WS-OBJECTS: Extending Service-Oriented
Architecture with Hierarchical Composition of
Client-Side Asynchronous Event-Processing Logic

Krzysztof Ostrowski and Ken Birman
Department of Computer Science
Cornell University
Ithaca, NY 14853, USA
{krzys,kert@cs.cornell.edu

Abstract—There is a growing need for a new type of WS-*/SOA language agnostic, WS is certainly more platform-indepand

standards that could facilitate hierarchical, object-oriented com-
position of client-side executable code. This is especialirue for
the sorts of client-side logic embedded in AJAX and rich Intenet
applications, virtual worlds and MMORPGs; code that deals wth
issuing requests to servers, processing their responsegnidering
Ul, interacting with users, and processing asynchronous @nts
from other client nodes. The paper offers an analysis of clig-side
composition patterns, a brief explanation why they lack adgquate
support from the existing web technologies, and design gualines
for client-side component integration environments to folow. The
proposed guidelines have been successfully implementedarpro-
totype system [16]. Our analysis is thus strongly rooted ineality;
it is based on real experiences with concrete application soarios.
The paper concludes by highlighting the key architectural @pects
of our implementation with respect to the principles listedearlier.

|. INTRODUCTION

and interoperable, and perhaps it is these factors that made
so successful. In this context, one can view our proposahas a
attempt to port and integrate some of Jini's ideas into tietes
lished WS-* architecture in a platform- and language-atjoos
manner to achieve combined benefits of the two approaches.

In many applications, client-side code in which WS proxies
are embedded could be a complex piece of software with many
independently developed moving parts; indeed, as we argue i
the next section, different parts of such code could be edeat
without any coordination on behalf of their developers. $hu
explicit support is needed for composing client-side medul
that could be written independently and in different largpsa

In the longer perspective, extending the WS paradigm in this
manner is essential because focusing exclusively on thverser
side is at odds with the recent trends in Web programming.

The termservice-oriented architectuSOA) is often regar- With technologies such as ActiveX, Flash, or AJAX, a browser
ded as synonymous withieb servicegWS); indeed, the latter on a typical Web surfer’s machine is becoming increasingly
is by far the most successful realization of the SOA paradigimvolved in processing and rendering web content; intésact
The existing WS-* technologies are limiting, however, imtth with the user is mostly local, and web requests are made only
the functionality implemented by a web service is assumedsporadically, to update parts of the displayed content.
reside entirely at a remote server identified by a URI. Conse-These trends are likely to continue, since on one hand, the
guently, WS/SOA interoperability standards such as BPEL [Bomputational power of client machines is steadily incrags

are designed mostly to facilitate building server-sidadand

while at the same time, large content providers are inangsi

assume that end user’s client machines are passive corsuntanning into scalability challenges as their content gains

Accordingly, WS standards specify hgwoxiesrunning on

popularity. Shifting some part of the computational burden

the client machines should format requests, address aatkloclient machines allows providers to offload servers in thta da
remote services, and process responses, but they dongsaddeenters, and the clients benefit from improved responsssne
scenarios in which clients might execute parts of the servic The trend to offload processing to clients is likely to getreve
logic locally, constitute parts of the service itself, ooperate deeper: to admit more users, even the responsibility foirgto
with one-another. Our work attempts to address this lingitat content could eventually be shifted to clients; these waslel
In principle, SOA requires that services lm®sely coupled peer-to-pee(P2P) replication protocols to coordinate updates.

andinteroperable[4], but it makes no assumptions about cod@echnologies based on this idea already exist [6], [16]].[17
placement. In Jini [18], which is also a realization of theASO Croquet [17] replicates content wittvo-phase commi{2PC).
paradigm, the Java code of the service could be automaticdlive distributed object$l6] support user-defined protocols.

downloaded to the client and executed locally. Binding isalo

In past work [14], we argued that offloading work to clients

not via SOAP, but via Java interfaces. The downloaded codeparticularly beneficial for highly interactive, shoitdd, and
can be nothing more than a thin proxy for a remote service, dast-changing content that is difficult to efficiently caciwed
it could also include complex processing at the client maehi index on the server side; such content can be hard to scale by

or even peer-to-peer functionality. In this regard, Jipa@ach

simply deploying more servers. Currently, this includestiyo

offers more flexibility than WS. On the other hand, beingyrullive chats, video conferences, massive-multiplayer entole-

playing games (MMORPG) such as World of Warcraft (WoW), a data retrieval
and virtual worlds such as Second Life (SL), but we expedt tha "‘"’W \ a HH . .?99?-9-9-[‘91‘.'5
these emerging technologies and platforms will incredging 0 5 10 abcd |/ {| XMLRPC
converge and blend with the more traditional, AJAX-style an T o/ Client
mashup-style Web content. Stronger focus on the cliermt-sid F \\f — o/ 58 e
might, indeed, facilitate such technology convergence. h _J_o._:i Reader
Itisn’t hard to see that in several of the scenarios mentione ﬂ‘y | message 0\ Ws-Notification | 4
earlier, ranging from AJAX-style applications and “Web 2.0 i O i P — Q- |_ Recipient ;
mashups to applications that incorporate elements ofalirtu user interface { | Multicast | | Proxy for a Remote |
reality and MMORPG-style entertainment, the client-silgid components { | Client Web Service

could become fairly elaborate and consist of multiple iméér

Iayers and components. Like most complex software arﬂ'facfig- 1. Ul and data retrieval components interact by expii@ssage-passing.
Messages are exchanged locally: the components reside @ahe machine,

it could have a hlerar_ch|cal structure, and its constityesmts for example in the end user’s browser. Modeling such compioiméeractions
could come from multiple sources. Hence, support for madulas explicit asynchronous message exchanges enables tiegar promotes
and hierarchical composition is essential. In the nextisect component reuse. Here, each of the data retrieval compooeald be mashed
. . . " . .. together with any of the rendering components to presendate to the user.

we discuss client-side composition patterns in more detalil

Today, client-side logic is implemented mostly in JavaStcri
(JS), which effectively serves as a gluing layer. This idfifam
perfect. One issue is that as a language-specific technal8gy

isn’t plgtform-agnostic and interop_erable. Another issutnat analysis, we formulate a set of general design principles
JS scripts are, for the mos_t part, |_solated chunks of code tha 5t client-side composition technologies should follow.
may be mashed together side-by-side on the same page, but 8§ | yescribes an example realization of these principles |
not designed to be composed hierarchically and interoperat a client-side composition platform we developed [16].
Reusability has to be built-in, coded explicitly at designe. . . o

