
WS-OBJECTS: Extending Service-Oriented
Architecture with Hierarchical Composition of

Client-Side Asynchronous Event-Processing Logic
Krzysztof Ostrowski and Ken Birman

Department of Computer Science
Cornell University

Ithaca, NY 14853, USA
{krzys,ken}@cs.cornell.edu

Abstract—There is a growing need for a new type of WS-*/SOA
standards that could facilitate hierarchical, object-oriented com-
position of client-side executable code. This is especially true for
the sorts of client-side logic embedded in AJAX and rich Internet
applications, virtual worlds and MMORPGs; code that deals with
issuing requests to servers, processing their responses, rendering
UI, interacting with users, and processing asynchronous events
from other client nodes. The paper offers an analysis of client-side
composition patterns, a brief explanation why they lack adequate
support from the existing web technologies, and design guidelines
for client-side component integration environments to follow. The
proposed guidelines have been successfully implemented ina pro-
totype system [16]. Our analysis is thus strongly rooted in reality;
it is based on real experiences with concrete application scenarios.
The paper concludes by highlighting the key architectural aspects
of our implementation with respect to the principles listedearlier.

I. I NTRODUCTION

The termservice-oriented architecture(SOA) is often regar-
ded as synonymous withweb services(WS); indeed, the latter
is by far the most successful realization of the SOA paradigm.
The existing WS-* technologies are limiting, however, in that
the functionality implemented by a web service is assumed to
reside entirely at a remote server identified by a URI. Conse-
quently, WS/SOA interoperability standards such as BPEL [9]
are designed mostly to facilitate building server-side logic and
assume that end user’s client machines are passive consumers.

Accordingly, WS standards specify howproxiesrunning on
the client machines should format requests, address and locate
remote services, and process responses, but they don’t address
scenarios in which clients might execute parts of the service
logic locally, constitute parts of the service itself, or cooperate
with one-another. Our work attempts to address this limitation.

In principle, SOA requires that services beloosely coupled
andinteroperable[4], but it makes no assumptions about code
placement. In Jini [18], which is also a realization of the SOA
paradigm, the Java code of the service could be automatically
downloaded to the client and executed locally. Binding is done
not via SOAP, but via Java interfaces. The downloaded code
can be nothing more than a thin proxy for a remote service, but
it could also include complex processing at the client machine,
or even peer-to-peer functionality. In this regard, Jini approach
offers more flexibility than WS. On the other hand, being truly

language agnostic, WS is certainly more platform-independent
and interoperable, and perhaps it is these factors that madeit
so successful. In this context, one can view our proposal as an
attempt to port and integrate some of Jini’s ideas into the estab-
lished WS-* architecture in a platform- and language-agnostic
manner to achieve combined benefits of the two approaches.

In many applications, client-side code in which WS proxies
are embedded could be a complex piece of software with many
independently developed moving parts; indeed, as we argue in
the next section, different parts of such code could be created
without any coordination on behalf of their developers. Thus,
explicit support is needed for composing client-side modules
that could be written independently and in different languages.

In the longer perspective, extending the WS paradigm in this
manner is essential because focusing exclusively on the server
side is at odds with the recent trends in Web programming.
With technologies such as ActiveX, Flash, or AJAX, a browser
on a typical Web surfer’s machine is becoming increasingly
involved in processing and rendering web content; interaction
with the user is mostly local, and web requests are made only
sporadically, to update parts of the displayed content.

These trends are likely to continue, since on one hand, the
computational power of client machines is steadily increasing,
while at the same time, large content providers are increasingly
running into scalability challenges as their content gainson
popularity. Shifting some part of the computational burdento
client machines allows providers to offload servers in the data
centers, and the clients benefit from improved responsiveness.

The trend to offload processing to clients is likely to get even
deeper: to admit more users, even the responsibility for storing
content could eventually be shifted to clients; these woulduse
peer-to-peer(P2P) replication protocols to coordinate updates.
Technologies based on this idea already exist [6], [16], [17].
Croquet [17] replicates content withtwo-phase commit(2PC).
Live distributed objects[16] support user-defined protocols.

In past work [14], we argued that offloading work to clients
is particularly beneficial for highly interactive, short-lived, and
fast-changing content that is difficult to efficiently cacheand
index on the server side; such content can be hard to scale by
simply deploying more servers. Currently, this includes mostly
live chats, video conferences, massive-multiplayer online role-

playing games (MMORPG) such as World of Warcraft (WoW),
and virtual worlds such as Second Life (SL), but we expect that
these emerging technologies and platforms will increasingly
converge and blend with the more traditional, AJAX-style and
mashup-style Web content. Stronger focus on the client-side
might, indeed, facilitate such technology convergence.

It isn’t hard to see that in several of the scenarios mentioned
earlier, ranging from AJAX-style applications and “Web 2.0”
mashups to applications that incorporate elements of virtual
reality and MMORPG-style entertainment, the client-side logic
could become fairly elaborate and consist of multiple internal
layers and components. Like most complex software artifacts,
it could have a hierarchical structure, and its constituentparts
could come from multiple sources. Hence, support for modular
and hierarchical composition is essential. In the next section,
we discuss client-side composition patterns in more detail.

Today, client-side logic is implemented mostly in JavaScript
(JS), which effectively serves as a gluing layer. This is farfrom
perfect. One issue is that as a language-specific technology, JS
isn’t platform-agnostic and interoperable. Another issueis that
JS scripts are, for the most part, isolated chunks of code that
may be mashed together side-by-side on the same page, but are
not designed to be composed hierarchically and interoperate.
Reusability has to be built-in, coded explicitly at design time.
For example, if a given UI component with embedded JS is
to superimpose financial data from a number of sources on a
single chart, it has to be explicitly programmed to support all
the different data and request formats, for all of these sources.

Ideally, we’d like to treat parts of the client code that handle
data retrieval and view rendering as separate objects that could
be composed as easily as one composes a workflow in BPEL:
by dragging them onto a design sheet. The same data retrieval
object could then be reused in combination with arbitrary view
rendering objects. In order to implement this in JS, however,
JS script developers would need to first agree on a number of
practical issues, including which data structures to use topass
parameters, in what libraries and namespaces they should be
defined, where these libraries should be stored, how to upgrade
them, whether and how to convert method parameters if their
types mismatch, how to name methods and avoid name clash,
how to allocate threads and avoid deadlocks, whether to handle
method calls asynchronously or not, etc.

