, it is possible to implement CCs withhun-
dreds of thousands of members.

2.2 Embedding Channels in Applications
In Section 1, we postulated replacing PUT / GET interfaces for

data access consistently throughout the RIA, including theUI layer.
Accordingly, in our prototype platform all UI components, such as
text boxes, panels, and 3D objects, expose interfaces complemen-
tary to those exposed by the CCs: they consume eventsinitialize ,
update, andrequest_checkpoint, and unless read-only, they issue
submit_updateandcheckpoint. Thus, in our platform, UI com-
ponents binddirectly to their channel proxies, without the need to
write any scripting logic to manually move data. This is reflected in
the structure of our XML markup language (an analogue to XAML
and MXML). Typically, channel specification is passed directly as
a parameter of a UI component (compare Figure 5, lines 6-98).
When parsing our XML document, the client runtime instantiates
all UI components and their channel proxies from their XML de-
scriptions and connects their endpoints to initiate communication
between them. Once a channel proxy obtains the initial checkpoint,
it issues theinitialize event, at which point the UI component con-
nected to it is enabled, and can accept further updates or user input.
If the connection between the UI an the channel proxy breaks at any

point, the UI element is disabled and the entire process is restarted.
The fact that data consumers bind directly to channels has a no-

table consequence: each CC stores the complete data set required to
display and update the given UI component. This raises a question
aboutcontainers (such as panels, tables, grids, lists, and compound
documents) that display UI components embedded in them: should
the container channel also carry data associated with elements em-
bedded in it, or should those elements be bound to separate chan-
nels? The answer is not obvious. The established practice inRIAs
is a mixture of the two: hierarchical content is first shippedto the
client as a single HTML document, and then JavaScript (JS) isused
to dynamically pull updates to the individual elements of the page,
and update them individually via DOM. One could argue that the
more dynamic and personalized the content is, the more advanta-
geous it would be for performance reasons to store each unit of data
in a separate channel, pull it on demand, and assemble on the client
machine based on user’s viewing preferences or local session state.
Furthermore, different UI components might display data with dif-
ferent update patterns, security, privacy, or reliabilityproperties. It
would be desirable to back each component with the type of chan-
nel that best matches its characteristics. This is the modelwe used.
In our platform, the container channel (P on Figure 6) stores all in-
formation necessary to create and initialize embedded components
(B, C, andD) and proxies of their channels (Q1, R1, andS1), but
it does not include content to fill the embedded components with;
each of these loads its content individually from its private channel.

Our approach could raise concerns. First, it complicates develop-
ment and deployment: instead of working with a single document,
the web designer now commits content into multiple independent
CCs. In practice, it may be necessary for developer’s changes to be
atomic across channels and possible to preview, rollback and audit.
Since channels might be heterogeneous, this would require extend-
ing distributed commit protocols to also work across channels.

The second concern is scalability: the model presented hereleads
to a large number of distinct channels, and in the sort of collabora-
tive scenarios, where channels might be physically implemented as
instances of reliable multicast, this can incur high overhead. How-
ever, note that the users who access a container channel willusually
also access the channels of embedded elements, so in practice we’ll
observe set inclusion and other similarities between sets of users ac-
cessing different channels; one can potentially use this toamortize
overhead, e.g., via some form of channeling/clustering [13].

At this point, one might pose a question: now that we eliminated
the need for scripts to manually fetch data from remote sources and
feed it to the UI, whatshould be the primary use of script embedded
in the XML markup (if any)? Experiences with our platform sug-
gest two important uses. First, channel management: much effort
in web development focuses on delivering personalized content; in
our framework, this means fetching data only from channels that
match the user’s physical location, viewing perspective, profile, etc.
Second, distributed coordination: some applications might need to
lock a portion of data before changing it, synchronize viewsacross
clients, vote, compare, or otherwise aggregate their inputs to deter-
mine the course of action. We believe that in collaborative envi-
ronments, coordination logic is an integral part of the content, and
naturally fits as a script embedded in XML markups such as those
on Figure 5 much in the same way JS fits in HTML. We’re currently
working on a scripting language designed with such embedding in
mind that can concisely express many types of distributed coordi-
nation using a small set of generic language primitives ([10], [11]).

To conclude, we’d like to point to a possible use of CCs as a way
of storing personalized user profile and session state. Today’s RIAs
achieve this viacookies: small files stored on user’s local machines

01: <?xml version="1.0" encoding="utf-16"?>
02: <Object xsi:type="ReferenceObject" id="e3ea16f4">
03: <Parameter id="Background Color">
04: <Value xsi:type="xsd:string">YellowGreen</Value>
05: </Parameter>
06: <Parameter id="Channel">
07: <Value xsi:type="ReferenceObject" id="c71e88e7">
08: <Parameter id="CheckpointClass">
09: <Value xsi:type="ValueClass" id="982130e4" />
10: </Parameter>
11: <Parameter id="MessageClass">
12: <Value xsi:type="ValueClass" id="982130e4" />
13: </Parameter>
... ...