Our analysis is strongly rooted in reality; it is based onrove

For example, if a given Ul component with embedded JS 135 years of practical experiences with a real system ioair

to superimpose financial data from a number of sources on @&, 2. . S
) SUp PO - distributed object{LO) platform — and concrete application
single chart, it has to be explicitly programmed to suppébrt a

the different data and request formats, for all of these scenarios. The platform can be downloaded for free [16].eVior
Ideally, we'd like to treat parts of the,client code that hiznd information about the underlying programming mode| that th

data retrieval and view rendering as separate objects dhgd ¢ plaform is based on can be found in our prior work [14], [15].
be composed as easily as one composes a workflow in BPEL: II. COMPOSITIONS
by dragging them onto a design sheet. The same data retriev

object could then be reused in combination with arbitrasmwi sition and abstract them out into general patterns. We fioint

S?Snder_|ntg]dobjelcts. In Ord?(; o 'n;ﬁle?_]e?t this in JS, hovv,sv% itations of the existing web technologies, with focusJh
SCript developers would Need o rst agree on a NUMBER QR ¢, mjate architectural guidelines for future extensio
practical issues, including which data structures to ugeass

parameters, in what libraries and namespaces they shouldAbeData Retrieval and User Interface
defined, where these libraries should be stored, how to dpgra_ This form of composition has already been mentioned once

them, whether and how to convert method parameters if thgirihe introduction, and leads to the following design pifie
types mismatch, how to name methods and avoid name clash

how to allocate threads and avoid deadlocks, whether toléand Principle 1. The part of client-side code that pulls informa-
method calls asynchronously or not, etc. tion from remote services or_other sources shguld be _degdupl
By agreeing on issues such as those just listed above, deff@m the part that visualizes it and handles all mt_er_acmeth
opers would in effect be defining a JS-specific interopeitgbil end users; thg two tasks should be treated as distinct coscer
standard that extends the core JS framework. In this pager, #'d handled independently by separate components.
develop a set of design principles and guidelines for aghiev For example, the data retrieval component for a stock quote
a subset of these goals in a platform-independent manner.might output a stream dfoat values; these could be consumed
This paper makes the following contributions. by a Ul component that shows the last value as a number, in a
1) It motivates an extension of the WS-*/SOA architectureext field on a web form (Fig. 1, Fig. 2). The decoupling allows
with interoperable mechanisms that can facilitate clientts to substitute the Ul component with a different one, e.g.,
side composition of executable code — an alternative tme that shows the last 100 values in a table, one that shows
server-side composition such as those based on BPELtHém as a time series, or one that juxtaposes the last vatbe wi
discusses practical examples of client-side compositiongilues from a few other sources on a pie or bar chart; this way,
and abstracts them out into general composition patteriise same data could be interpreted and visualized in differe
2) It outlines some of the key reasons why the existing wetays just by replacing the frontend. Likewise, differenédsg
technologies do not adequately support our compositiofi data retrieval components could be placed at the backend

patterns. The paper focuses especially on the weaknesses
of JS as a client-side gluing layer. In the course of this

6”1 this section, we discuss examples of client-side compo-

without replacing the frontend. One could retrieve valuest visualization |~ dynamically gene-
a web service, another from a multicast channel, a publish- component rated wrappers
subscribe plaform, an RSS feed, or via WS-Natification. Any \)\ ;
frontend could thus be used with any backend as long as data g -
is fed to it in the matching format, using matching interface

In the example on Fig. 1, messages are carrfiegt values, ,Cor\\le‘s‘
but in general, messages can be quite complex. One example is gat? i\ remote
discussed in the following section: with shared foldersret MESSALE service

desktops, and other types of containers, messages exchange data retrieval ‘_
: . COMPONENT | e |
between the data retrieval and Ul rendering componentsicoul

carry descrlptlons_ of ObJeCtS enCI_OS_ed in a Contame_”imﬂ!s’ Fig. 2. To resolve binary incompatibilities between comgutrinterfaces and

maps, etc. Encoding such descriptions might require e#b0rayoid synchronization dependencies, the runtime must leet@butomatically

data structures that would need to be somehow standardizect dynamically generated wrappers that convert datetstres and forward
Out of the box, this pattern is not supported in plain HTML] e o teer o o cehanEne process of

web content is generally addressed directly, loaded ov8T generating these wrappers could be facilitated throughastimannotations.

and browser must be able to recognize it. One can decouple

processing in this manner using a scripting language such as

JS. The difficulty in implementing this pattern using JS, ror istructure of their interfaces. Indeed, the reader will geupe

general in language-centric approaches, is that datatstasc in this the core principles that underpin the WS-* architieet

and interfaces for frontend-backend interactions wouletite two components can interact if only they agreelagical data

be defined in shared libraries that the interacting compisnefyPes, encoding, and the protocol. This leads to the fotigwi

would reference. This is often unrealistic, as explainédbe Principle 4. Client-side composition should be based upon
Note that unlike a regular Java application, which is assertructural conformance; if two components expose integac
bled at design time, where all conflicts are easily resolyed b with similar structure, and there exists logical correspence
programmer, and where external dependencies can be bun@esiveen events, calls, and fields in data structures, théémen
with the redistributable code, web mashups usually emesgeshould treat these components as compatible and dynamicall
a result of drag-and-drop actions performed by the end usejenerate wrappers that translate method calls (Fig. 2).
In our example, an end user may try to drag a new data source . . . -
S . : . tructural conformance is feasible with existing techgglo
onto an existing bar chart. Different users might succeggiv L . C :
. and it is supported by odive distributed objectplatform. In
add components downloaded from different sources. Cmeat%r : . .
e scenario on Fig. 1, if a componefggenerates a stream of

of those components might not have anticipated their useein tfloa'[pairs that represent coordinates and compoleatcepts

particular t_ype ofa mashup, and end users_wil_l often lack tt&%ublepairs our platform will treatX andY as compatible.
programming expertise necessary to deal with issues tlsat ar Note the connection to semantic WS composition [10]. Sup-

during composition. This motivates the following prin@pl : :
pose that our components have semantic annotations and when
Principle 2. The platform should support composing clientthe end user creates a new mashup, the runtime environment
side code dynamically on the end hosts; it should be assunmdcesses these annotations to determine semantic siieslar
that by default, it can involve arbitrary components depeld such as correspondence between events, methods, or fields in
independently and never specifically designed to intemiper data structures, much in the same way semantic composstion i
aléﬁed in WS to find correspondence between services and their