By agreeing on issues such as those just listed above, devel-
opers would in effect be defining a JS-specific interoperability
standard that extends the core JS framework. In this paper, we
develop a set of design principles and guidelines for achieving
a subset of these goals in a platform-independent manner.

This paper makes the following contributions.
1) It motivates an extension of the WS-*/SOA architecture

with interoperable mechanisms that can facilitate client-
side composition of executable code – an alternative to
server-side composition such as those based on BPEL. It
discusses practical examples of client-side compositions,
and abstracts them out into general composition patterns.

2) It outlines some of the key reasons why the existing web
technologies do not adequately support our composition

a b c d
a: 1310

a
bc

d

a

0 5 10

1310
message

user interface
components

WS‐Notification
Recipient

Proxy for a Remote
Web Service

data retrieval
components

Multicast
Client

RSS Feed
Reader

XMLRPC
Client

Fig. 1. UI and data retrieval components interact by explicit message-passing.
Messages are exchanged locally: the components reside on the same machine,
for example in the end user’s browser. Modeling such component interactions
as explicit asynchronous message exchanges enables decoupling and promotes
component reuse. Here, each of the data retrieval components could be mashed
together with any of the rendering components to present thedata to the user.

patterns. The paper focuses especially on the weaknesses
of JS as a client-side gluing layer. In the course of this
analysis, we formulate a set of general design principles
that client-side composition technologies should follow.

3) It describes an example realization of these principles in
a client-side composition platform we developed [16].

Our analysis is strongly rooted in reality; it is based on over
1.5 years of practical experiences with a real system – ourlive
distributed objects(LO) platform – and concrete application
scenarios. The platform can be downloaded for free [16]. More
information about the underlying programming model that the
plaform is based on can be found in our prior work [14], [15].

II. COMPOSITIONS

In this section, we discuss examples of client-side compo-
sition and abstract them out into general patterns. We pointto
limitations of the existing web technologies, with focus onJS.
We formulate architectural guidelines for future extensions.

A. Data Retrieval and User Interface

This form of composition has already been mentioned once
in the introduction, and leads to the following design principle.

Principle 1. The part of client-side code that pulls informa-
tion from remote services or other sources should be decoupled
from the part that visualizes it and handles all interactions with
end users; the two tasks should be treated as distinct concerns,
and handled independently by separate components.

For example, the data retrieval component for a stock quote
might output a stream offloat values; these could be consumed
by a UI component that shows the last value as a number, in a
text field on a web form (Fig. 1, Fig. 2). The decoupling allows
us to substitute the UI component with a different one, e.g.,
one that shows the last 100 values in a table, one that shows
them as a time series, or one that juxtaposes the last value with
values from a few other sources on a pie or bar chart; this way,
the same data could be interpreted and visualized in different
ways just by replacing the frontend. Likewise, different types
of data retrieval components could be placed at the backend

without replacing the frontend. One could retrieve values from
a web service, another from a multicast channel, a publish-
subscribe plaform, an RSS feed, or via WS-Notification. Any
frontend could thus be used with any backend as long as data
is fed to it in the matching format, using matching interfaces.

In the example on Fig. 1, messages are carryingfloat values,
but in general, messages can be quite complex. One example is
discussed in the following section: with shared folders, shared
desktops, and other types of containers, messages exchanged
between the data retrieval and UI rendering components could
carry descriptions of objects enclosed in a container: airplanes,
maps, etc. Encoding such descriptions might require elaborate
data structures that would need to be somehow standardized.

Out of the box, this pattern is not supported in plain HTML:
web content is generally addressed directly, loaded over HTTP,
and browser must be able to recognize it. One can decouple
processing in this manner using a scripting language such as
JS. The difficulty in implementing this pattern using JS, or in
general in language-centric approaches, is that data structures
and interfaces for frontend-backend interactions would need to
be defined in shared libraries that the interacting components
would reference. This is often unrealistic, as explained below.

Note that unlike a regular Java application, which is assem-
bled at design time, where all conflicts are easily resolved by a
programmer, and where external dependencies can be bundled
with the redistributable code, web mashups usually emerge as
a result of drag-and-drop actions performed by the end users.
In our example, an end user may try to drag a new data source
onto an existing bar chart. Different users might successively
add components downloaded from different sources. Creators
of those components might not have anticipated their use in the
particular type of a mashup, and end users will often lack the
programming expertise necessary to deal with issues that arise
during composition. This motivates the following principle.

Principle 2. The platform should support composing client-
side code dynamically on the end hosts; it should be assumed
that by default, it can involve arbitrary components developed
independently and never specifically designed to interoperate.

Consider the consequence of this principle in an approach
such as JS that relies on shared libraries. Clearly, one cannot
expect that there would exist a single Internet-wide authority
standardizing Java interfaces that every web developer would
use. Furthermore, libraries tend to evolve; this brings theissue
of managing their versions. IfX requires an older version, and
Y requires a newer one, linking the two may be impossible;
most managed environments, including .NET and JVM, have
limitations in this regard. This leads to the following principle.

Principle 3. Composition cannot rely upon the existence of
shared libraries, shared interfaces, shared data structures, or
any other shared artifacts that require binding at compile-time.
The runtime on the client should facilitate interaction between
components that export binary-incompatible interfaces.

With this sort of ashared-nothingapproach, the only thing
that a pair of components could have in common is the logical

data retrieval
component

visualization
component

dynamically gene‐
rated wrappers

message
1310

ab c d
remote
service

d at a‐ co n
ver s i o n w

r ap p ers y n ch r o n
i z at i o n w

r ap p er
1310

Fig. 2. To resolve binary incompatibilities between component interfaces and
avoid synchronization dependencies, the runtime must be able to automatically
inject dynamically generated wrappers that convert data structures and forward
method calls between components and add asynchrony as needed through the
use of event queues, futures, and similar types of mechanisms. The process of
generating these wrappers could be facilitated through semantic annotations.

structure of their interfaces. Indeed, the reader will recognize
in this the core principles that underpin the WS-* architecture:
two components can interact if only they agree onlogical data
types, encoding, and the protocol. This leads to the following.

Principle 4. Client-side composition should be based upon
structural conformance; if two components expose interfaces
with similar structure, and there exists logical correspondence
between events, calls, and fields in data structures, the runtime
should treat these components as compatible and dynamically
generate wrappers that translate method calls (Fig. 2).