97: </Value>
98: </Parameter>
99: </Object>

Figure 5: An example document in our markup language (sim-
plified). Code in lines 2-99 describes a visual component; e.g.,
a panel. Component type is determined by anid in line 2, and
two parametersBackground Color and Channel are specified in
lines 3-5 and 6-98, respectively. The latter parameter describes
the CC that stores information about all items contained on the
panel; for example, it may refer to a built-in channel template,
again by specifying theid (line 7), and parameters (lines 8-96).

mashup

B

C

D

AUI component
rendering
content

UI element
channel

proxy

Q�
R�
S�P� channel “P”

channel “Q”
channel “R”
channel “S”

Ref
Ref<Q>

Ref<C>
Ref<R>

Ref<D>
Ref<S>

XML document
stored in channel “P”

Figure 6: In a document with three embedded elements, there
are four proxies that supply content (one for the document, and
one for each embedded element) from four different channels.
Content stored in channelP takes the form of an XML docu-
ment with three sections similar to those on Figure 5, allowing
the browser to create componentsB, C, and D with their em-
bedded proxies. Content displayed byB, C, andD is not stored
in P , however; it is stored separately in channelsQ, R, and S.
Sections denoted asRef<X> are references: XML-serialized in-
structions for creating UI components, channel proxies, etc.

and attached to client-server requests; servers use these to correlate
client’s HTTP requests with profiles stored in centralized databases.
The problem is that cookies are associated with a particularservice
provider, and don’t work across domains. In a mashup with a large
number of components delivering content from different providers,
each component tracks user profile and session state separately.

We propose to use CCs as containers for user profiles and local
session state, replicated and shared among different machines, con-
tent providers, and mashup components in the same way multiple
users can share a collaboratively edited document. This way, e.g.,
if the user moves an avatar on a Google map, the location change
could be propagated across the CC carrying the user’s personal pro-
file to other components that may display weather information from
Yahoo! and data from the National Census Bureau, and cause them
to update their contents accordingly, so that information presented
by different parts of the mashup stays synchronized even though the
components displaying it may have come from different providers.

2.3 Addressing and Linking To Channels
A natural question at this point is: how to identify CCs, and how

should a browser on a client machine translate a CC identifierinto a
running proxy? One approach would be to identify a CC by a URI,
just like other resources on the Web, download its code via HTTP,
load it into the process, and run it in the same way we run JS scripts
and Java applets. The advantage of this solution is its simplicity; a
major disadvantage is that it lacks flexibility. In some scenarios, we
might prefer to override the name resolution process just described
with a more secure version that involves mutual authentication, or
construct the channel proxy’s distributed protocol stack differently
depending on a user’s physical location or network characteristics.
Another issue is that it creates a dependency on client-server infras-
tructure. During disconnected operation, one might wish tosponta-
neously initiate a peer-to-peer collaboration session without having
access to the server on which the channel code is stored.

We adopted a different model: CCs themselves are mashups, de-
scribed in the same XML markup language as the UI (Figure 5).
CC specification expressed in XML, called areference, can identify
a CC with an identifier and a URL, but it can also describe the CC
explicitly as a mashup of components that represent simplerproto-
col layers, as an instance of some template with parameters,etc. In
our model, references play the role analogous to identifiers, names,
addresses, or pointers: each reference contains enough information
about the CC’s protocol stack for the browser to construct its proxy.

Following this approach, we can represent hyperlinks as ordinary
UI components with embedded CC specifications (just like those on
Figure 5); except that instead of activating and connectingto its CC
proxy to fetch content, a hyperlink component waits for the user’s
action. Once clicked, it passes the embedded channel reference to
the browser. The UI component that represents the browser window
then connects to the channel to retrieve content, much in thesame
way a regular browser would load content from the HTTP address
specified in an ordinary hyperlink and fill its entire window with it.

Following this approach further, we replaced the HTTP protocol
with the CC interfaces, and URIs/URLs with CC references. Inour
platform, instead of typing a URL or clicking on a link to download
static content, the user clicks on a CC reference, causing the local
browser to create the CC’s proxy, connect to it, and start displaying
dynamic content stored in the CC. Clicking on hyperlinks embed-
ded on the displayed page would cause the browser to navigateto
other channels, as described earlier. Instead of browsing aregular
client-server Web, the user browses a Web of hyperlinked CCs.