Consider the consequence of this principle in an appro : .
such as JS that relies on shared libraries. Clearly oneomanpnarameters' In the absence of such semantic annotatins, th

: . ; . process of matching components falls back onto a plainwaria
expect that there would exist a single Internet-wide auityor S
o . of structural conformance, where the corresponding iaters,
standardizing Java interfaces that every web developetdvou : .
: : e e structures and fields are expected to have matching names.
use. Furthermore, libraries tend to evolve; this bringsiskae

.) . . . Composing arbitrary pairs of components has another, more
of managing their versions. X requires an older version, and

. L . . subtle consequence: when compon&ntnakes a synchronous
Y requires a newer one, linking the two may be impossiblé . :

. . . call to component” while holding a lock on a resource or data
most managed environments, including .NET and JVM, hav

L SO : . . s?ructure, a synchronization dependency is created batthee
limitations in this regard. This leads to the following priple. two. This can easily lead to deadlocks. Normally, this isarot

Principle 3. Composition cannot rely upon the existence é§sue for components that were designed to work together and
shared libraries, shared interfaces, shared data struesyior implicitly follow consistent policies, such as the ordemihich
any other shared artifacts that require binding at comgitee. locks are acquired, but if components are coded indepelydent
The runtime on the client should facilitate interactionweén and can be composed in an unpredictable manner, nothing can
components that export binary-incompatible interfaces. be guaranteed. This leads to the following principle.

With this sort of ashared-nothingapproach, the only thing Principle 5. The runtime should avoid synchronization de-
that a pair of components could have in common is the logigaéndencies between components. Wherever possible, itishou

embedded components,~

\ P il ’ dlSp|ay
E' airplane

display

enforce strictly asynchronous interfaces: one-way mettaiid

or explicit message passing. Alternatively, it should bssgue

to decorate components with semantic annotations thatfgpec
synchronization and locking aspects, for use by the runtome
inject wrappers that queue events, create futures etc. @ig

flight info

T \b """" m 'e';sage \
:
\
X

In the live distributed objects platform, we adopted theelat
approach: method calls into a component can be automaticall
made asynchronous and lock-free with a one-line annotation
The rationale for this decision is discussed in the nextiect

With the ability to place autonomous data retrieval compo-
nents at the backend and asynchrony in the model, the gnestio _ _ _
arises whether these components should be able to create tlﬂ . 3. A container loads, manages, and interacts with coiipis embedded

) init. Each embedded component, e.g., a plane icon or a pushptapsulates
own threads of execution, for example to poll RSS feeds, or 49the logic for retrieving its own data and rendering its®i the screen. This
issue synchronous socket operations. In general, thisdamail way, the container (the 3D area view) can simultaneouslglajjsa variety of
convenient, but as it will become clear shortly, composifip &MPedded components, even completely new types of compsothz might

D . | not have been anticipated at the time the container was beipgmented.
our model is fine-grained and the number of client components
can be large. This suggests the use of the asynchronous event
Qri_/en model not just for inFer—componentinteract_ions,efda(_) B. Container and Embedded Objects
insidethe components. This motivates the following principle.

message message

w display 3D view (container) ‘

In this style of client-side composition,@ntainercompo-
Principle 6. Client-side code should take the form of shoftent may control multipleontainedcomponents: its elements.
and terminating asynchronous event handlers; alternétie The container and its elements run concurrently, and eagh ma

should be translated or compiled into such form. The cliengwn a portion of the screen, but the container loads, iital

side runtime should offer lightweight scheduling, asynobus activates, and deactivates its elements, and it may iritaitic

I/0, and timer event mechanisms that can be used to implemgdm via explicit message-passing as in the precedingosecti
background processing within components without the need t For example, a component that displays a 3D area view or a
create threads on a per-component basis. 2D map might contain components that represent commercial

By now, one may be tempted to view client-side componerftghts. For each flight managed by the container, a plane icon
as miniature web services, and solve several of the diffesult Might be drawn within the area, hovering over an appropriate
we pointed to by marshaling calls between them much in tiR@rtion of the map (Fig. 3). The encapsulating containethinig
same way WS proxies marshal their calls to remote servic@§tivate and deactivate the embedded plane icons, degendin
but this would be unacceptable for performance reasons@ne®n which airplanes are close to and within the viewing anfjle o
just pointed out that client-side composition is much mane fi the user’s camera. Plane icons, however, are otherwisessepa
grained that WS composition. A typical client-side compune components that encapsulate all their rendering logic,thad
would be much smaller, more lightweight than a typical wel@gic for retrieving their planes’ positions from remoteusces
service (this becomes evident in the following section, vheédnd converting them to 2D coordinates for screen positpnin
we consider components such as avatars and icons overlaid ohhe separation of the embedded components’ view render-
a map). Consequently, cross-component interaction oadeheing and data retrieval logics from the logic of the encaptiuga

must also be much lower. This leads to the following prireipl container (the 3D view component) is essential, for thisved
e container to manage arbitrary components as elements as

. . ot

Pr|n<_:|ple 7. Message-passmg_overhead should *?e r_mmmq‘r;ng as they support the standard container-containedatont
In particular, th_e CQSt of marshaling calls or dyr_1am|_c d'm interface. In contrast, in the existing AJAX-style apptioas,
through reflection is u_nacceptable; for each pair of mtetnag such as Google Maps, support for embedded elements (such
components, the runtime must be able to generate a dedicated) ;shnins) has to be built-in at design time; it is not fssi
eff|_C|ent, optimized wrapper code, and load it into th? PEXCE t5 embed just any sort of web content within such a map and
Th'_s also_ rules_ out calls across processes and applicaton dassociate it with a location on the map unless the exgglicitly
mains: client-side components should share address Spacqmplements this sort of interoperability (and often it does

This observation is essential, for it lets us filter out siistjd There are several problems with implementing this scenario
approaches. It also helps us to position client-side coitipns using existing technologies. First, although JS can maithiéy
as a technology that lies somewhere in-between WS and Japearance of web page elements, the script and the document
we require some of the interoperability characteristic¥s, structure on which it operates are disjoint. The documeu th
while at the same time, we require performance charadteristacts like a global variable against which code is executbds T
similar to Java/.NET objects; this mix of requirements lieggi breaks encapsulation and modularity, and makes it difftoult
a new type of runtime architectures. It may require new typésllow the modern component-oriented development apgroac
of language or compiler mechanisms and explicit supponhfroindeed, JS code is often custom-made for a particular web sit
browsers; client-side composition is thus a category oovits. and monolithic. Separation of visual content from execlatab

code also cripples dynamic reflection capabilities: evenigin or bind to display only airplanes within a certain viewingyén
one can write JS code that dynamically loads scripts or cwnt@and distance from the user’s camera, e.g., to limit the numbe
at the client-side, the two are processed in very differemtsy of airplanes on the screen for performance reasons. Sisce, a

