Int. J. Multimedia Intelligence and Security, Vol. 1, No. 4, 2010

A highly metamorphic virus generator

Priti Desai

Symantec Corporation,

350 Ellis Street,

Mountain View, California, USA
E-mail: pritidesail 982@gmail.com

Mark Stamp*

Department of Computer Science,
San Jose State University,

One Washington Square,

San Jose, California, USA
E-mail: stamp@cs.sjsu.edu
*Corresponding author

Abstract: Metamorphic viruses modify their code to produce viral copies that
are syntactically different from their parents. The viral copies have the same
functionality as the parent but typically have no common signature. This makes
signature-based virus scanners ineffective for detecting metamorphic viruses.
But machine learning tool such as Hidden Markov Models (HMMs) have
proven effective at detecting metamorphic viruses.

Previous research has shown that most metamorphic generators do not
produce a significant degree of metamorphism. In this project, we develop a
metamorphic engine that yields highly diverse morphed copies of a base virus.
We show that our metamorphic engine easily defeats commercial virus
scanners. We then show that, perhaps surprisingly, HMM-based detection is
effective against our highly metamorphic viruses. We conclude with a
discussion of possible improvements to our generator that might enable it to
defeat statistical-based detection methods, such as those that rely on HMMs.

Keywords: metamorphic virus; Hidden Markov Model; HMM; anti-virus.

Reference to this paper should be made as follows: Desai, P. and Stamp, M.
(2010) ‘A highly metamorphic virus generator’, Int. J. Multimedia Intelligence
and Security, Vol. 1, No. 4, pp.402-427.

Biographical notes: Priti Desai is currently a Software Engineer at Symantec
and her main interests are in the area of information security. Prior to this, she
obtained her MS in Computer Science from San Jose State University where
she developed the metamorphic generator discussed in this paper.

Mark Stamp has 20 years of experience in information security. He can neither
confirm nor deny that he spent seven years as a cryptanalyst with the National
Security Agency, but he can confirm that he worked for two years designing
and developing a digital rights management product at a small Silicon Valley
start-up company. He is currently an Associate Professor in the Department of
Computer Science at San Jose State University where he teaches courses on
information security. He has written numerous research papers and two
textbooks, Information Security: Principles and Practice, 2nd ed., published by
Wiley Interscience in 2011 and Applied Cryptanalysis: Breaking Ciphers in the
Real World published by Wiley-IEEE Press in 2007.

Copyright © 2010 Inderscience Enterprises Ltd.

A highly metamorphic virus generator 403
1 Introduction

There are many antivirus defence mechanisms available today, but chief among these is
signature detection. Metamorphic viruses, that is, viruses that change their ‘appearance’
while maintaining their functionality, represent a powerful technique for evading
signature detection. A metamorphic ‘engine’ uses a variety of code morphing techniques
to change the structure of the viral code without altering its function.

In Stamp and Wong (2006) and Attaluri et al. (2008), Hidden Markov Models
(HMMs) are used to detect metamorphic viruses — including metamorphic viruses that
evaded detection by commercial signature-based scanners. An HMM is a machine
learning technique and HMMSs have a lengthy history of success in applications such as
speech recognition and protein modelling.

In this paper, our primary goal is to develop a metamorphic generator that produces
the most highly metamorphic viruses yet seen. We then investigate whether the resulting
metamorphic viruses can evade both signature detection and HMM-based detection. Our
results for the HMM-based detection scheme are, perhaps, somewhat surprising.

This paper is organised as follows: Section 2 provides background information on
computer viruses. Section 3 discusses common anti-virus technologies, while Section 4
contains information about the evolution of computer viruses. In Section 5, various code
morphing techniques are briefly discussed. Section 6 covers a ‘similarity test’ that we use
to measure the effectiveness of our code morphing, and Section 7 gives an abbreviated
introduction to HMMs. Sections 8 and 9 detail the design, implementation, and
experimental results for our metamorphic engine. Section 10 draws conclusions and
discusses future work.

2 Computer virus

Aycock (2006) states a computer virus consists of three parts, as illustrated in Figure 1.