Structural conformance is feasible with existing technology,
and it is supported by ourlive distributed objectsplatform. In
the scenario on Fig. 1, if a componentsX generates a stream of
float pairs that represent coordinates and componentY accepts
doublepairs, our platform will treatX andY as compatible.

Note the connection to semantic WS composition [10]. Sup-
pose that our components have semantic annotations and when
the end user creates a new mashup, the runtime environment
processes these annotations to determine semantic similarities,
such as correspondence between events, methods, or fields in
data structures, much in the same way semantic composition is
used in WS to find correspondence between services and their
parameters. In the absence of such semantic annotations, the
process of matching components falls back onto a plain variant
of structural conformance, where the corresponding interfaces,
structures and fields are expected to have matching names.

Composing arbitrary pairs of components has another, more
subtle consequence: when componentX makes a synchronous
call to componentY while holding a lock on a resource or data
structure, a synchronization dependency is created between the
two. This can easily lead to deadlocks. Normally, this is notan
issue for components that were designed to work together and
implicitly follow consistent policies, such as the order inwhich
locks are acquired, but if components are coded independently
and can be composed in an unpredictable manner, nothing can
be guaranteed. This leads to the following principle.

Principle 5. The runtime should avoid synchronization de-
pendencies between components. Wherever possible, it should

enforce strictly asynchronous interfaces: one-way methodcalls
or explicit message passing. Alternatively, it should be possible
to decorate components with semantic annotations that specify
synchronization and locking aspects, for use by the runtimeto
inject wrappers that queue events, create futures etc. (Fig. 2).

In the live distributed objects platform, we adopted the latter
approach: method calls into a component can be automatically
made asynchronous and lock-free with a one-line annotation.
The rationale for this decision is discussed in the next section.

With the ability to place autonomous data retrieval compo-
nents at the backend and asynchrony in the model, the question
arises whether these components should be able to create their
own threads of execution, for example to poll RSS feeds, or to
issue synchronous socket operations. In general, this would be
convenient, but as it will become clear shortly, composition in
our model is fine-grained and the number of client components
can be large. This suggests the use of the asynchronous event-
driven model not just for inter-component interactions, but also
insidethe components. This motivates the following principle.

Principle 6. Client-side code should take the form of short
and terminating asynchronous event handlers; alternatively, it
should be translated or compiled into such form. The client-
side runtime should offer lightweight scheduling, asynchronous
I/O, and timer event mechanisms that can be used to implement
background processing within components without the need to
create threads on a per-component basis.

By now, one may be tempted to view client-side components
as miniature web services, and solve several of the difficulties
we pointed to by marshaling calls between them much in the
same way WS proxies marshal their calls to remote services,
but this would be unacceptable for performance reasons. We’ve
just pointed out that client-side composition is much more fine
grained that WS composition. A typical client-side component
would be much smaller, more lightweight than a typical web
service (this becomes evident in the following section, when
we consider components such as avatars and icons overlaid on
a map). Consequently, cross-component interaction overheads
must also be much lower. This leads to the following principle.

Principle 7. Message-passing overhead should be minimal.
In particular, the cost of marshaling calls or dynamic dispatch
through reflection is unacceptable; for each pair of interacting
components, the runtime must be able to generate a dedicated,
efficient, optimized wrapper code, and load it into the process.
This also rules out calls across processes and application do-
mains: client-side components should share address space.

This observation is essential, for it lets us filter out simplistic
approaches. It also helps us to position client-side composition
as a technology that lies somewhere in-between WS and Java:
we require some of the interoperability characteristics ofWS,
while at the same time, we require performance characteristics
similar to Java/.NET objects; this mix of requirements requires
a new type of runtime architectures. It may require new types
of language or compiler mechanisms and explicit support from
browsers; client-side composition is thus a category on itsown.

US 6 5 3 0

display 3D view (container)

display
airplanedisplay

flight info

activate US 6530move
message

embedded components

message

message

Fig. 3. A container loads, manages, and interacts with components embedded
in it. Each embedded component, e.g., a plane icon or a pushpin, encapsulates
all the logic for retrieving its own data and rendering itself on the screen. This
way, the container (the 3D area view) can simultaneously display a variety of
embedded components, even completely new types of components that might
not have been anticipated at the time the container was beingimplemented.

B. Container and Embedded Objects

In this style of client-side composition, acontainercompo-
nent may control multiplecontainedcomponents: its elements.
The container and its elements run concurrently, and each may
own a portion of the screen, but the container loads, initializes,
activates, and deactivates its elements, and it may interact with
them via explicit message-passing as in the preceding section.

For example, a component that displays a 3D area view or a
2D map might contain components that represent commercial
flights. For each flight managed by the container, a plane icon
might be drawn within the area, hovering over an appropriate
portion of the map (Fig. 3). The encapsulating container might
activate and deactivate the embedded plane icons, depending
on which airplanes are close to and within the viewing angle of
the user’s camera. Plane icons, however, are otherwise separate
components that encapsulate all their rendering logic, andthe
logic for retrieving their planes’ positions from remote sources
and converting them to 2D coordinates for screen positioning.

The separation of the embedded components’ view render-
ing and data retrieval logics from the logic of the encapsulating
container (the 3D view component) is essential, for this allows
the container to manage arbitrary components as elements as
long as they support the standard container-contained control
interface. In contrast, in the existing AJAX-style applications,
such as Google Maps, support for embedded elements (such
as pushpins) has to be built-in at design time; it is not possible
to embed just any sort of web content within such a map and
associate it with a location on the map unless the mapexplicitly
implements this sort of interoperability (and often it doesn’t).

There are several problems with implementing this scenario
using existing technologies. First, although JS can modifythe
appearance of web page elements, the script and the document
structure on which it operates are disjoint. The document thus
acts like a global variable against which code is executed. This
breaks encapsulation and modularity, and makes it difficultto
follow the modern component-oriented development approach.
Indeed, JS code is often custom-made for a particular web site
and monolithic. Separation of visual content from executable

code also cripples dynamic reflection capabilities: even though
one can write JS code that dynamically loads scripts or content
at the client-side, the two are processed in very different ways.

