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Goals

What would it take to encrypt the vast majority of TCP traffic?

1 Performance.

Fast enough to enable by default on almost all servers.

2 End-point authentication.

Leverage certificates, cookies, passwords, etc., to achieve best
possible security for any given setting.

3 Compatibility.

Works in existing networks.
Works with legacy apps.



Introduction
tcpcrypt

Performance
Conclusion

3/25

Performance today can be pretty bad
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Biggest problem: cost of public key cryptography.

Worst case: SSL can be 82x slower than TCP. . .

Worst case: tcpcrypt only 3x slower than TCP!
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Problem today:
app-level auth divorced from transport

1 SSL encrypts + server auth.

  

SSL.
Authenticate server

using certificates

2 App auths client.

  

SSL.
Authenticate server

using certificates

Username: Andrea
Password: w00t

If step 1 fails, step 2 doesn’t help—in fact, it harms.
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What’s the best we can do?

Level of security against a network attacker depends on scenario.

Preconfiguration Use case Today’s security Possible security

None None
No passive
eavesdropping

Server certificate Server auth Server auth

Shared secret
(cookie) no SSL

None
Mutual auth

Shared secret
and SSL

Mutual auth if
cert and pass OK

Mutual auth if
password OK

goal with tcpcrypt
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Backwards compatibility issues

Two prevalent ways of encrypting network traffic:

1 At application layer (e.g., SSL).
√

Works over almost all networks.
× Need to modify applications.
× Application protocol may not allow incremental deployment.

2 At network layer (e.g., IPSec).
√

Works with all applications.
× Breaks NAT.
× Can’t leverage user authentication.

Ubiquitous encryption requires best of both worlds.
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tcpcrypt: transport-layer encryption

tcpcrypt: a TCP option for encryption.

1 High server performance: push complexity to clients.

2 Allow applications to authenticate end points.

3 Backwards compatibility: all TCP apps, all networks, all
authentication settings.
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tcpcrypt overview

Extend TCP in a compatible way using TCP options.

Applications use standard BSD socket API.

New getsockopt for authentication.

Encryption automatically enabled if both end points support
tcpcrypt.
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Push expensive operations to clients

Public key operations expensive, but not all equally expensive.

RSA-exp3-2048 performance:

Operation Latency (ms)

Decrypt 10.42
Encrypt 0.26

Have client do decrypt

client server

Generate ephemeral key pair
public key

Generate random master key
encpubk(m

aster key)

Without server authentication, have client decrypt.
Lets servers accept connections at 36x rate of SSL.
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Link app auth to transport auth

Session ID: hook linking tcpcrypt to app-level authentication.

New getsockopt returns non-secret Session ID value.

Unique for every connection (if one endpoint honest).

If same on both ends, no man-in-the-middle.

  

tcpcrypt

Password based
 Authentication of

user & sess ID

Session IDSession ID

Authenticating the Session ID authenticates the end point.
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Auth example: batch signing

Tcpcrypt: server signs multiple session IDs at once to amortize
RSA cost.

  

SID A

“A”
Signed by amazon.com

RSA op.

SSL servers must RSA decrypt each client’s secret.

  

enc(secret A)

enc(secret B)

enc(secret C)

enc(secret D)

RSA op.

RSA op.RSA op.

RSA op.
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Key exchange overview

Do you support tcpcrypt?

Yes, and I support RSA

RSA public key

encpubk(master key) Generate random master key

client server

Clients periodically generate ephemeral public keys.
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tcpcrypt key exchange

SYN

SYN ACK

ACK

tcpcrypt negotiation encoded in TCP options.

INIT1 and INIT2 too long: sent as data invisible to apps.
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tcpcrypt key exchange

SYN - CRYPT(HELLO)

SYN ACK

ACK

probe tcpcrypt

tcpcrypt negotiation encoded in TCP options.