Figure 1 Pseudo code of a computer virus

def virus():
infect ()
if trigger () is true then

payload ()

Figure 2 Pseudo code of infect module

def infect():
repeat k times:
target = select _target()
if no target then
return
infect_code (target)

The infect module, which is further illustrated in Figure 2, defines how a virus spreads,
where the most common infection mechanism is to modify the host to contain copy of
virus code. The trigger module is a test that is used to decide whether to deliver the

404 P. Desai and M. Stamp

payload or not, and the payload specifies the damage to be done by the virus. Note that
the trigger and payload are optional.

3 Antivirus techniques

This section briefly discusses the two most popular virus detection techniques — signature
detection and heuristic analysis. These techniques, which include code emulation, form
the basis for virtually all current antivirus software.

3.1 Signature detection

A signature is a string of bits found in a virus (Stamp, 2005). An effective signature is a
string of bits which is commonly found in a specific virus, but is not likely to be found in
normal programmes. In general, it is possible to extract a reasonable signature from a
given virus.

All known signatures are organised in a database. A signature-based virus detection
tool searches the files on a system for a known signature. For example, a signature for the
W32/Beast virus is as follows:

83EB 0274 EBOE 740A 81EB 0301 0000

A virus scanner searches files on the system for this signature. If this signature is present
in any executable file, it is likely to be the beast virus.

3.2 Heuristic analysis

Heuristic analysis is useful in detecting new, unknown, or ‘disguised’ viruses. Heuristic
analysis can be static or dynamic. Static heuristics analyse the file format and the code
structure looking for characteristics of a virus body. Dynamic heuristics use code
emulators designed to detect viral code while it is running inside the emulator.

The following are some of the suspicious characteristics that indicate a possible 32-bit
windows virus (Szor, 2005):

e code execution starts in the last section
e virtual size is incorrect in PE header

e ‘gaps’ between sections

e suspicious code section name

e suspicious imports from Kernel32.dll, such as importing by ordinal as opposed to
importing by name.

One shortcoming of heuristic analysis is that it can create many false positives.

4 Code evolution techniques

Virus writers know that signature-based detection (supplemented by heuristic analysis)
forms the cornerstone of modern virus detection. Consequently, virus writers have

A highly metamorphic virus generator 405

developed many techniques designed to evade signature-based detection. The primary
evasion strategies are discussed in this section (Daoud and Jebril, 2008).

4.1 Encryption

Encryption is the simplest way to hide the virus body, and thereby hide the signature.
Encryption changes the appearance of a virus. An encrypted virus consists of a small
decryption module (a decryptor) and the encrypted virus body. Generally, extremely
simple (and cryptographically weak) encryption methods are used, such as the XOR of a
fixed key byte (or word) with each byte (or word) of the virus body. If a different key is
used for each infection, the encrypted virus bodies will look different, i.e., there will be
no common signature. However, if the decryptor remains constant, signature detection is
still possible — the virus scanner can simply look for a signature of the decryptor code.

4.2 Polymorphism

Polymorphic viruses begin with the concept of an encrypted virus, and push it one step
further. In a polymorphic virus, the virus body is encrypted, and, in addition, the
decryptor is morphed. By using different keys, there is no common signature in the body
of the encrypted viruses, and by morphing the decryptor, there is no common signature in
the decryptor itself. To detect polymorphic viruses, antivirus software often makes use
of a code emulator, which emulates the decryption process. If the file is actually a
polymorphic virus, it will eventually decrypt, at which point standard signature-based
detection can be applied.

4.3 Metamorphism

Metamorphic viruses (or ‘body polymorphic’ viruses) take the idea of polymorphism to
its limit. Whereas polymorphic viruses encrypt the virus and morph the decryptor,
metamorphic viruses morph the entire virus code. The assumption is that the code is
sufficiently morphed to disguise any possible signature and, consequently, there is no
need to encrypt the viral code.

Metamorphic viruses use a variety of code morphing techniques including instruction
reordering, data reordering, subroutine inlining, subroutine outlining, register renaming,
code permutation, instruction substitution, and garbage code insertion. Figure 3 illustrates
the concept behind a metamorphic generator.

Figure 3 Metamorphic virus generations (see online version for colours)

Viruz

. - 71
e j 1 | Anti-Virus

Signature

406 P. Desai and M. Stamp

Often a metamorphic virus ‘carries its own metamorphic engine’, that is, the
metamorphic engine is embedded within the virus. During infection such a metamorphic
virus uses this engine to create a morphed copy of itself, which must again include the
metamorphic generator. However, other metamorphic generators are stand-alone software
that, in some cases, can be used to morph any given code — viral or not.