A further issue is that, while AJAX supports 2D forms, other
types of visual content, such as the 3D window on Fig. 3, have
to be coded as Flash objects or natively in JS. As noted earlier,
if Google Maps were to allow pinning Flash animations to a
map, the rendering engine would need to explicitly implement
this. Likewise, a Flash animation cannot easily embed JS script
of HTML code. Thus, once the developer leaves the document
hierarchy and drops into raw scripting, where drawing is done
manually, there’s no turning back: one can no longer rely on a
browser support or interoperable standards; beyond this point,
logic is monolithic: any flexibility has to be explicitly built-in.

In this context, we favor the approach adopted in Microsoft’s
object linking and embedding(OLE) [2] standard, where every
visual component within a compound document is responsible
for drawing and serializing itself. The problems just discussed
can be avoided if we uniformly adopt the object-oriented pers-
pective: think of UI rendering as a client-side service, andparts
of a web page as components that provide such service among
other client-side functionality they might offer. The roleof the
container is then limited to controlling the lifetimes of objects
embedded in it, interacting with them, and managing its local
portion of the document hierarchy, as postulated earlier. In this
model, embedded components excecute concurrently with the
container; the latter no longer needs to participate in rendering
their UI or managing their data other than binding them to the
display, loading resources, controlling camera or perspective.
We can summarize this discussion in the following principles.

Principle 8. Containers should be decoupled from elements
embedded in them; the latter should encapsulate their element-
specific logic such as UI rendering, data retrieval, or storage.
Container code should be limited to handling generic aspects,
such as controlling the lifetimes of the embedded elements.

Principle 9. The runtime must provide standardized man-
agement APIs, through which containers can control lifetimes
of their components, enumerate or query supported interfaces,
bind their elements to the display, unbind, move, change their
sizes or perspectives, request re-rendering, drag-and-drop, etc.

In practice, in order for a container to display the embedded
components, it has to load and parse their descriptions in some
standardized format. This leads to the following observation.

Principle 10. The platform should support marshaling arbi-
trary types of components to portable specifications expressed
in a platform-independent language that one can programmat-
ically store, send over the network, unmarshal, and instantiate.

In the preceding section we postulated separation of UI and
data retrieval logic. This should be applied to containers,too.
Actions such as adding new elements to the container will thus
also need to be represented as events carrying descriptionsof
elements to embed; the types of these events could be complex.

Now, let’s return to our example. Our area view (container)
might want to highlight all airplanes that meet certain criteria,

or bind to display only airplanes within a certain viewing angle
and distance from the user’s camera, e.g., to limit the number
of airplanes on the screen for performance reasons. Since, as
postulated earlier, the container shouldn’t contain any element-
specific logic, it must get this information from the embedded
components: it needs tolocally interact with these components.

This is again hard to achieve in the HTML/JS model, since
there is no standard way for elements of the document to com-
municate. The OLE approach is again superior: each viewable
component, besides standard UI interfaces for view rendering,
can expose custom programmatic interfaces. To implement this
in JS, there would need to exist a 1-1 correspondence between
UI elements and the associated JS objects that perform all the
data retrieval and that handle calls from other objects. This is
not only inelegant, but raises security concerns; each JS object
could bypass such event dispatch mechanism and interact with
any part of the web page, or with objects that may be unrelated
in the document hierarchy. We can summarize this as follows.

Principle 11. Components should be able to expose asyn-
chronous event-based interfaces alongside user interfaces. The
runtime should not distinguish visual content from non-visual
components; it should be able to handle both types uniformly.

Principle 12. Runtime must be aware of the hierarchical
relationships between components; these should only be able
to interact with components directly related in the hierarchy,
such as embedded objects, encapsulating containers, or other
components they’ve been otherwise explicitly associated with.

Finally, note that elements of a web page are untyped. In our
example, the container may want to differently treat embedded
objects such as planes as opposed to 2D map overlays, weather
information channels, and video feed pushpins. They could be
displayed in different portions of the view, and the container
might need to interact with them differently. Although JS has
limited reflection and introspection, this functionality appears
to be neither convenient, nor particularly useful in this context,
for again, as pointed out earlier, JS lacks object abstraction that
would encompass graphical content and its associated scripting
logic. This observation leads to the following postulate.

Principle 13. All client-side components should be strongly
typed. The type system should encompass content types as well
as event-based interfaces; component type should thus be de-
termined by factors such as the list and structure of all event-
based and graphical interfaces they expose, but also semantic
annotations that might capture various non-functional aspects.
The runtime should perform dynamic type checks during com-
position and provide reflection and introspection capabilities.

To conclude, let’s put the container-contained pattern in con-
text of the preceding section, where we advocate asynchronous
event-based decoupling. Note that for certain cross-component
interactions, asynchronous interfaces might be impractical. For
example, UI controls in platforms such as Windows Forms or
Microsoft ’s XNA framework are implemented by overriding a
number of callbacks that have to run synchronously; this may
be necessary, e.g., to render the view in a hidden buffer before

copying the complete scene into foreground. In such cases, the
invoked component also has to run in the context of the callee,
for it might require direct access to memory or handles shared
with the callee; hosting it in a separate application domain, or
isolating it in its own address space, would slash performance.
That’s why to handle synchronization dependencies in the live
objects platform, we chose to rely on semantic annotations and
automatically generated wrappers (Fig. 2) to inject asynchrony
into cross-component calls rather than enforcing strictlyasyn-
chronous interfaces. We summarize this discussion as follows.

Principle 14. The platform should support synchronous in-
terfaces side-by-side with asynchronous event-based interfaces
to support interactions such as those between container andits
elements; pairs of such components may have to share resour-
ces, handles, and address space, and interact synchronously.

In practice, in order to avoid synchronization dependencies,
the platform may require, e.g., that calls are only synchronous
in one direction (container calling its element). Whether Acan
synchronously invoke B can be inferred from their types (e.g.,
from the information embedded in their semantic annotations).

C. Application and Transport Layers

In this pattern,application-levellogic that formats and seria-
lizes data sent over the network, applies client-side processing
such as compression, encryption, or fragmentation, and applies
updates to local data structures on the client is decoupled from
transport-levellogic that handles physical packet transmission.