A further issue is that, while AJAX supports 2D forms, othepostulated earlier, the container shouldn’t contain aeyneint-
types of visual content, such as the 3D window on Fig. 3, haspecific logic, it must get this information from the embedide
to be coded as Flash objects or natively in JS. As noted earlisomponents: it needs tocally interact with these components.
if Google Maps were to allow pinning Flash animations to a This is again hard to achieve in the HTML/JS model, since
map, the rendering engine would need to explicitly implemethere is no standard way for elements of the document to com-
this. Likewise, a Flash animation cannot easily embed JBtscimunicate. The OLE approach is again superior: each viewable
of HTML code. Thus, once the developer leaves the documeaamponent, besides standard Ul interfaces for view renderi
hierarchy and drops into raw scripting, where drawing isedortan expose custom programmatic interfaces. To implement th
manually, there’s no turning back: one can no longer rely oniaJS, there would need to exist a 1-1 correspondence between
browser support or interoperable standards; beyond thig,poUl elements and the associated JS objects that performeall th
logic is monolithic: any flexibility has to be explicitly bitiin. data retrieval and that handle calls from other objectss T$i

In this context, we favor the approach adopted in Microsofthot only inelegant, but raises security concerns; each b
object linking and embeddin@LE) [2] standard, where every could bypass such event dispatch mechanism and interdct wit
visual component within a compound document is responsilaay part of the web page, or with objects that may be unrelated
for drawing and serializing itself. The problems just dssed in the document hierarchy. We can summarize this as follows.

can be avoided if we uniformly adopt the object-orientedsper Principle 11. Components should be able to expose asyn-

pective: think of Ul rendering as a client-side service, pads .hronoys event-based interfaces alongside user intesfaee
of a web page as components that provide such service ampigime should not distinguish visual content from noruals

other client-side functionality they might offer. The raléthe components; it should be able to handle both types uniformly
container is then limited to controlling the lifetimes ofjebts

embedded in it, interacting with them, and managing itslloca Principle 12. Runtime must be aware of the hierarchical
portion of the document hierarchy, as postulated earhethis ~ felationships between components; these should only ke abl
model, embedded components excecute concurrently with fRenteract with components directly related in the hietayc
container; the latter no longer needs to participate ineeind Such as embedded objects, encapsulating containers, er oth
their Ul or managing their data other than binding them to tH@mponents they’ve been otherwise explicitly associatéd w

display, loading resources, controlling camera or pefsgec Finally, note that elements of a web page are untyped. In our
We can summarize this discussion in the following prin@pleexample, the container may want to differently treat emieeidd

Principle 8. Containers should be decoupled from elemen@djects such as planes as opposed to 2D map overlays, weather
embedded in them; the latter should encapsulate their elemeinformation channels, and video feed pushpins. They coeld b
specific logic such as Ul rendering, data retrieval, or stpea displayed in different portions of the view, and the congain
Container code should be limited to handling generic aspectnight need to interact with them differently. Although JSsha

such as controlling the lifetimes of the embedded elementdimited reflection and introspection, this functionalitypears
to be neither convenient, nor particularly useful in thistext,

Principle 9. The runtime must provide standardized maq‘bragain, as pointed out earlier, JS lacks object abstnattiat

g?fhrggrncto?nplzhtehr:?sugei Wmhg:rgtzogrtamgs gan %c;tné[jo!r:'tfgnéwould encompass graphical content and its associatediagrip
. P » €nul query supp ! A Ieogic. This observation leads to the following postulate.

bind their elements to the display, unbind, move, change th

sizes or perspectivesi request re-rendering' drag-amxlb.,cbtc_ PrinCiple 13. All client-side Components should be Strongly
ed. The type system should encompass content typed as wel

L . . t
In practice, in order for a container to display t_he_emb,edd%y‘;fevent—based interfaces; component type should thus-be de
components, it has to IO"’.‘d and parse their de_scr'pt'onm_sotermined by factors such as the list and structure of all éven
standardized format. This leads to the following obseovati based and graphical interfaces they expose, but also séenant
Principle 10. The platform should support marshaling arbi-annotations that might capture various non-functionalexp.
trary types of components to portable specifications esgees The runtime should perform dynamic type checks during com-
in a platform-independent language that one can programmadosition and provide reflection and introspection capdiais.

ically store, send over the network, unmarshal, and insatat To conclude, let’s put the container-contained pattermim-c

In the preceding section we postulated separation of Ul atekt of the preceding section, where we advocate asyncheono
data retrieval logic. This should be applied to containgrs, event-based decoupling. Note that for certain cross-comipio
Actions such as adding new elements to the container wifl thimteractions, asynchronous interfaces might be impralctior
also need to be represented as events carrying descriptionexample, Ul controls in platforms such as Windows Forms or
elements to embed; the types of these events could be compldicrosoft 's XNA framework are implemented by overriding a

Now, let’s return to our example. Our area view (containejumber of callbacks that have to run synchronously; this may
might want to highlight all airplanes that meet certainemid, be necessary, e.g., to render the view in a hidden bufferbefo

copying the complete scene into foreground. In such cdses, t “::"" app. layer transport layer
invoked component also has to run in the context of the callee i o comp: "___99_r_r_1_r_3_9_(1_§:_r_1_t_5_\
for it might require direct access to memory or handles share es—— frrrrr A\ messag‘e/oﬂ' IP multicast | °
with the callee; hosting it in a separate application domain I

isolating it in its own address space, would slash perfozaan message ot

That's why to handle synchronization dependencies in tree li
objects platform, we chose to rely on semantic annotatiads a
automatically generated wrappers (Fig. 2) to inject asyommh
into cross-component calls rather than enforcing strigflyn-
chronous interfaces. We summarize this discussion asafsllo

Cfﬁ)\‘

C‘\ WS-Notification

\ ftp://server/some/file \

Ul rendering
component ‘ http://server/some/file ‘

Principle 14. The platform should support synchronous in-
terfaces S|c_ie-by-5|_de with asynchronous event'baseqan_ﬁs Fig. 4. Transport components encapsulate all aspects/gwah the physical
to support interactions such as those between containeitandtransmission of packets; higher layers work with pre-deaded byte streams.
elements; pairs of such components may have to share resour-

ces, handles, and address space, and interact synchrgnousl
. eliminating any flexibility in this respect. We've discuddhis