General approaches to producing metamorphic viruses are discussed in
VXHEAVENS (1999) and Borello and Me (2008).

We have implemented our metamorphic engine as a stand-alone tool. This tool can be
used to morph any x86 assembly programme.

5 Code morphing techniques

Metamorphic engines use code morphing techniques to generate morphed copies of the
original programme. Often, the morphed code is more difficult to read and understand
than the original, so it is, in effect, obfuscated, but that is not the primary goal
(Chouchane et al., 2007).

Code morphing can be used to generate a large number of distinct copies of a single
parent file. This section describes some morphing techniques that can be applied to
assembly code.

Code morphing techniques for assembly programmes can apply to the control flow,
code, or data (Borello and Me, 2008). Control flow obfuscation involves reordering of
instructions, typically through insertion of jumps, or calls. Code morphing can be done in
many ways such as equivalent code substitution, subroutine permutation, dead code
insertion, register renaming, and transposition. Figure 4 summarises some well-known
metamorphic viruses and the code obfuscation techniques they employ.

Figure 4 Metamorphic viruses and code obfuscation techniques

Evor |ZMisT|ZPERM|REGsWAP|METAPHOR
(2000)](2001){ (2000) | (2000) (2001)
Instruction Substitution Vv
Instruction Permutation v v v
Dead code Insertion v v v
Variable Substitution Vv v Vv v
Changing the Control Flow v v v

5.1 Register renaming

Register renaming modifies register operands of an instruction without changing the
instruction itself. RegSwap was one of the early metamorphic viruses to make heavy use
of register renaming. Figure 5 shows two pieces of code from two different generations
of RegSwap.

Note that the two generations of RegSwap have the same sequence of instructions
with the only change being the registers used.

A highly metamorphic virus generator 407

Figure 5 Two different generations of RegSwap

.

54 pop edx

EFO04000000 o edi,0004h

8BFS biuirg esi, ebp

BE0COD0OOD mWov eqx, 000Ch

81CZ88000000 add edx, 00558h

8B1L wWowv ehx, [edx]

899C58618110000 ikt [esi+eax*4+000011158] ,ebx
b.)

558 pop =ax

BEED4000000 juilmhts ehx, 00040

8BDS biuirg edx, ebp

EFOCO00000 mov edi,000Ch

§1C0O88000000 add eax, 0055h

8830 mov esi, [eax]

89E4E418110000 o [edx+edi*44+000011158] ,esi

5.2 Dead code insertion

If done with some care, inserting dead code or do-nothing instruction will not affect the
execution of the original code. Dead code can consist of a single instruction or a block of
instructions. Inserting dead code is perhaps the easiest way to obfuscate the signature of a
programme.

Do-nothing instructions such as ‘move eax, eax’, ‘shl eax, 0°, ‘add ax, 0’, or ‘inc eax’
followed by ‘dec eax’ make the morphed programme look different. The Evol virus
implemented dead code insertion by adding a block of dead code between core
instructions as shown in Figure 6.

Figure 6 Dead code insertion in Evol virus

CY0B0FD00055 mov [esi], 5500000Fh
C746048BEC5151 mov [esi+0004], 5151ECS8Eh

BFOF00055 mov edi, 5500000Fh

893E mov [esi], edi

5F pop edi ; garbage
52 push edx ; garbage
B&640 mov dh, 40 ; garbage
BASBEC5151 mov edx, 5151ECEBh

53 push ebx ; garbage
8EDA mov ebx, edx

895E04 mov [esi+0004}, ebx

408 P. Desai and M. Stamp

The two blocks of instructions in Figure 6 look very different, but careful analysis will
show that they yield the same result.

5.3 Subroutine permutation

This is a simple obfuscation technique in which the subroutines of a programme are
reordered. A programme with n different subroutines can generate (n — 1)! different
subroutine permutations, so a large number of variants can easily be produced.
Subroutine permutation does not affect the functionality of a programme, since the order
of subroutine is not critical to its execution. Figure 7 illustrates the concept of subroutine
permutation.