For example, an embedded video may be rendered from an
MPEG-2 stream. The video may be first downloaded as a byte
stream by atransport object, converted by anapplication-level
object into a sequence of video frames, and finally passed on
to a UI object for on-screen rendering (Fig. 4). By decoupling
transport logic from higher layers, we gain much flexibility, for
example to feed the byte stream either from a server via HTTP,
or use a peer-to-peer protocol such as BitTorrent. Likewise, the
same transport may be used to load other sorts of content, e.g.,
other video formats, images, textures, or even client-sidecode.

For the most part, existing technologies do not support this;
most content types can be loaded only using one of the built-
in protocols, such as HTTP. For other types of transport, one
would typically build a custom ActiveX control that encapsula-
tes transport, decoding, and rendering logic (such as for movie
streaming). This discussion motivates the following principle.

Principle 15. Any major component and piece of content on
a web page should be able to specify a custom transport to use
for downloading any visual, non-visual, passive, or executable
content or resource, including images, textures, scripts,desc-
riptions of embedded components or other types of parameters.
It should be possible to explicitly embed a specification of the
custom transport component within the body of the web page.

The lack of logical decoupling of the transport layer cripples
also interoperability standards such as WS-Notification. These
determine not only the structure and format of events, but also
details of the distributed protocol used for dissemination, thus

BitTorrent
IP multicast

WS‐Notification
PPLive

http://server/some/file
ftp://server/some/file

decode mpg
transport layer

components

bytes

video

framemessage

message

t h e
e n d

decode wmv app. layer
comp.

UI rendering
component

Fig. 4. Transport components encapsulate all aspects involved in the physical
transmission of packets; higher layers work with pre-downloaded byte streams.

eliminating any flexibility in this respect. We’ve discussed this
in past work [13]. The architecture we proposed to address the
shortcomings of WS-* standards involves client-side logicthat
might perform tasks such as peer-to-peer data forwarding. This
proposal is essential in making such architectures possible.

Going further, one can apply this reasoning to client-service
access protocols, including HTTP GET, POST, and SOAP. An
underlying transport component could handle aspects such as
locating the remote service (perhaps among the clients if itwas
offloaded), establishing a connection (perhaps using additional
mechanisms, such as hole-punching to pass through NATs and
firewalls), authenticate, negotiate security protocols, and so on.
Once established, a logical point-to-point channel would then
be passed on to the application-level component to handle for-
matting, encoding, and serialization, match requests withres-
ponses, or serialize outgoing calls. This sort of flexibility opens
a wide range of possibilities; e.g., one can use it to incorporate
peer-to-peer service discovery mechanisms based on JXTA [1],
and fault-tolerance mechanisms such as those described in [3].

Principle 16. It should be possible to use a custom transport
component for remote method calls by embedding its descrip-
tion within the document. The transport would encapsulate all
logic for establishing a session with a remote host, over which
SOAP and other application-level protocols could be placed.

Upon closer inspection, both application- and transport-level
components may themselves be modular and hierarchical. One
example was just suggested above: each transport component
can be further decomposed into sub-components that encapsu-
late tasks such as discovery, hole-punching, and authentication.

In the introduction, we mentioned that offloading content to
clients would require the use of distributed protocols suchas
multicast; these protocols also often involve several layers. For
example, the base layer that forwards updates between clients
could depend on an external membership service. The protocol
for retrieving membership would ideally be encapsulated asa
separate object, so that it could be easily replaced, or usedwith
other types of protocols that use membership to self-organize.
Perhaps the most natural way to support such compositions is
to treat functional sub-components as parameters; thus, a group
membership protocol stack would be a parameter passed to the

multicast protocol stack; the latter should be able to work with
any membership protocol that feeds the necessary information.
Functional and non-functional requirements can be expressed
as the types of the requested parameters much in the same way
one specifies types of parameters in Java method signatures.

Principle 17. It should be possible to parameterize any com-
ponent with other components. Specifications of components
passed as parameters should be recursively embedded within
the document, as a part of the specification of the component
being parameterized. The parameterized component should be
able to place constraints on the types of each of its parameters.

One may question whether embedding descriptions of multi-
layer protocol stacks in documents loaded by the clients is the
right approach, for it increases document sizes and costs time
to parse and interpret these descriptions at the client. Indeed,
except for our platform, we know of no other examples of this
approach. Croquet is also based on peer-to-peer replication, but
it uses a fixed protocol: a variant of two-phase commit (2PC).

In past work [14], we argued that different types of content
require different replication semantics. Some types of content,
such as documents that users can simultaneously edit, require
stronger consistency, such as totally ordered reliable multicast,
and tend to be inherently non-scalable. Other types of content,
such as video streams, may not require sophisticated reliability
or ordering properties, but need to scale to thousands of users,
offer low jitter and flow control, etc. Many of these properties
are mutually exclusive, hence no one-size-fits-all solution can
exist. Furthermore, as noted in [14], even if we focused on one
type of content, such as documents that support collaborative
editing, upon reviewing past work in the area we find a great
variety of different approaches to this seemingly trivial task.
By permitting flexible protocol stack compositions on the end
host, we open up the possibility for innovative solutions tobe
immediately tested and deployed. In contrast, standardization
of concrete distributed protocols and peer-to-peer interactions
patterns (as is the case in Croquet, but also in the WS-* family
of specifications) tends to benefit a fraction of applications.

D. Controller and Controlled Objects

A typical web page contains many elements that need to be
fetched via HTTP and services to connect to over POST, GET,
or SOAP, all of which requires establishing TCP connections.
All such connections are managed by a single TCP stack. With
some of the extensions we proposed, we could apply the same
pattern to other types of connections and distributed protocols:
for example, a single page might contain multiple components
that download data from the same publish-subscribe platform,
establish encrypted connections to the same remote server,etc.
Rather than having each component work independently of all
the others, and internally create its own private instance of the
protocol stack, its own connection, session, and data structures,
one might prefer to have a singlecontroller component in the
process that simultaneously controls multiple logical channels,
sessions, or connections, and can reduce overhead by applying
cross-channel optimizations: aggregation, batching, clustering.

Principle 18. It should be possible to specify components as
relative to a controller that acts as a factory for and manages a
collection of subordinate objects. The runtime should reuse the
same instance of the controller component to support multiple
controlled components within the same page, or across pages
in a browser process, to facilitate cross-channel optimizations.

For example, our page may contain a single specification of
a publish-subscribe protocol stack embedded in it, and dozens
of relative references that point to the stack as acontroller that
creates and manages all logical channels representing publish-
subscribe topics used within the page. When loading the page,
the browser would launch a single instance of such controller,
and reuse it multiple times, requesting a channel from it every
time it encounters a reference relative to this controller.