In practice, in order.to avoid synchronization dependr:snmqn past work [13]. The architecture we proposed to address th
_the platf_orm may require, €.g., th"’}t calls are only synchusn shortcomings of WS-* standards involves client-side |dbgt
in one dlrect|0n_ (container callmg its element). W_hetheu:dh might perform tasks such as peer-to-peer data forwardinig. T
synchronously invoke B can be inferred from their types.(€.g) o5454] is essential in making such architectures passibl
from the information embedded in their semantic annotadion Going further, one can apply this reasoning to client-servi
access protocols, including HTTP GET, POST, and SOAP. An
underlying transport component could handle aspects ssich a

In this patternapplication-levelogiC that formats and seria- |Ocating the remote service (perhaps among the clientsvihg
lizes data sent over the network, applies client-side [gsing offloaded), establishing a connection (perhaps using iaddit
such as compression, encryption, or fragmentation, anlieappmechanisms, such as hole-punching to pass through NATs and
updates to local data structures on the client is decoupted f firewalls), authenticate, negotiate security protocaisi, so on.
transport-levelogic that handles physical packet transmissiomnce established, a logical point-to-point channel wohieht

For example, an embedded video may be rendered fromgpassed on to the application-level component to handle fo
MPEG-2 stream. The video may be first downloaded as a byftting, encoding, and serialization, match requests weigh
stream by dransport objectconverted by aapplication-level ponses, or serialize outgoing calls. This sort of flexipitipens
object into a sequence of video frames, and finally passed &Wide range of possibilities; e.g., one can use it to incaeo
to a Ul object for on-screen rendering (Fig. 4). By decouplinpeer-to-peer service discovery mechanisms based on JXTA [1

transport logic from higher layers, we gain much flexibilfr ~ and fault-tolerance mechanisms such as those describ8f in [
example to feed the byte stream either from a server via HTTP,
or use a peer-to-peer protocol such as BitTorrent. Likevtiise
same transport may be used to load other sorts of content,
other video formats, images, textures, or even client-satke.

For the most part, existing technologies do not support th
most content types can be loaded only using one of the bu
in protocols, such as HTTP. For other types of transport, oneUpon closer inspection, both application- and transpeveil
would typically build a custom ActiveX control that encafssu components may themselves be modular and hierarchical. One
tes transport, decoding, and rendering logic (such as faienoexample was just suggested above: each transport component
streaming). This discussion motivates the following piptez can be further decomposed into sub-components that encapsu
late tasks such as discovery, hole-punching, and autlagiotic

Principle 15. Any major compongnt and piece of content on In the introduction, we mentioned that offloading content to
a web page should be able to specify a custom transport to use

. .) . clients would require the use of distributed protocols sash
for downloading any visual, non-visual, passive, or exable .) .
) o : multicast; these protocols also often involve severalrgyeor
content or resource, including images, textures, scrigesc-

rintions of embedded components or other tvpes of arameteerxample’ the base layer that forwards updates betweerisclien
It . POne ypes ol pe could depend on an external membership service. The pirotoco
It should be possible to explicitly embed a specificatiorhef t

o for retrieving membership would ideally be encapsulated as
custom transport component within the body of the web pa%%‘parate object, so that it could be easily replaced, orwgkd

The lack of logical decoupling of the transport layer crggpl other types of protocols that use membership to self-organi
also interoperability standards such as WS-Notificatidrese Perhaps the most natural way to support such compositions is
determine not only the structure and format of events, g alto treat functional sub-components as parameters; thusupg
details of the distributed protocol used for disseminattbns membership protocol stack would be a parameter passed to the

C. Application and Transport Layers

Principle 16. It should be possible to use a custom transport
component for remote method calls by embedding its descrip-
Si8n within the document. The transport would encapsuldte a
logic for establishing a session with a remote host, overctvhi
EQAP and other application-level protocols could be placed

multicast protocol stack; the latter should be able to woitkw Principle 18. It should be possible to specify components as
any membership protocol that feeds the necessary infasmatirelative to a controller that acts as a factory for and mansge
Functional and non-functional requirements can be exptesgollection of subordinate objects. The runtime should egthe

as the types of the requested parameters much in the same saye instance of the controller component to support neltip
one specifies types of parameters in Java method signaturesntrolled components within the same page, or across pages

Principle 17. It should be possible to parameterize any con” 2 browser process, to facilitate cross-channel optimiezs.

ponent with other components. Specifications of component&or example, our page may contain a single specification of
passed as parameters should be recursively embedded withipublish-subscribe protocol stack embedded in it, andrioze
the document, as a part of the specification of the componeifitelative references that point to the stack asatroller that
being parameterized. The parameterized component sheuldchbeates and manages all logical channels representingspubl
able to place constraints on the types of each of its paramsetesubscribe topics used within the page. When loading the,page

One may question whether embedding descriptions of muIW—e browser would launch a single instance of such controlle
and reuse it multiple times, requesting a channel from ityeve

layer protocol stacks in documents loaded by the clientsas t

right approach, for it increases document sizes and caosts tit'm_l_eh_'t enct:tount_erﬁ a dr?feregce_ rilgtlve t? tn's _conr':rollilr.
to parse and interpret these descriptions at the clieneddd IS pattern 1S hard to code in J>. controfier 1S shared acros

except for our platform, we know of no other examples of th%CriptS and pages, which may require explicit browser sttppo

approach. Croquet is also based on peer-to-peer rephcéitid E. Content and Infrastructure Layers

it uses a fixed protocol: a variant of two-phase commit (ZPC)'Assembling a downloaded page and numerous other client-
In past work [14], we argued that different types of contenfiye ta5ks require support from the runtime, the functional

require different replication semantics. Some types of@on ¢ \yhich is Jimited to only a small number of built-in optians

such as documents that users can simultaneously edity€eqy, ayample, in Section II-C, we pointed out that fetchinada

stronger consistency, such as totally ordered reliableicast, 4 establishing client-service sessions is generallitdiirto

and tend FO be inherently non-scalab!e. Other types Of ,m_"nteHTTP; we proposed custom transports to go around this limi-
such as video streams, may not require sophisticated ililiab tation (principles 15-16). The same pattern could be agjite

or ordering properties, but need to scale to thousands m;'us%ther forms of client-side processing assisted by the mmti

offer low J':Iter an:j flow chontrol, etc. Many of;_thes”e p:ﬁpeﬂ' For example, whenever an identifier in a web page needs to be
are mutually exclusive, hence no one-size-fits-all solutian oqqed, one might wish to specify a custom name resolution
exist. Furthermore, as noted in [14], even if we focused an %Bomponent. Whenever some section of a web page needs to be
typg of content, §uch as documenFs that support C,Ollaberatbarsed, one might wish to supply a custom parsing component
edlpng, upon reviewing past work |n_the area we f'r_‘d, a gregiat implements language extensions unsupported by thee bas
variety of different approaches to this seemingly trivask. ianqard, decrypts an obfuscated specification, calsubetie-

