
Introduction
tcpcrypt

Performance
Conclusion

1/25

The case for ubiquitous transport-level encryption

Andrea Bittau, Michael Hamburg, Mark Handley,
David Mazières, and Dan Boneh

Stanford and UCL

November 10, 2010

Introduction
tcpcrypt

Performance
Conclusion

2/25

Goals

What would it take to encrypt the vast majority of TCP traffic?

1 Performance.

Fast enough to enable by default on almost all servers.

2 End-point authentication.

Leverage certificates, cookies, passwords, etc., to achieve best
possible security for any given setting.

3 Compatibility.

Works in existing networks.
Works with legacy apps.

Introduction
tcpcrypt

Performance
Conclusion

3/25

Performance today can be pretty bad

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

TCP
server

SSL
server

C
on

ne
ct

io
ns

/s

60,156

737

Biggest problem: cost of public key cryptography.

Worst case: SSL can be 82x slower than TCP. . .

Worst case: tcpcrypt only 3x slower than TCP!

Introduction
tcpcrypt

Performance
Conclusion

3/25

Performance today can be pretty bad

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

TCP
server

tcpcrypt
server

SSL
server

C
on

ne
ct

io
ns

/s

60,156

19,153

737

Biggest problem: cost of public key cryptography.

Worst case: SSL can be 82x slower than TCP. . .

Worst case: tcpcrypt only 3x slower than TCP!

Introduction
tcpcrypt

Performance
Conclusion

4/25

Problem today:
app-level auth divorced from transport

1 SSL encrypts + server auth.

SSL.
Authenticate server

using certificates

2 App auths client.

SSL.
Authenticate server

using certificates

Username: Andrea
Password: w00t

If step 1 fails, step 2 doesn’t help—in fact, it harms.

Introduction
tcpcrypt

Performance
Conclusion

4/25

Problem today:
app-level auth divorced from transport

1 SSL encrypts + server auth.

SSL.
Authenticate server

using certificates

2 App auths client.

SSL.
Authenticate server

using certificates

Username: Andrea
Password: w00t

If step 1 fails, step 2 doesn’t help—in fact, it harms.

Introduction
tcpcrypt

Performance
Conclusion

5/25

What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt

Introduction
tcpcrypt

Performance
Conclusion

5/25

What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt

Introduction
tcpcrypt

Performance
Conclusion

5/25

What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt

Introduction
tcpcrypt

Performance
Conclusion

5/25

What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt

Introduction
tcpcrypt

Performance
Conclusion

5/25

What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt

Introduction
tcpcrypt

Performance
Conclusion

5/25

What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt

Introduction
tcpcrypt

Performance
Conclusion

6/25

Backwards compatibility issues

Two prevalent ways of encrypting network traffic:

1 At application layer (e.g., SSL).
√

Works over almost all networks.
× Need to modify applications.
× Application protocol may not allow incremental deployment.

2 At network layer (e.g., IPSec).
√

Works with all applications.
× Breaks NAT.
× Can’t leverage user authentication.

Ubiquitous encryption requires best of both worlds.

Introduction
tcpcrypt

Performance
Conclusion

7/25

tcpcrypt: transport-layer encryption

tcpcrypt: a TCP option for encryption.

1 High server performance: push complexity to clients.

2 Allow applications to authenticate end points.

3 Backwards compatibility: all TCP apps, all networks, all
authentication settings.

Introduction
tcpcrypt

Performance
Conclusion

8/25

tcpcrypt overview

Extend TCP in a compatible way using TCP options.

Applications use standard BSD socket API.

New getsockopt for authentication.

Encryption automatically enabled if both end points support
tcpcrypt.

Introduction
tcpcrypt

Performance
Conclusion

9/25

Push expensive operations to clients

Public key operations expensive, but not all equally expensive.

RSA-exp3-2048 performance:

Operation Latency (ms)

Decrypt 10.42
Encrypt 0.26

Have client do decrypt

client server

Generate ephemeral key pair
public key

Generate random master key
encpubk(m

aster key)

Without server authentication, have client decrypt.
Lets servers accept connections at 36x rate of SSL.

Introduction
tcpcrypt

Performance
Conclusion

10/25

Link app auth to transport auth

Session ID: hook linking tcpcrypt to app-level authentication.

New getsockopt returns non-secret Session ID value.

Unique for every connection (if one endpoint honest).

If same on both ends, no man-in-the-middle.

tcpcrypt

Password based
 Authentication of

user & sess ID

Session IDSession ID

Authenticating the Session ID authenticates the end point.

Introduction
tcpcrypt

Performance
Conclusion

11/25

Auth example: batch signing

Tcpcrypt: server signs multiple session IDs at once to amortize
RSA cost.

SID A

“A”
Signed by amazon.com

RSA op.

SSL servers must RSA decrypt each client’s secret.

enc(secret A)

enc(secret B)

enc(secret C)

enc(secret D)

RSA op.

RSA op.RSA op.

RSA op.

Introduction
tcpcrypt

Performance
Conclusion

11/25

Auth example: batch signing

Tcpcrypt: server signs multiple session IDs at once to amortize
RSA cost.