Figure 7 Subroutine permutation

EP —» 1 - 2
2 4
3 g
4 1 le—— EP
5 5]
6 7
k) 5
8 3

5.4 Equivalent code substitution

Equivalent code substitution is the replacement of an instruction with an equivalent
instruction or an equivalent block of instructions. In assembly language, virtually any
task can be achieved in many different ways. For example, ‘inc eax’ is equivalent to ‘add
eax, 1’, ‘move eax, edx’ is equivalent to ‘push edx’ followed by ‘pop eax’, and so on.
This makes code substitution a useful morphing technique. Figure 8 shows some
examples of equivalent code substitution used by the Win32/MetaPhor virus
(VXHEAVENS, 2002).

A highly metamorphic virus generator 409

Figure 8 Examples of instruction substitution in W32/MetaPhor

|Single Instruction|Instruction block

X0R Reg,Reg MOV Reg,0
PUSH Imm

MOV Reg,Imm POP Reg
MOV Mem,Reg

OP Reg,Reg2 0P Mem,Reg2
MOV Reg,Mem

5.5 Transposition

Transposition or instruction permutation modifies the instruction execution order in a
programme. This can be done only if no dependency exists among instructions. Consider
two instructions, say, instruction 1 which is of the form ‘opl R1, R2’ and instruction 2
which is of the form ‘op2 R3, R4’. These two instructions can be swapped provided the
following conditions are satisfied:

1 Rl isnotequal to R3
2 Rl isnot equal to R4
3 R2isnotequal to R3.

For example, instructions ‘mov eax, edx’ and ‘add ecx, 5’ can be swapped since they
satisfy the transpose criteria.

5.6 Changing control flow

Code reordering consists of inserting a conditional or unconditional branch instruction
after a block of instructions. Blocks defined by such branching instructions can then be
permuted to change the control flow.

Figure 9 Example of control flow modification

Original Program First Modification Second Modification
instruction 1 .":; instruction 4 start :
instruction 2 instruction B instruction 1
instruction 3 jump R Jjump —
instruction 4 start : ,r"h instruction 3 |
instruction b instruction 1 ' instruction 4
instruction & instruction 2 jump —
Jump ™ \“'- instruction 2 4"}
garbage | Jump
instruction 3«5—"’(}f instruction B *E’j
M jump instruction &
instruction & -"-i—-‘}

410 P. Desai and M. Stamp

Figure 9 illustrates the ‘spaghetti code’ that can easily be generated by this approach.
Here, consecutive instructions are permutated and linked together by unconditional
jumps. Note that the reordering of instructions does not modify the order in which they
are executed, but it does break signatures that rely on the adjacency of certain sets of
instructions. Given sufficiently small blocks of instructions, this approach alone could
evade signature detection.

5.7 Subroutine inlining and outlining

Subroutine inlining is a technique in which a subroutine call is replaced with its code, as
illustrated in Figure 10.

Figure 10 Subroutine inlining

Call S1
Call S2
move eax, ebx
S1: move eax, add eax, 12h
ebx push eax
add eax, 12h mul ecx
push eax mov edx, eax
ret
S2: mul ecx
mov edx, eax
ret

Code outlining is the inverse of code inlining — code outlining converts a block of code
into a subroutine and replaces the block with a call to the subroutine. Figure 11 gives an
example of code outlining.

Figure 11 Subroutine outlining

move eax, ebx
move eax, ebx call S12
add eax, 12h mov edx, eax
push eax |:>
mul ecx S12: push eax
mov edx, eax

add eax,

12h
mul ecx
ret

6

A highly metamorphic virus generator 411

Similarity test

Metamorphic engines produce morphed copies of a given input programme. An effective
metamorphic engine will generate highly dissimilar copies. A ‘similarity test’ can be used
to quantify the effectiveness of a metamorphic engine, that is, we can quantify similarity
(and, therefore, difference) between two pieces of assembly code.

The similarity test we use here compares two assembly programmes and calculates

the percentage of similarity between them as follows (Mishra, 2003):

1

Given two assembly files a.asm and b.asm, extract the opcode sequences from each
file. Call these opcode sequences A and B, respectively.

Suppose that m and n are the number of opcodes in A and B, respectively.

The opcodes in A are numbered consecutively, 0 through m — 1, and similarly the
opcodes in B are numbered 0 through n — 1.

The opcode sequences A and B are divided into overlapping subsequences of length
three.

Each subsequence in A is compared with all subsequences in B. It is considered

a match if the opcodes of a subsequence in A are same as the opcodes of a
subsequence of B, where the opcode subsequences are considered the same provided
they contain the same opcodes. That is, the order of the opcodes within a
subsequence does not matter.