By permitting flexible protocol stack compositions on thel engerprint of a component specification to verify against adat

host, we open up the possibility for innovative solutiond& base of secure components, or performs custom type-chgckin
immediately tested and deployed. In contrast, standdrdiza

of concrete distributed protocols and peer-to-peer iotamas ~ Principle 19. Any aspect of content processing assisted by
patterns (as is the case in Croquet, but also in the WS-* jamﬁ‘e runtime infrastructure, including parsing, name regmn,

of specifications) tends to benefit a fraction of application decoding, and type-checking, should be possible to customi
by recursively embedding a specification of the componait th

D. Controller and Controlled Objects is supposed to replace the respective infrastructure servi

A typical web page contains many elements that need to béWhile powerful, this idea raises security concerns: ruatim
fetched via HTTP and services to connect to over POST, GE3,implicitly trusted not to contain malicious code and ta-co
or SOAP, all of which requires establishing TCP connectionsctly implement security protocols. If a component canrove
All such connections are managed by a single TCP stack. Wiitle infrastructure services, such as naming and typekahgc
some of the extensions we proposed, we could apply the saitneould potentially impersonate critical services, fijseglaim
pattern to other types of connections and distributed pa$o to be secure, authorized, verified, or signed with a trusesd k
for example, a single page might contain multiple compogerifo avoid this, one should be able to restrict the kinds of com-
that download data from the same publish-subscribe platforponents that are permitted to override the runtime. Earlier
establish encrypted connections to the same remote seteer, postulated that components be typed, and their types suppor
Rather than having each component work independently of simantic annotations, so we propose that this determmbé&o
the others, and internally create its own private instaridhe based on component types and occur as part of type-checking.
protocol stack, its own connection, session, and datatsnes; In what follows, we just briefly sketch one possible approach
one might prefer to have a singtentroller component in the The mechanism might work as follows: suppose the runtime
process that simultaneously controls multiple logicalroteds, loads a componemt of typeT'y as part of a web page, and the
sessions, or connections, and can reduce overhead by rgplgescription ofA has an embedded description of compongnt
cross-channel optimizations: aggregation, batchingtehing. of type Tz that replaces an infrastructure service or performs

some verification om; we can refer td3 as A’s authenticator agraph of proxies local events at embedded
If the authenticatoiB is given, then before loading component reﬁege-.‘”ces
A, the runtime first loads the authenticaf®y passes to itd’s
description, and let®3 authenticate it (for example, parse all
semantic annotations iA to verify that they're legitimate). If
B approves, the runtime tags the type ofwith a certificate
that a component of typ€g has vouched for it. One can think
of type T4 of the component being verified in this manner as “
qualified with typeT's of its custom authenticato¥,z :: T'a. endpoint ...~
Now, suppose that componefitacceptsA as a parameter. (asynchronous
The definition of componenr might request that its parameter event channel)
be of typeTp; in such case, during composition, the runtime. _
must only check thalls <: T Alternatively, the definition %% References embecded n aweb documert are s o gy of
of C' might state that its parameter has to be of t¥jpe:: Tp. or filter data on the client, or participate on distributecpm-peer protocols.
The runtime would then have to verify not only that <: Tp,
but also that the description of componehhas been checked
and approved by an authenticator of the right type,<: Ty,. Event-passing decouples proxies from one-another. ltsis-as
Using this pattern, for example, a confidential collabarati ted by the client-side runtime environment, which can gateer
component”’ might specify that it needs to be composed witvrappers to match interfaces. Each proxy can also expose any
a trusted communication channel; it might take such a cHanmember of synchronous user-interface endpoints to bindto 2
as one of its template parameters. The trust could be spkcifie 3D displays alongside asynchronous event-based ertdpoin
via semantic annotations in the type of its parametecould Proxy compositions are expressed in a platform-independen
further require that the truthfulness of these annotatitims language, as XML strings we call L@ferencesA reference
fact that the channel is trusted) be verified by an authewticais a portable set of instructions for constructing a proxy&o
of the appropriate type. The pattern could be used recuysivegiven LO. It has a hierarchical structure and resembles d sma
The above presentation is necessarily terse; in-depthistiscweb page. One can embed it in a larger document, store it in a
sion of type-checking and security is beyond the scope ef thile or in a communication channel, send it over the network,
paper. Analyzing the security implications of the com@dosit pass it as an argument or as a result of a WS call, and so on.
pattern presented in this section is the subject of a futuidys =~ The concept of a reference generalizes, abstracts andaunifie
concepts such as WSDL [5] specifications and JS scripts. Each
of these is, actually, a complete specification of an exéxdeta
In this section, we summarize the core elements ofliwer client-side logic. In case of WSDL, it is the logic of a sewic
distributed object$L O) architecture, as an example realizatioproxy, specified in a declarative fashion. In case of a Jscri
of the principles listed in the preceding section. We enagar code is given explicitly. In our platform, one can encapwila
the reader to consult [14], [15], [16] for further details. WS proxy stubs and JS scripts as different classes of refesen
The previous section motivates an object-oriented approaand mash them up together with other types of components.
in which all visual and non-visual content, as well as elethen In contrast to static non-executable page elements deedupl
of the underlying communication protocol stacks and ruatinfrom JS scripts that, in turn, lack state or visual represgon,
infrastructure, are treated uniformly as reusable comptne a reference in our platform produces a live and stateful yprox
Accordingly, in our prototype platform [15], [16] we modelthat can have any number of visual representations and egpos
any functionality accessible to a client as an abstractobbj@ arbitrary event-based interfaces; it can have intern&t stad
live distributed objectLO). We apply this metaphor uniformly run in the background (using timer APIs). Our platform does
to web services, windows in which visual content is rendgredot distinguish Ul, non-Ul, static or dynamic types of cartte
filters that transform data, distributed protocol instama@nd applications are composed entirely of interconnectedipsox
even parts of our runtime infrastructure. Each LO is acbéssi Composing references yields a larger reference. Refesence
via aproxy, a client-side component that exposes event-drivane hierarchical documents similar to web pages in HTML and
interfaces. The client-side logic is expressed as compaogif serve as the equivalents of these in our framework. Our “web
such proxies into larger units; web applications are neteof pages” thus do not contain text or other static elemente@snl
interconnected proxies (Fig. 5). The client-side runtiregists the text is passed as a parameter to a proxy); they are simply
with composition; it provides type-checking and reflection hierarchical “recipes” for constructing proxies. Whersthort
We mentioned that LO could represent Ul elements, rematéa document is loaded on the client machine, the clierg-sid
services, or protocol instances. Accordingly, our proxiesld runtime parses the hierarchy of references, then uses erted
interact with the Ul, but also make remote WS calls, or interainstructions to construct a hierarchical network of intemeec-
with proxies on other nodes in a peer-to-peer fashion.pees ted proxies. If the proxies expose any graphical endpatings,
tive of its type, a proxy interacts with other proxies exoley document can be displayed; but it could equally well describ
by explicitly sending or receiving events throughétsdpoints an application without user-interface (e.g., a networkisej.