As mentioned earlier, we have a working implementation of the
CC paradigm [1], and students at Cornell have been using it for two
years. However, the techniques we described could just as easily be
incorporated into Silverlight, or any other modern RIA framework.

3. RELATED WORK
Due to limited space, this section is limited; more completecov-

erage of related work can be found in the first author’s dissertation.
Croquet [12] pioneered the use of replication to store visual Web

content; their system was based on two-phase commit. Similarly to
most distributed storage architectures developed in the past decade,
such as Bayou [4], DDS [7], and Antiquity [15], content in Croquet
was stored on server replicas. In contrast, we propose to replicate
content directly on the clients nodes and treat clients and infrastruc-
ture nodes symmetrically, as channel members. Most researchers
believe in storage consolidation in big data centers [14]; we believe
that the ever-increasing power of home users’ computers, combined
with data center scalability limits, will eventually revert this trend,
although as several researchers have pointed out [2], thereare limits
to how much one can store in scenarios with high churn.

Distributed Asynchronous Collections (DAC) [5] pioneeredthe
idea of embedding reliable multicast in a programming language as
a general-purpose storage abstraction. Our work is largelyinspired
by DAC, but poses a different set of technical challenges dueto dif-
ferent scenarios (RIAs vs. Java) and the type of content (structured,
hyper-linked mashups vs. Java objects), among other factors.

BAST [6] pioneered the use of protocols as components within
an object-oriented environment. Our platform uses a black-box ap-
proach to composition motivated by intended use in mashups,whe-
reas BAST used a language-centric approach based on inheritance.

The emergence of massively multicore hardware and large com-
putational clusters operating on Web-scale data sets spurred a wave
interest in languages and architectures that support streaming and
data flow programming [8], [9]. Our proposal to structure Webac-
cess and RIA programming around streaming APIs fits this trend.

As pointed our earlier, our approach may lead to a large number
of CCs. Few existing replication protocols are designed to scale in
this dimension, but several optimization techniques have been pro-
posed recently that can amortize per-channel overhead in publish-
subscribe overlays [3], [13]. Solving the problem for reliable mul-
ticast may pose a bigger challenge.

4. REFERENCES
[1] Live Distributed Objects.http://liveobjects.cs.cornell.edu/.
[2] C. Blake and R. Rodrigues. High availability, scalable

storage, dynamic peer networks: pick two.HOTOS, 2003.
[3] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg.

Constructing scalable overlays for pub/sub with many topics.
problems, algorithms, and evaluation.PODC, 2007.

[4] K. Edwards, M. Spreitzer, D. Terry, and M. Theimer.
Designing and implementing asynchronous collaborative
applications with bayou.UIST, 1997.

[5] P. Eugster, R. Guerraoui, and J. Sventek. Distributed
asynchronous collections: Abstractions for publish/subscribe
interaction.ECOOP, 2000.

[6] B. Garbinato and R. Guerraoui. Flexible protocol
composition in bast.ICDCS, 1998.

[7] S. Gribble, E. Brewer, J. Hellerstein, and D. Culler. Scalable,
distributed data structures for internet service construction.
OSDI, 2000.

[8] J. Gummaraju, J. Coburn, Y. Turner, and M. Rosenblum.
Streamware: programming general-purpose multicore
processors using streams.ASPLOS, 2008.

[9] C. Olston, B. Reed, U. Srivastava, R. Kumar, and
A. Tomkins. Pig latin: a not-so-foreign language for data
processing.SIGMOD, 2008.

[10] K. Ostrowski, K. Birman, and D. Dolev. Programming Live
Distributed Objects with Distributed Data Flows.Cornell
University Tech Report. http://hdl.handle.net/1813/12766.

[11] K. Ostrowski, K. Birman, D. Dolev, and C. Sakoda.
Implementing reliable event streams in large systems via
distributed data flows and recursive delegation.DEBS, 2009.

[12] D. Smith, A. Kay, A. Raab, and D. Reed. Croquet: a
collaboration system architecture.C5, 2003.

[13] Y. Tock, N. Naaman, A. Harpaz, and G. Gershinsky.
Hierarchical clustering of message flows in a multicast data
dissemination system.PDCS, 2005.

[14] A. Veitch, E. Riedel, S. Towers, and J. Wilkes. Towards glo-
bal storage management and data placement.HotOS, 2001.

[15] H. Weatherspoon, P. Eaton, B.-G. Chun, and J. Kubiatowicz.
Antiquity: exploiting a secure log for wide-area distributed
storage.EuroSys, 2007.