INIT1 and INIT2 too long: sent as data invisible to apps.
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tcpcrypt key exchange

SYN - CRYPT(HELLO)

SYN ACK - CRYPT(PKCONF)

ACK - CRYPT(INIT1)

ACK - CRYPT(INIT2)

crypto on

probe tcpcrypt

public key ciphers and key sizes list

symmetric ciphers and MACs list, nonce, public key

encrypted client and server nonce (master key)

tcpcrypt negotiation encoded in TCP options.

INIT1 and INIT2 too long: sent as data invisible to apps.
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Key scheduling

Master key is hash of:

Server and client nonces.

Public key used and negotiated parameters.

Master key

RX MAC key

TX MAC key

RX enc. key

TX enc. key

Session ID

hash
(HM

AC)

Session caching, like in SSL: on reconnect, establish new keys
without explicit key exchange.
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Session caching

SYN - NEXTK1

SYN ACK - NEXTK2

crypto on

ack

New session based on session with ID X

OK!

Low latency: completes within TCP handshake.
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TCP MAC and encryption

src port dst port

seq no. (64-bit seq)

ack no. (64-bit ack)

d.off. flags window checksum urg. ptr.

options (e.g., SACK) MAC option

data TCP length

MACed

Encrypted

Allow NATs: do not MAC ports.

Prevent replay: MAC extended (implicit) seq. no.

Prevent truncation / extension: MAC length.
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Implementation

1 Linux kernel implementation: 4,500 LoC.

2 Portable userspace divert socket implementation: 7,000 LoC.

Tested on Windows (required implementing divert sockets),
Mac OS, Linux and FreeBSD.

Packet flow in divert socket implementation.

Network Kernel

tcpcryptd

application

1

2

3 4

3 Binary compatible OpenSSL library that attempts tcpcrypt
with batch-signing or falls back to SSL.
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Performance overview

Performance considerations when turning encryption on:

1 Does encryption sacrifice request handling throughput? E.g.,
how many web requests / second can a server handle?

2 Is request latency harmed? E.g., How long does a client need
to wait before a web page is displayed?

3 Is data throughput high? What’s the bitrate when
downloading?

Hardware: 8-core, 2.66GHz Xeon (2008-era).
Software: Linux kernel implementation.
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High connection rate on servers
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Low authentication cost
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Web-serve up to 25x faster than SSL
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42,440

19,787

No sessions cached
All sessions cached

Apache serving a 44 byte static file.

No server authentication with tcpcrypt: fair comparison would
make tcpcrypt slower.
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Lower connect latency than SSL

Protocol LAN connect time (ms)

TCP 0.2

tcpcrypt cached 0.3
tcpcrypt not cached 11.3

SSL cached 0.7
SSL not cached 11.6

tcpcrypt batch sign 11.2
tcpcrypt CMAC 11.4
tcpcrypt PAKE 15.2

Batch signing does not add latency

SYN - HELLO

SYN ACK - PKCONF

ACK - INIT1

ACK - INIT2
RSA sign start

RSA decrypt start
Signature

connection ready
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Gigabit encryption possible
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New CPUs (Westmere) with special AES instructions can saturate
9 Gbit/s networks while encrypting.
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Related work

1 Network layer solutions: IPSec, Better Than Nothing Security.

Hard to integrate with application-level authentication.
Network compatibility issues: NATs.

2 Application layer solutions: SSL, Opportunistic encryption
[Langley].

Poor server-side performance.
Requires changes to apps and possibly protocol.

3 SSL performance improvements:

SSL batching [Shacham & Boneh]: requires different public
keys.
SSL rebalancing [Castelluccia, Mykletun & Tsudik]: does not
leverage app-level authentication.
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Conclusion

1 High server performance makes encryption a realistic default.

2 Let applications leverage tcpcrypt to maximize
communication security in every setting.

3 Incrementally deployable, compatible with legacy apps, TCP
and NATs.

Install tcpcrypt and help encrypt the Internet!

http://tcpcrypt.org

http://tcpcrypt.org
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