This pattern is hard to code in JS: controller is shared across
scripts and pages, which may require explicit browser support.

E. Content and Infrastructure Layers

Assembling a downloaded page and numerous other client-
side tasks require support from the runtime, the functionality
of which is limited to only a small number of built-in options.
For example, in Section II-C, we pointed out that fetching data
and establishing client-service sessions is generally limited to
HTTP; we proposed custom transports to go around this limi-
tation (principles 15-16). The same pattern could be applied to
other forms of client-side processing assisted by the runtime.
For example, whenever an identifier in a web page needs to be
resolved, one might wish to specify a custom name resolution
component. Whenever some section of a web page needs to be
parsed, one might wish to supply a custom parsing component
that implements language extensions unsupported by the base
standard, decrypts an obfuscated specification, calculates a fin-
gerprint of a component specification to verify against a data-
base of secure components, or performs custom type-checking.

Principle 19. Any aspect of content processing assisted by
the runtime infrastructure, including parsing, name resolution,
decoding, and type-checking, should be possible to customize
by recursively embedding a specification of the component that
is supposed to replace the respective infrastructure service.

While powerful, this idea raises security concerns: runtime
is implicitly trusted not to contain malicious code and to cor-
rectly implement security protocols. If a component can over-
ride infrastructure services, such as naming and type-checking,
it could potentially impersonate critical services, falsely claim
to be secure, authorized, verified, or signed with a trusted key.
To avoid this, one should be able to restrict the kinds of com-
ponents that are permitted to override the runtime. Earlier, we
postulated that components be typed, and their types support
semantic annotations, so we propose that this determination be
based on component types and occur as part of type-checking.
In what follows, we just briefly sketch one possible approach.

The mechanism might work as follows: suppose the runtime
loads a componentA of typeTA as part of a web page, and the
description ofA has an embedded description of componentB

of typeTB that replaces an infrastructure service or performs

some verification onA; we can refer toB asA’s authenticator.
If the authenticatorB is given, then before loading component
A, the runtime first loads the authenticatorB, passes to itA’s
description, and letsB authenticate it (for example, parse all
semantic annotations inA to verify that they’re legitimate). If
B approves, the runtime tags the type ofA with a certificate
that a component of typeTB has vouched for it. One can think
of typeTA of the component being verified in this manner as
qualified with typeTB of its custom authenticator,TB :: TA.

Now, suppose that componentC acceptsA as a parameter.
The definition of componentC might request that its parameter
be of typeTP ; in such case, during composition, the runtime
must only check thatTA <: TP . Alternatively, the definition
of C might state that its parameter has to be of typeTV :: TP .
The runtime would then have to verify not only thatTA <: TP ,
but also that the description of componentA has been checked
and approved by an authenticator of the right type,TB <: TV .

Using this pattern, for example, a confidential collaboration
componentC might specify that it needs to be composed with
a trusted communication channel; it might take such a channel
as one of its template parameters. The trust could be specified
via semantic annotations in the type of its parameter.C could
further require that the truthfulness of these annotations(the
fact that the channel is trusted) be verified by an authenticator
of the appropriate type. The pattern could be used recursively.

The above presentation is necessarily terse; in-depth discus-
sion of type-checking and security is beyond the scope of this
paper. Analyzing the security implications of the composition
pattern presented in this section is the subject of a future study.

III. A RCHITECTURE

In this section, we summarize the core elements of ourlive
distributed objects(LO) architecture, as an example realization
of the principles listed in the preceding section. We encourage
the reader to consult [14], [15], [16] for further details.

The previous section motivates an object-oriented approach,
in which all visual and non-visual content, as well as elements
of the underlying communication protocol stacks and runtime
infrastructure, are treated uniformly as reusable components.

Accordingly, in our prototype platform [15], [16] we model
any functionality accessible to a client as an abstract object – a
live distributed object(LO). We apply this metaphor uniformly
to web services, windows in which visual content is rendered,
filters that transform data, distributed protocol instances, and
even parts of our runtime infrastructure. Each LO is accessible
via aproxy, a client-side component that exposes event-driven
interfaces. The client-side logic is expressed as composition of
such proxies into larger units; web applications are networks of
interconnected proxies (Fig. 5). The client-side runtime assists
with composition; it provides type-checking and reflection.

We mentioned that LO could represent UI elements, remote
services, or protocol instances. Accordingly, our proxiescould
interact with the UI, but also make remote WS calls, or interact
with proxies on other nodes in a peer-to-peer fashion. Irrespec-
tive of its type, a proxy interacts with other proxies exclusively
by explicitly sending or receiving events through itsendpoints.

proxy

hierarchical
document

embedded
references

proxy

proxy

proxy

proxy

a graph of proxies
(client‐side logic)

UI

endpoint
(asynchronous
event channel)

p ar s e an
d

cr eat e p r
o x i es

local events at
the endpoints

remote servers

network
packets

Fig. 5. References embedded in a web document are used to create a graph of
interconnected proxies that can render UI, contact remote services, transform
or filter data on the client, or participate on distributed peer-to-peer protocols.

Event-passing decouples proxies from one-another. It is assis-
ted by the client-side runtime environment, which can generate
wrappers to match interfaces. Each proxy can also expose any
number of synchronous user-interface endpoints to bind to 2D
or 3D displays alongside asynchronous event-based endpoints.

Proxy compositions are expressed in a platform-independent
language, as XML strings we call LOreferences. A reference
is a portable set of instructions for constructing a proxy for a
given LO. It has a hierarchical structure and resembles a small
web page. One can embed it in a larger document, store it in a
file or in a communication channel, send it over the network,
pass it as an argument or as a result of a WS call, and so on.

The concept of a reference generalizes, abstracts and unifies
concepts such as WSDL [5] specifications and JS scripts. Each
of these is, actually, a complete specification of an executable
client-side logic. In case of WSDL, it is the logic of a service
proxy, specified in a declarative fashion. In case of a JS script,
code is given explicitly. In our platform, one can encapsulate
WS proxy stubs and JS scripts as different classes of references
and mash them up together with other types of components.