The total number of such matches is found. This total number of matches is divided
by m to obtain the similarity of A to B. Call this similarity X.

Similarly, the similarity of B to A is computed. Let Y denote this similarity.

The average of X and Y will be used as our similarity index for the files a.asm and
b.asm.

Figure 12 Similarity graph, (a) all matches (b) with threshold

250

200

150

100

50

I 1mml o1 ~
— 250 —]
— - - —~— ”
-
- - P
r as
N .;/-f wbghd) 200 -
- - /
. -~
11 ”
_ P 150 — rd
L Tele D P 7
- .. ”
— - .| 100 — P f’/
-J - . =
= = . Fd
— = 50 —|
- e l".-. [l mm 1 " 0w <
' s, PR ”
| T I | ° | T T T
0 50 100 150 200 o 50 100 150 200

(a) (b)

412 P. Desai and M. Stamp

A graph can be generated to help visualise the similarity of given assembly files — we
simply mark a point in two-dimensional m x n space whenever a similarity match occurs.
Figure 12(a) illustrated such a similarity graph. However, the resulting graph is somewhat
‘noisy’, so for subsequent graphs, we set a threshold of five consecutive similarity
matches before plotting a point. The plot in Figure 12(a) with a threshold of five is
illustrated in Figure 12(b).

Note that graphing the similarity of, say, a.asm with itself would result in a solid line
on the main diagonal, with other sporadic matches off of the main diagonal. Also, if
b.asm only differs from a.asm by shuffling blocks of code, we will tend to see many line
segments parallel to the main diagonal. Some other types of morphing and/or obfuscation
provide their own distinctive features in these graphs (Stamp and Wong, 2006).

7 Hidden Markov Model

HMMs are a machine learning technique. As the name implies, we assume that there is a
Markov process involved in generating a given set of observation, but the precise details
of the underlying Markov process are hidden. An HMM model can be generated, which
represents the training data, where the training data consists of a sequence of observations
from the hidden Markov process. One of the appealing features of HMMs is that it there
are efficient algorithms to solve all of the fundamental HMM-related problems.

HMMs are used, for example, in speech recognition and protein modelling, and
recently HMMs have been successfully used to detect metamorphic viruses (Stamp and
Wong, 2006). An HMM can effectively model some aspects of the statistical information
in a given family of metamorphic viruses. Given such a model, any file can be scored,
and the score quantifies the likelihood that the given file belongs to the metamorphic
virus family represented by the HMM model.

Next, we look at a simple example, which will help illustrate the basic idea behind an
HMM (2004). Suppose we want to determine the average annual temperature at some
location, at some various times in the past. Here, we assume the annual temperature can
be classified as either hot (H) or cold (C). Further, suppose we know the probability of a
hot year followed by another hot year is 0.7 and a cold year followed by another cold
year is 0.6. These probabilities are represented in matrix in Figure 13.

Figure 13 Temperature transition probability

H C
HT 07 03°
C | 04 06

Suppose that we also know the correlation between tree growth-ring sizes and
temperature. Tree ring sizes are classified as one of three types, namely, small (S),
medium (M), and large (L). In a hot year, the probability of a tree ring being small is 0.1,
medium is 0.4, and large is 0.5, while in a cold year, the probability of tree ring being
small is 0.7, medium is 0.2, and large is 0.1. The relationship between tree ring sizes and
annual temperatures is given in the matrix in Figure 14.

A highly metamorphic virus generator 413

Figure 14 Tree size probability

S M L
H |01 04 05
cC 107 02 01

In this example, the annual temperatures are the ‘states’ of the (hidden) Markov process,
while the tree ring sizes are the observations. The probability of the various tree ring sizes
at each temperature represents the probability of the observation symbols in each state.

To summarise, the states (H and C) are hidden, since we cannot directly observe the
temperature at some time in the past, and these hidden states are driven by a Markov
process, as given by the matrix in Figure 13. In addition, we can observation tree ring
sizes (S, M, and L) over a series of years. Apparently, there is a statistically relationship
between the observations (tree ring size) and the hidden states (annual temperature). In
this example, we would like to recover information about the hidden states from the
observations.