SID B

SID A

“A”
Signed by amazon.com

RSA op.

“B”
Signed by amazon.comRSA op.

SSL servers must RSA decrypt each client’s secret.

enc(secret A)

enc(secret B)

enc(secret C)

enc(secret D)

RSA op.

RSA op.RSA op.

RSA op.

Introduction
tcpcrypt

Performance
Conclusion

11/25

Auth example: batch signing

Tcpcrypt: server signs multiple session IDs at once to amortize
RSA cost.

SID B

SID A SID C

SID D

“A, B, C, D”

Signed by amazon.com

RSA op.

SSL servers must RSA decrypt each client’s secret.

enc(secret A)

enc(secret B)

enc(secret C)

enc(secret D)

RSA op.

RSA op.RSA op.

RSA op.

Introduction
tcpcrypt

Performance
Conclusion

11/25

Auth example: batch signing

Tcpcrypt: server signs multiple session IDs at once to amortize
RSA cost.

SID B

SID A SID C

SID D

“A, B, C, D”

Signed by amazon.com

RSA op.

SSL servers must RSA decrypt each client’s secret.

enc(secret A)

enc(secret B)

enc(secret C)

enc(secret D)

RSA op.

RSA op.RSA op.

RSA op.

Introduction
tcpcrypt

Performance
Conclusion

12/25

Key exchange overview

Do you support tcpcrypt?

Yes, and I support RSA

RSA public key

encpubk(master key) Generate random master key

client server

Clients periodically generate ephemeral public keys.

Introduction
tcpcrypt

Performance
Conclusion

13/25

tcpcrypt key exchange

SYN

SYN ACK

ACK

tcpcrypt negotiation encoded in TCP options.

INIT1 and INIT2 too long: sent as data invisible to apps.

Introduction
tcpcrypt

Performance
Conclusion

13/25

tcpcrypt key exchange

SYN - CRYPT(HELLO)

SYN ACK

ACK

probe tcpcrypt

tcpcrypt negotiation encoded in TCP options.

INIT1 and INIT2 too long: sent as data invisible to apps.

Introduction
tcpcrypt

Performance
Conclusion

13/25

tcpcrypt key exchange

SYN - CRYPT(HELLO)

SYN ACK - CRYPT(PKCONF)

ACK - CRYPT(INIT1)

ACK - CRYPT(INIT2)

crypto on

probe tcpcrypt

public key ciphers and key sizes list

symmetric ciphers and MACs list, nonce, public key

encrypted client and server nonce (master key)

tcpcrypt negotiation encoded in TCP options.

INIT1 and INIT2 too long: sent as data invisible to apps.

Introduction
tcpcrypt

Performance
Conclusion

14/25

Key scheduling

Master key is hash of:

Server and client nonces.

Public key used and negotiated parameters.

Master key

RX MAC key

TX MAC key

RX enc. key

TX enc. key

Session ID

hash
(HM

AC)

Session caching, like in SSL: on reconnect, establish new keys
without explicit key exchange.

Introduction
tcpcrypt

Performance
Conclusion

14/25

Key scheduling

Master key is hash of:

Server and client nonces.

Public key used and negotiated parameters.

Master key

RX MAC key

TX MAC key

RX enc. key

TX enc. key

Session ID

hash
(HM

AC)

Next master key

MAC enc SID

Session caching, like in SSL: on reconnect, establish new keys
without explicit key exchange.

Introduction
tcpcrypt

Performance
Conclusion

15/25

Session caching

SYN - NEXTK1

SYN ACK - NEXTK2

crypto on

ack

New session based on session with ID X

OK!

Low latency: completes within TCP handshake.

Introduction
tcpcrypt

Performance
Conclusion

16/25

TCP MAC and encryption

src port dst port

seq no. (64-bit seq)

ack no. (64-bit ack)

d.off. flags window checksum urg. ptr.

options (e.g., SACK) MAC option

data TCP length

MACed

Encrypted

Allow NATs: do not MAC ports.

Prevent replay: MAC extended (implicit) seq. no.

Prevent truncation / extension: MAC length.

Introduction
tcpcrypt

Performance
Conclusion

17/25

Implementation

1 Linux kernel implementation: 4,500 LoC.

2 Portable userspace divert socket implementation: 7,000 LoC.

Tested on Windows (required implementing divert sockets),
Mac OS, Linux and FreeBSD.

Packet flow in divert socket implementation.

Network Kernel

tcpcryptd

application

1

2

3 4

3 Binary compatible OpenSSL library that attempts tcpcrypt
with batch-signing or falls back to SSL.

Introduction
tcpcrypt

Performance
Conclusion

18/25

Performance overview

Performance considerations when turning encryption on:

1 Does encryption sacrifice request handling throughput? E.g.,
how many web requests / second can a server handle?

2 Is request latency harmed? E.g., How long does a client need
to wait before a web page is displayed?

3 Is data throughput high? What’s the bitrate when
downloading?

Hardware: 8-core, 2.66GHz Xeon (2008-era).
Software: Linux kernel implementation.