In contrast to static non-executable page elements decoupled
from JS scripts that, in turn, lack state or visual representation,
a reference in our platform produces a live and stateful proxy
that can have any number of visual representations and exposes
arbitrary event-based interfaces; it can have internal state and
run in the background (using timer APIs). Our platform does
not distinguish UI, non-UI, static or dynamic types of content;
applications are composed entirely of interconnected proxies.

Composing references yields a larger reference. References
are hierarchical documents similar to web pages in HTML and
serve as the equivalents of these in our framework. Our “web
pages” thus do not contain text or other static elements (unless
the text is passed as a parameter to a proxy); they are simply
hierarchical “recipes” for constructing proxies. When this sort
of a document is loaded on the client machine, the client-side
runtime parses the hierarchy of references, then uses embedded
instructions to construct a hierarchical network of interconnec-
ted proxies. If the proxies expose any graphical endpoints,the
document can be displayed; but it could equally well describe
an application without user-interface (e.g., a network service).

The simplest type of proxy in our platform is one manually
coded in .NET. Each such component has a 384-bit identifier
that identifies the library in which it is stored, identifier within
the library, and version numbers. The 384-bit identifier is the
simplest type of a reference; if the client’s runtime encounters
one while parsing a document, it tries to locate the respective
library (locally or from some remote repository), load it into
the process, and instantiate the class that implements the proxy.
The runtime uses reflection to analyze the structure of the class
and custom .NET attributes, and infers the list of all endpoints,
incoming and outgoing events and their types. It also extracts
semantic annotations from .NET attributes, and appends them
to type metadata. The platform maintains its own type system,
independent of .NET, that describes all types and components
found in the libraries it has dynamically loaded. As postulated
earlier, these types are determined only by the logical structure
of interfaces and custom semantic annotations, not by physical
.NET classes used to implement them. When comparing two
component types, the platform relies on its own type metadata.
Our system uses the mechanism just described also to analyze
itself and bootstrap all of the predefined types and components.

When creating a proxy of a library component, the platform
invokes the constructor to create the .NET object implementing
it, and passes to it a runtime context, which includes scheduler,
clock, timer, network, and filesystem interfaces, as well asthe
interfaces for creating endpoints and proxies, reflection,etc.

In its constructor, the proxy object constructs all its UI and
non-UI endpoints and exposes them as .NET properties. From
this moment, endpoints are the only way the proxy can interact
with other parts of the application. The most common type of
endpoint is a bidirectional interface: the proxy exposes method
calls through anincominginterface, and requests anoutgoing
interface through which it can calls methods of other proxies.
Endpoints are meant to be connected into pairs: the only opera-
tion one can perform on an endpoint is to connect it to another
endpoint of a matching type. When this happens, proxies bind
to one-another’s interfaces. Each endpoint exposed by a single
proxy can only be connected to one other endpoint at any time.

The proxies composed at runtime can be defined in different
.NET libraries, but as mentioned earlier, we define types based
on the logical structure of interfaces, not binary compatibility.
To connect two proxies, it may not be enough to just exchange
their .NET interfaces. In these cases, the platform generates
wrappers. The proxy that would make method calls receives a
reference to thefrontend.NET object that transforms method
calls into a standardized representation, and passes them down
to a backend.NET object, which then unpacks and directs all
calls to the target proxy (Fig. 6). When loading a .NET library,
the platform dynamically generates frontend and backend code
for all components, compiles and dynamically loads it into the
process for future use. The overhead of doing this is negligible.

The platform hosts all proxies in the same process and app
domain, and method calls are passed directly between proxies
(or through frontend and backend). If a component is annotated
accordingly, the platform can automatically generate a wrapper
that places all calls into the proxy on the proxy’s private lock-

O�.frontend
I�.backend I�.backend

O�.frontend
X.queue

X.code
Y.queue

I� I�
Y.code

O�
O�

input input
output output

connected
endpoints

with a
generated
wrapper

proxy proxy
X Y

Fig. 6. A pair of connected proxies that interact via automatically generated
wrappers and queues. The system auto-generates wrappers atbootstrap time.

free queue, and process them all asynchronously at a later time
in batched mode (Fig. 6). Just like data-conversion wrappers,
nonblocking queues and scheduling code are generated by our
system automatically when it bootstraps itself, for all proxies.

As mentioned earlier, all interactions of a proxy are tunneled
via its endpoints. To obtain an endpoint from a proxy, one must
have previously created it from a reference. A container proxy
can thus easily obtain endpoints from the proxies of embedded
objects it created, and connect to them to interact; on the other
hand, proxies of embedded objects can’t just randomly interact
with one-another. Interactions in our system are only possible
for proxies related in the hierarchy, as we’ve postulated earlier.

Library components can be parameterized; in such case, the
.NET object may be a generic class, and it may receive values
or references to other objects, in its constructor. Templates of
this sort can be used to create complex hierarchical references.
If used in a document, a reference to such template component
has all of its parameters embedded; these can include, in par-
ticular, embedded references to components it uses internally.
This enables many of the patterns discussed in section II; e.g.,
to separate UI from data retrieval logic, we model UI and data
retrieval as separate objects and implement them as separate
proxies in a running system; the reference to the data retrieval
object is passed as a parameter to the view rendering object.

Our XML language of LO references supports other types
of compositions, such as factories, folders, and the controller-
controlled pattern discussed earlier. We omit details for brevity.

When passing an LO reference as a parameter, the runtime
dynamically type-checks to see if the argument type matches
the type of the formal parameter of a template. This involves
comparing the logical structures of interfaces and the semantic
annotations. Annotations are parsed by pluggable, user-defined
modules. These modules can also be defined in .NET libraries.
After parsing, compiled annotations are stored as part of type
metadata. When comparing types, annotations compiled by the
same module are compared pairwise by invoking the module’s
type-checking interface. By default, the runtime doesn’t verify
the truthfulness of these annotations (it only compares them).

In a longer perspective, we hope to use semantic annotations
to characterize the event patterns coming in or out of an object
[15], but they can be used for any purpose, e.g., to mark objects
as secure or reliable, attach signatures, fingerprints, andaccess
permissions that could be compared as a part of type-checking.