Now suppose that we obtain the following sequence of observation symbols:
(S, M, S, L). Note that this represents tree ring sizes for four consecutive years. We want
to determine the most likely sequence of states (average annual temperature) for each of
these four years, based on the given sequence of tree ring sizes.

Before we can solve this problem, we need some notation. The following notation is
fairly standard with HMMs:

T = length of the observed sequence
N = number of states in the mod el
M = number of distinct observation symbols
O = observation sequence {OO,O1 yere ,OT_I}
A = state transition probability matrix
B = observation probability distribution matrix
7 = initial state distribution matrix
In this example, the matrix 4 appears in Figure 14, and we have N = 2. The observation

probability distribution matrix B, is the matrix in Figure 13 and we see that M = 3. That
is, we have the following:

(0.7 03
A:

104 0.6
and

[0.1 04 05
B:

10.7 02 0.1

The 4 and B matrix probabilities are related as illustrated in the Figure 15.
The initial state distribution matrix, 7 represents the probability of being in a state
initially. Suppose that the initial state distribution matrix for this example is known to be

7=[0.6 0.4]

414 P. Desai and M. Stamp

The matrices A, B, and 7 define the HMM. Note that A, B, and 7 are row stochastic
matrices, that is, each row is a probability distribution.

Figure 15 HMM model

0.3

Small Medium Large

Now we are ready to consider our given observation sequence, (S, M, S, L), which is of
length 7= 4. To determine the most probable state transitions for this sequence, we could
use the following brute force approach:

1 Determine all of the N” possible state transitions.

2 Calculate the probability of the given observation sequence for each state transition
obtained in Step 1. For example, to compute the probability of the state sequence
HHCC, we have:

P(HHCC) =7y *by (S)* ay y *by (M) *ay ¢ *bc(S)* ac ¢ *be (L)
=(0.6)*(0.1)*(0.7)*(0.4)*(0.3) *(0.7) *(0.6) *(0.1)
=0.000212

3 The state sequence with highest probability is selected.

Figure 16 lists the probabilities of observing (S, M, S, L) for each of the 16 possible state
sequences. We conclude that for the given sequence of observations, the most probable
state sequence is CCCH. That is, given the observed tree ring sizes, the most likely
scenario for the four-year period under consideration is that that there were three cold
years followed by one hot year.

The real strength of the HMM approach is that we can derive an efficiently algorithm
for determining this probability, as opposed to using an exponential brute-force approach.

In addition, there are efficient algorithms to ‘train’ the HMM model given a sequence
of observations. That is, we can use an efficient iterative process to determine the model,
A, B, and =, given a sequence of observations. The only free parameter that we need to
specify in advance is N, the dimension of the 4 matrix. This is the sense that an HMM is
a machine learning technique — it ‘learns’ from the observation sequence, with virtually
no input required from the user.

A highly metamorphic virus generator 415

Figure 16 Probabilities of observing (S, M, S, L) for all possible state sequences

state sequence probability
HHHH 0.000412
HHHC 0.000035
HHCH 0.000706
HHCC 0.000212
HCHH 0.000050
HCHC 0.000004
HCCH 0.000302
HCCC 0.000091
CHHH 0.001098
CHHC 0.000094
CHCH 0.001882
CHCC 0.000564
CCHH 0.000470
CCHC 0.000040
CCCH 0.002822
CcCcccC 0.000847
¥ probability 0.009629
max probability 0.002822

There is a third problem that can be solved using HMMs. If we are given a model and a
sequence of observations, we can use the model to efficiently assign a probability to the
observation sequence. This probability represents the likelihood that the given sequence
was generated by the same (hidden) Markov process that the model represents. For
computational reasons, it is necessary to use log odds instead of computing actual
probabilities, so the closer the resulting ‘score’ is used to determine whether the
observations match the model or not. With proper testing, a sensible threshold score can
be determined.

7.1 HMM as virus detection tool

Using HMMs as a virus detection tool requires a sequence of observations that can be
used as training data to generate a model. For training data, we follow (Stamp and Wong,
2006) and extract the opcodes from a ‘family’ of metamorphic viruses, where the family
viruses all share the same functionality. We assume that we can obtain a number of such
family viruses and we then disassemble each and extract the opcodes. The resulting
sequences of opcodes are concatenated to yield our training data. The initial part of an
observation sequence appears in Figure 17 with (part of) the resulting model given in
Figure 18.