hierarchical
document

Ill. ARCHITECTURE

The simplest type of proxy in our platform is one manually Jproxy Ox O frc;agé;:j§>-];.t;;;kend \ proxy

coded in .NET. Each such component has a 384-bit identifier| X x Oy
that identifies the library in which it is stored, identifieitknn

the library, and version numbers. The 384-bit identifierhis t " connected
simplest type of a reference; if the client’s runtime endeus endpoints
one while parsing a document, it tries to locate the respecti | with a

X . g utput

library (locally or from some remote repository), load itan) generated
the process, and instantiate the class that implementsag.p input wrapper

The runtime uses reflection to analyze the structure of tescl

and custom .NET attributes, and infers the list of all endpni Fig. 6. A pair of connected proxies that interact via autocadly gener_ated
. . . . wrappers and queues. The system auto-generates wrappmstsirap time.
incoming and outgoing events and their types. It also etdrac

semantic annotations from .NET attributes, and appends the

to type metadata. The platform maintains its own type systeE] q h I h v at a later fi
independent of .NET, that describes all types and compene e queue, and process them all asynchronously at a later t

found in the libraries it has dynamically loaded. As postda n batche.d mode (Fig. 6). Just IiI§e data-conversion wrapper
earlier, these types are determined only by the logicatira nonblocking queues and scheduling code are generated by our

of interfaces and custom semantic annotations, not by pdmlysiSyStem auFomatlcally Wheq It boot;traps itself, for allpes.
NET classes used to implement them. When comparing tW_OA_S mentlor_1ed earlier, all |nteract|or_1$ of a proxy are tuedel
component types, the platform relies on its own type metaday'a its end_pomts. To obta_m an endpoint from a proxy,_onetmus
Our system uses the mechanism just described also to analy2%e Previously created it from a reference. A containerypro
itself and bootstrap all of the predefined types and compsneryan thus easily obtain endpoints from the proxies of embe:dde
When creating a proxy of a library component, the platfonfiPi€cts it created, and connect to them to interact; on therot
invokes the constructor to create the .NET object impleingnt '@nd, proxies of embedded objects can't just randomlyawcter
it, and passes to it a runtime context, which includes sdleedu With one-another. Interactions in our system are only fesi
clock, timer, network, and filesystem interfaces, as wethas for proxies related in the hierarchy, as we've postulatetieza
interfaces for creating endpoints and proxies, reflectita, Library components can be parameterized; in such case, the
In its constructor, the proxy object constructs all its Utlan-NET object may be a generic class, and it may receive values
non-Ul endpoints and exposes them as .NET properties. Frerreferences to other objects, in its constructor. Teraplaf
this moment, endpoints are the only way the proxy can interdBis sorF can be used to create complex hierarchical refegen
with other parts of the application. The most common type Hrused in a document, a reference to such template component
endpoint is a bidirectional interface: the proxy exposethog: has all of its parameters embedded; these can include, in par
calls through arincominginterface, and requests amtgoing ficular, embedded references to components it uses iffierna
interface through which it can calls methods of other prexie! his €nables many of the patterns discussed in sectiorgll; e.
Endpoints are meant to be connected into pairs: the onlyaepe separate Ul from data retrieval logic, we model Ul and data
tion one can perform on an endpoint is to connect it to anothi@irieval as separate objects and implement them as separat
endpoint of a matching type. When this happens, proxies biREPXI€S in a running system; the reference to the data vatrie
to one-another’s interfaces. Each endpoint exposed byghesindPiect is passed as a parameter to the view rendering object.
proxy can only be connected to one other endpoint at any time Our XML language of LO references supports other types
The proxies composed at runtime can be defined in differedftcompositions, such as factories, folders, and the cthetro
NET libraries, but as mentioned earlier, we define typestascontrolled pattern discussed earlier. We omit details fevity.
on the logical structure of interfaces, not binary comglkitjb When passing an LO reference as a parameter, the runtime
To connect two proxies, it may not be enough to just exchanggnamically type-checks to see if the argument type matches
their .NET interfaces. In these cases, the platform geeerathe type of the formal parameter of a template. This involves
wrappers. The proxy that would make method calls receives@mparing the logical structures of interfaces and the séima
reference to thdrontend.NET object that transforms methodannotations. Annotations are parsed by pluggable, userede
calls into a standardized representation, and passes tbwwm dmodules. These modules can also be defined in .NET libraries.
to abackend.NET object, which then unpacks and directs affter parsing, compiled annotations are stored as partué ty
calls to the target proxy (Fig. 6). When loading a .NET lilgrar metadata. When comparing types, annotations compiledeby th
the platform dynamically generates frontend and backedd ccsame module are compared pairwise by invoking the module’s
for all components, compiles and dynamically loads it ifte t type-checking interface. By default, the runtime doesatify
process for future use. The overhead of doing this is ndaitigi the truthfulness of these annotations (it only comparesijhe
The platform hosts all proxies in the same process and apgn a longer perspective, we hope to use semantic annotations
domain, and method calls are passed directly between [groxie characterize the event patterns coming in or out of ancbbje
(or through frontend and backend). If a component is anadtaf15], but they can be used for any purpose, e.g., to mark tjec
accordingly, the platform can automatically generate gopea as secure or reliable, attach signatures, fingerprintsaacess
that places all calls into the proxy on the proxy’s privateklo permissions that could be compared as a part of type-chgckin

To customize the process of type-checking, we allow an L&ervices. Composition patterns also differ significarathg the
referenceX to contain an embedded refereri¢enarked as its requirement to support Ul has peculiar consequences, such a
authenticatorIf the latter is present when constructing a proxprinciples 11 or 14. Work on integrating web services withi Ji
from X, the runtime first creates a proxy of the authenticatde.g., [8]) or peer-to-peer technologies such as JXTA (£LD.