Introduction
tcpcrypt

Performance
Conclusion

19/25

High connection rate on servers

 0

 20000

 40000

 60000

 80000

 100000

 120000

TCP tcpcrypt
server

SSL
server

C
on

ne
ct

io
ns

/s

98,434

27,070

754

No sessions cached

Introduction
tcpcrypt

Performance
Conclusion

19/25

High connection rate on servers

 0

 20000

 40000

 60000

 80000

 100000

 120000

TCP tcpcrypt
server

SSL
server

C
on

ne
ct

io
ns

/s

98,434

27,070

754

70,044

39,785

No sessions cached
All sessions cached

Introduction
tcpcrypt

Performance
Conclusion

20/25

Low authentication cost

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

no
auth

shared secret certificates weak password SSL

C
on

ne
ct

io
ns

/s

27,070 26,395

18,790

1,418 754

25x faster than SSL when batch signing

Introduction
tcpcrypt

Performance
Conclusion

21/25

Web-serve up to 25x faster than SSL

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

TCP tcpcrypt
server

SSL

C
on

ne
ct

io
n

ra
te

 (
co

nn
/s

) 60,156

19,153

737

42,440

19,787

No sessions cached
All sessions cached

Apache serving a 44 byte static file.

No server authentication with tcpcrypt: fair comparison would
make tcpcrypt slower.

Introduction
tcpcrypt

Performance
Conclusion

22/25

Lower connect latency than SSL

Protocol LAN connect time (ms)

TCP 0.2

tcpcrypt cached 0.3
tcpcrypt not cached 11.3

SSL cached 0.7
SSL not cached 11.6

tcpcrypt batch sign 11.2
tcpcrypt CMAC 11.4
tcpcrypt PAKE 15.2

Batch signing does not add latency

SYN - HELLO

SYN ACK - PKCONF

ACK - INIT1

ACK - INIT2
RSA sign start

RSA decrypt start
Signature

connection ready

Introduction
tcpcrypt

Performance
Conclusion

22/25

Lower connect latency than SSL

Protocol LAN connect time (ms)

TCP 0.2

tcpcrypt cached 0.3
tcpcrypt not cached 11.3

SSL cached 0.7
SSL not cached 11.6

tcpcrypt batch sign 11.2
tcpcrypt CMAC 11.4
tcpcrypt PAKE 15.2

Batch signing does not add latency

SYN - HELLO

SYN ACK - PKCONF

ACK - INIT1

ACK - INIT2
RSA sign start

RSA decrypt start
Signature

connection ready

Introduction
tcpcrypt

Performance
Conclusion

22/25

Lower connect latency than SSL

Protocol LAN connect time (ms)

TCP 0.2

tcpcrypt cached 0.3
tcpcrypt not cached 11.3

SSL cached 0.7
SSL not cached 11.6

tcpcrypt batch sign 11.2
tcpcrypt CMAC 11.4
tcpcrypt PAKE 15.2

Batch signing does not add latency

SYN - HELLO

SYN ACK - PKCONF

ACK - INIT1

ACK - INIT2
RSA sign start

RSA decrypt start
Signature

connection ready

Introduction
tcpcrypt

Performance
Conclusion

23/25

Gigabit encryption possible

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

TCP tcpcrypt
AES

SHA1

SSL
AES

SHA1

T
ra

ns
fe

r
ra

te
 (

M
bi

t/s
)

12,954

3,968 3,692

New CPUs (Westmere) with special AES instructions can saturate
9 Gbit/s networks while encrypting.

Introduction
tcpcrypt

Performance
Conclusion

23/25

Gigabit encryption possible

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

TCP tcpcrypt
AESNI
UMAC

tcpcrypt
AES

SHA1

SSL
AES

SHA1

T
ra

ns
fe

r
ra

te
 (

M
bi

t/s
)

12,954

3,968 3,692

8,835

AES-NI 3.33GHz i5

New CPUs (Westmere) with special AES instructions can saturate
9 Gbit/s networks while encrypting.

Introduction
tcpcrypt

Performance
Conclusion

24/25

Related work

1 Network layer solutions: IPSec, Better Than Nothing Security.

Hard to integrate with application-level authentication.
Network compatibility issues: NATs.

2 Application layer solutions: SSL, Opportunistic encryption
[Langley].

Poor server-side performance.
Requires changes to apps and possibly protocol.

3 SSL performance improvements:

SSL batching [Shacham & Boneh]: requires different public
keys.
SSL rebalancing [Castelluccia, Mykletun & Tsudik]: does not
leverage app-level authentication.

Introduction
tcpcrypt

Performance
Conclusion

25/25

Conclusion

1 High server performance makes encryption a realistic default.

2 Let applications leverage tcpcrypt to maximize
communication security in every setting.

3 Incrementally deployable, compatible with legacy apps, TCP
and NATs.

Install tcpcrypt and help encrypt the Internet!

http://tcpcrypt.org

http://tcpcrypt.org

	Introduction
	tcpcrypt
	Performance
	Conclusion