Once the model has been constructed, we can test it on family viruses that were not
used to construct the model, as well as on ‘normal’ files. Using the resulting scores, we
can set a threshold for scoring unknown files.

When given a file to test against the HMM model, we first disassemble the file and
extract its sequence of opcodes. This sequence is then scored against the model that we
previously constructed and the predetermined threshold is used to categorise the file as
either a ‘family virus’ or ‘other’. We will present several examples of scoring results in
Section 9, below.

For much more on HMMs, including pseudo-code for each of the three problems
discussed here (see HMM, 2004).

416

Figure 17 Training data, (a) unique symbols (b) observation sequence (see online version

P. Desai and M. Stamp

for colours)

Figure 18 HMM model (see online version for colours)

File Edit Tools Syntax Buffers Window Help

ARRE 9@ B ERe 338 Ta

[P 1B LIDAN L VB DAN
| Fle Edit Toc Fle Edit To
al EEH | o O e
o 3339
fcal1 >0
lpop 1
{'sub 2
i >3

L

1

5

L]

M

7

1

3

8

k'

3

18

11

12

13

14

10

2

(b)
- EDANENE e modell (Emylosments\GS 7 sourceMMIMotE! SV

? %

I:

(-3, H-54, T-3330

1.08@000000BAA00
n:

0.75886317967996
0.09567091277231
0.10271478146879

0.83798198915413
0.83038682159473
0.877500688 09967

0.21115483116590
0.07394226563295
0.819784536843154

B:

call 0.166829021641704
pop 0.11337062967665
sub 0.00422611246341
nov 0.030862452304487
push 0.34869944435288
or 0.00860000000000
jz 0.00860000000000
lea 0.014633413730856
neg 0.00221808387166
not 0.00170165838178
dec 0.001661776857784

.03254806951896
.hoaoeeaaopeaen
.B7267169820262
.08965929951814
.hoaoeeoaopeaen
.01138701204944
.13995532443008
.00152189875803
.01269378392105
01138959 844484
. B46B65 00279155

LB1716854612392
.B4133515477480
.B6590174434185
4305741436 0768
.B3446530803580
0119839194381
.Boogopa0eenaan
.B1857485328313
.B8103496710605
. BB8 A582651881
. B1845328354292

A highly metamorphic virus generator 417
8 Implementation

8.1 Introduction

Our metamorphic generator is inspired, to an extent, by the Evol virus. Evol uses code
morphing techniques such as dead code insertion, register/operands usage exchange, and
equivalent instruction substitution. However, our approach includes more metamorphic
techniques than Evol. The remainder of this section gives a fairly detailed explanation of
our metamorphic engine.

Our implementation aimed to achieve the following goals:

e Generate morphed copies of a single input virus. These morphed copies should have
minimum similarity with the base virus and among themselves, as measured by the
similarity index discussed in Section 6.

e The morphed copies should have the same functionality as the base virus.

e A morphed copy should be as close (in terms of similarity) to ‘normal’ code as
possible. For our examples of normal programmes, we rely on a set of cygwin utility
files, which are each about the same size as the base virus. The reason we chose
these ‘normal’ files is because they are probably doing somewhat similar low-level
operations that we might expect from a virus.

e The metamorphic engine should work with any functioning assembly programme as

input.

8.2 Code obfuscation techniques

8.2.1 Dead code insertion

Our dead code insertion consists of adding NOPs or other do-noting instructions. We also
use dead code insertion to introduce opcodes that are not present or uncommon in the
base virus.

Figure 19 Base virus opcodes and their frequency (see online version for colours)

Opcode Count
60
50

40

30

20

opcode count

10 -+

‘ _..F Hcount
1T
—‘n‘/ W I IS

]

mov
push
add
call
cmp
inz
pop
sub
lea
test
inc
imp
dec
lodsd
retn
xXor
rep
start
ile
loop
popa
stosd
lodsb
pusha
imul

movzx

opcode

418 P. Desai and M. Stamp

We first generate opcode statistics of the given base virus. The graph in Figure 19 lists
the opcodes used in a particular base virus along with their relative frequencies.

The base virus in Figure 19 has 27 unique opcodes and six of them appear more than
ten times. The most common opcodes are mov, push, add, call, cmp, and jz.

We then computed opcode frequencies for normal programmes. The graph in Figure
20 shows typical statistics.