C, connects to its endpoint, and passé's reference ta” to has also been focusing almost exclusively on the servibe-si
let the authenticator decide whether the reference isneagjie, In designing particular aspects of our system we have been
by parsing semantic annotations or some subset it cares.abmspired by a great many other technologies; in particuar |

If this succeedsX'’s reference has a certificate attached to ifguages such as XAML [11], work on structural subtyping [12],
type stating that an object of a certain type has vouched fevent-driven architectures such as SEDA [19] and many sther
X''s integrity. A template object can request that its paramet
have certificate issued by an authenticator of a particyfze.t

Besides compositions defined statically within the strectu Client-side composition is a core part of the WS-* architec-
of the references, the platform supports dynamic compositi ture, but is inadequately supported by the existing teanol
A proxy may dynamically download serialized referencestfrogies. We have built a platform that supports major compasiti
communication channels and other remote sources, dézeyialPatterns and offers flexibility unseen in existing platfsrr@ur
use them to create proxies, and then connect to their engpoiork demonstrates that client-side composition is feasaiid
We use this dynamic reflection capability to implement stiar@ractical. The technical guidelines we proposed may ses\ze a
folders, shared desktops, and other sorts of containesrpatt basis for extending existing WS-* standards and techneogi

V. CONCLUSIONS

One could also use dynamic reflection to seamlessly migreh€ live distributed objects platform is available for fiig€].

te between server-side and client-side execution. Ihjtitiie
proxy constructed from a reference might be just a WS proxy
stub that performs no local processing at the client and:-tdire
all requests to a server, but if needed, can dynamicallyfatc
reference of another proxy that can do client-side prongssi
instantiate it internally, and then instead of issuing s to
a remote server, send them to this internally maintainegypro 1]
One example of how this could be useful would be for a groub
of clients to seamlessly shift between updating their sthi@ [2]
centralized web service, and a peer-to-peer mode, whete sté]
is downloaded locally and replicated on all clients, whicart (4
send updates directly to one-another over a multicast @iann
B
Our work has been inspired by a rich body of prior research
on typed component integration platforms, including OLE [2]
and Jini [18], protocol composition frameworks, such as BAS
[7], and web-like P2P environments, e.g., Croquet [17]; @aemo [8]
comprehensive discussion of these can be found in [14].
With respect to language-specific technologies such as O
and Jini, our architecture is more interoperable. For examp
principles 2, 3, and 4 were not needed for the sorts of applid&’!
tions for which OLE or Jini were designed. Principle 2 appear
to be quite unique to the style of composition we advocated [iri]
this paper, and its influences are seen throughout our acchit?!
ture (e.g., in Principle 5). The corresponding mechanisonsh (13
as automatic generation of wrappers for binary-incompatib
code or lock-free queues to resolve deadlocks, are notmire
in any of the major typed component-integfration platfoym
such as OLE/COM, Jini, Java, or .NET. With respect to Jini5]
we have inherited the concept thaterything is an objecbut [16]
in our live distributed objects model we took this conceprev
further; we proposed that even type-checking be custortd@zali17]
thus extending the object abstraction to parts of the rumtim 18]
In comparison to server-side composition technologieh su[c
as BPEL [9], our client-side components are smaller and madte]
fine-grained; principles such as 5, 6, and 7 do not apply to web

IV. RELATED WORK

)

ACKNOWLEDGEMENTS

Our work has been supported in part by grants from AFRL,
AFOSR, NSF, and Intel Corporation. We would like to thank
-Daniel Freedman for his comments.

REFERENCES

F. Banaei-kashani, C. chien Chen, and C. Shahabi, “WSPD8b
Services peer-to-peer discovery servid§WS 2004.

K. Brockschmidt,Inside OLE Microsoft Press, 1995.

J. Cardoso, “Semantic integration of web services andr-p@peer
networks to achieve fault-tolerance3rC, 2006.

J. Cardoso and A. ShetliSemantic Web Services, Processes and Appli-
cations (Semantic Web and Beyond: Computing for Human ko).
Springer-Verlag New York, 2006.

E. Christenseret al, “WSDL1.1,” http://www.w3.0rg/TR/wsdl

S. Douglas, E. Tanin, A. Harwood, and S. Karunasekeraatiing Mas-
sively Multi-Player Online Gaming Applications on a P2P Aitecture,”
ICIA, 2005.

B. Garbinato and R. Guerraoui, “Flexible proto-col casjtion in bast,”
ICDCS 1998.

Y. Huang and D. Walker, “Extensions to Web Service teghes for
integrating Jini into a Service-Oriented Architecture ttoe Grid,”ICCS
2003.

IBM et al, “Business Process Execution Language for Web Services
(BPEL),” http://ibm.com/developerworks2007.

B. Lin, Q. Li, and N. Gu, “A semantic specification framesk for
analyzing functional composability of autonomous web wes;” ICWS
2007.

L. MacVittie, XAML in a Nutshell O’Reilly Media, 2006.

K. Ostermann, “Nominal and structural subtyping in gmment-based
programming,”JOT 7(1), Jan-Feb 2007

K. Ostrowski, K. Birman, and D. Dolev, “Extensible Artécture for
High-Performance, Scalable, Reliable Publish-SubscEkenting and
Notification,” JWSR Oct-Dec 2007.

K. Ostrowski, “Live Distributed Objects,” Ph.D. Dissation, Cornell
University, 2008, http://hdl.handle.net/1813/10881.

K. Ostrowski, K. Birman, D. Dolev, and J. H. Ahnn, “Pragnming with
Live Distributed Objects,ECOOR 2008.

K. Ostrowskiet al, “Live Distributed Objects (the project's website at
Cornell),” http://liveobjects.cs.cornell.edu2008.

D. Smith, A. Kay, A. Raab, and D. Reed, “Croquet: A Cothaftion
System Architecture,'C5, 2003.

J. Waldo, “The jini architecture for network-centrioraputing,” CACM
42, 7 (Jul. 1999), pp. 76-821999.

M. Welsh, D. Culler, and E. Brewer, “Seda: architectuer well-
conditioned, scalable internet serviceSOSP 2001.