To customize the process of type-checking, we allow an LO
referenceX to contain an embedded referenceC marked as its
authenticator. If the latter is present when constructing a proxy
from X , the runtime first creates a proxy of the authenticator
C, connects to its endpoint, and passesX ’s reference toC to
let the authenticator decide whether the reference is legitimate,
by parsing semantic annotations or some subset it cares about.
If this succeeds,X ’s reference has a certificate attached to its
type stating that an object of a certain type has vouched for
X ’s integrity. A template object can request that its parameter
have certificate issued by an authenticator of a particular type.

Besides compositions defined statically within the structure
of the references, the platform supports dynamic compositions.
A proxy may dynamically download serialized references from
communication channels and other remote sources, deserialize,
use them to create proxies, and then connect to their endpoints.
We use this dynamic reflection capability to implement shared
folders, shared desktops, and other sorts of container patterns.

One could also use dynamic reflection to seamlessly migra-
te between server-side and client-side execution. Initially, the
proxy constructed from a reference might be just a WS proxy
stub that performs no local processing at the client and directs
all requests to a server, but if needed, can dynamically fetch a
reference of another proxy that can do client-side processing,
instantiate it internally, and then instead of issuing requests to
a remote server, send them to this internally maintained proxy.
One example of how this could be useful would be for a group
of clients to seamlessly shift between updating their stateat a
centralized web service, and a peer-to-peer mode, where state
is downloaded locally and replicated on all clients, which then
send updates directly to one-another over a multicast channel.

IV. RELATED WORK

Our work has been inspired by a rich body of prior research
on typed component integration platforms, including OLE [2]
and Jini [18], protocol composition frameworks, such as BAST
[7], and web-like P2P environments, e.g., Croquet [17]; a more
comprehensive discussion of these can be found in [14].

With respect to language-specific technologies such as OLE
and Jini, our architecture is more interoperable. For example,
principles 2, 3, and 4 were not needed for the sorts of applica-
tions for which OLE or Jini were designed. Principle 2 appears
to be quite unique to the style of composition we advocated in
this paper, and its influences are seen throughout our architec-
ture (e.g., in Principle 5). The corresponding mechanisms,such
as automatic generation of wrappers for binary-incompatible
code or lock-free queues to resolve deadlocks, are not present
in any of the major typed component-integfration platforms,
such as OLE/COM, Jini, Java, or .NET. With respect to Jini,
we have inherited the concept thateverything is an object, but
in our live distributed objects model we took this concept even
further; we proposed that even type-checking be customizable,
thus extending the object abstraction to parts of the runtime.

In comparison to server-side composition technologies such
as BPEL [9], our client-side components are smaller and more
fine-grained; principles such as 5, 6, and 7 do not apply to web

services. Composition patterns also differ significantly,and the
requirement to support UI has peculiar consequences, such as
principles 11 or 14. Work on integrating web services with Jini
(e.g., [8]) or peer-to-peer technologies such as JXTA (e.g., [1])
has also been focusing almost exclusively on the service-side.

In designing particular aspects of our system we have been
inspired by a great many other technologies; in particular lan-
guages such as XAML [11], work on structural subtyping [12],
event-driven architectures such as SEDA [19] and many others.

V. CONCLUSIONS

Client-side composition is a core part of the WS-* architec-
ture, but is inadequately supported by the existing technolo-
gies. We have built a platform that supports major composition
patterns and offers flexibility unseen in existing platforms. Our
work demonstrates that client-side composition is feasible and
practical. The technical guidelines we proposed may serve as a
basis for extending existing WS-* standards and technologies.
The live distributed objects platform is available for free[16].

ACKNOWLEDGEMENTS

Our work has been supported in part by grants from AFRL,
AFOSR, NSF, and Intel Corporation. We would like to thank
Daniel Freedman for his comments.

REFERENCES

[1] F. Banaei-kashani, C. chien Chen, and C. Shahabi, “WSPDS: Web
Services peer-to-peer discovery service,”ISWS, 2004.

[2] K. Brockschmidt,Inside OLE. Microsoft Press, 1995.
[3] J. Cardoso, “Semantic integration of web services and peer-to-peer

networks to achieve fault-tolerance,”GrC, 2006.
[4] J. Cardoso and A. Sheth,Semantic Web Services, Processes and Appli-

cations (Semantic Web and Beyond: Computing for Human Experience).
Springer-Verlag New York, 2006.

[5] E. Christensenet al., “WSDL1.1,” http://www.w3.org/TR/wsdl.
[6] S. Douglas, E. Tanin, A. Harwood, and S. Karunasekera, “Enabling Mas-

sively Multi-Player Online Gaming Applications on a P2P Architecture,”
ICIA, 2005.

[7] B. Garbinato and R. Guerraoui, “Flexible proto-col composition in bast,”
ICDCS, 1998.

[8] Y. Huang and D. Walker, “Extensions to Web Service techniques for
integrating Jini into a Service-Oriented Architecture forthe Grid,” ICCS,
2003.

[9] IBM et al., “Business Process Execution Language for Web Services
(BPEL),” http://ibm.com/developerworks/, 2007.

[10] B. Lin, Q. Li, and N. Gu, “A semantic specification framework for
analyzing functional composability of autonomous web services,” ICWS,
2007.

[11] L. MacVittie, XAML in a Nutshell. O’Reilly Media, 2006.
[12] K. Ostermann, “Nominal and structural subtyping in component-based

programming,”JOT 7(1), Jan-Feb 2007.
[13] K. Ostrowski, K. Birman, and D. Dolev, “Extensible Architecture for

High-Performance, Scalable, Reliable Publish-SubscribeEventing and
Notification,” JWSR, Oct-Dec 2007.

[14] K. Ostrowski, “Live Distributed Objects,” Ph.D. Dissertation, Cornell
University, 2008, http://hdl.handle.net/1813/10881.

[15] K. Ostrowski, K. Birman, D. Dolev, and J. H. Ahnn, “Programming with
Live Distributed Objects,”ECOOP, 2008.

[16] K. Ostrowskiet al., “Live Distributed Objects (the project’s website at
Cornell),” http://liveobjects.cs.cornell.edu/, 2008.

[17] D. Smith, A. Kay, A. Raab, and D. Reed, “Croquet: A Collaboration
System Architecture,”C5, 2003.

[18] J. Waldo, “The jini architecture for network-centric computing,” CACM
42, 7 (Jul. 1999), pp. 76-82., 1999.

[19] M. Welsh, D. Culler, and E. Brewer, “Seda: architecturefor well-
conditioned, scalable internet services,”SOSP, 2001.