Figure 20 Opcodes of normal file and their frequency (see online version for colours)

Opcode Count
350
300
250
200

150

opcade count

100 Wcount
50

o H”ﬂﬂﬂnnnnn....n

a4 P Pogodop & &
& _§\Q b@QQ"" S QoQ b & F§ 4}4’\ & 0“1}%4’ & X5

opcode

When the statistics of the normal file is compared with the base virus, we obtain the
following list of opcodes that are unique to a normal file: and, int, fnstcw, or, fldcw,
leave, jns, setnz, setz, jb, cld, jnb, shl, inc, fld, fstp, and repe.

These unique opcodes are included in our dead code insertion so as to make the
morphed code look, in a statistical sense, somewhat more normal than the original virus.
Figure 21 shows some examples of dead code instructions generated by our metamorphic
generator for this example.

Figure 21 Arithmetic dead code instructions

1 addR,0

2 subR,0

3 adcbx, 0

4 sbbbx, 0

5 inc R followed by dec R

The dead code instructions in Figure 21 are injected at randomly selected locations in the
base virus.

We also introduced a simple unconditional jump NOP instruction. The jump NOP
works by placing an unconditional jump to the next immediate instruction. An example
of this variation is shown below.

A highly metamorphic virus generator

Mov edx, [esi+ entryPoint]
jmp pl010235
pl010235:

mov edx, [esi+ entryPoint]

8.2.1.1 Dead code sequences

419

In addition to inserting single instruction dead code, we also inserted dead code
sequences. As above, the insertion location and the dead code sequences are selected

randomly.

8.2.1.2 Transformations used in Evol

Along with dead code insertion, we introduced several Evol-inspired transformations
(OpenRCE, 2002). The Evol virus substitutes a single instruction by surrounding it with
dead code. Some of the specific Evol transformations we used are listed in Figure 22.

Figure 22 Evol transformations

Reg - Reglister (i.e. ERX, EBX)
Mem - Memory address (i.e. [ERX])
r/m — Register or Memory
imm - Immediate Value (i.e. OP Reg, RCABh)
P = {ADC, ADD, AND, CMP, OR, SBB, SUB, XOR}
Pl = {DIV, IDIV, IMUL, MUL, NEG, NOT, TEST}
OP2 = {RCL, RCR, ROL, ROR, SAL, SAR, SHL, SHR}
Original Transformed
- M o
) Vgg i : ‘;m PUSH RandomReq
_ TEST " ; e MOV RandomReq, OriginalReg
S 3n - ADD RadnomReg, RandomImm3
- LEA 132, mem PR - i
S 05 /m re 0P r/m - RandomReg, OriginalReq
- s POP RandomRe
- 0P reg, r/m 9
, RandomReq
- MOV 1/m, re .
_ TEST rjﬂ’ wgg RandomReg, OriginalReg
_ ;D“ rj%’ :;g OriginalR/M, RandomReg
o My 1eg RandomReq
PUSH RandomReg
- MOV reg, r/m MOV RandomReg, OriginalReg
- LEA reg, mem 0P RandomReg, OriginalR/M
- 0P reg, r/m MOV OriginalReg, RandomReg
POP RandomReg
B RandomReg
_ Ra“dcmR=g° Tmms
B OriginalR/M8, RandomReg8
RandomBeg

420 P. Desai and M. Stamp

One disadvantage to these transformations is that we substitute a block of instructions for
a single instruction. The ‘push’ and ‘pop’ bounding of each block is also distinctive.
Excessive use of these transformations would increase the number of push and pop
opcodes and could conceivably lead to an effective heuristic for detecting the code
produced by our metamorphic engine (ISCAS, 2007). However, we used these
transformations relatively sparingly.

8.2.2 Equivalent code substitution

Opcodes such as mov, push, add, call, cmp, and jz appear frequently in the base virus. To
adjust the frequencies of these common opcodes, we used equivalent instruction
substitution. In an equivalent instruction substitution, an instruction is replaced with
another instruction or a block of instructions with the same functionality. For example
substitutions for add are listed in Figure 23.

Figure 23 Substitutions for add

add R, imm 1 subR, new_imm
where new_imm = imm x(-1)
2 leaR,[R +imm)]
addR, 1 1 notR
2 negR

8.2.3 Transpose

We also apply transposition to morph the code. Our transpose algorithm is outlined
below:

1 read two instructions with two operands

2 generate a random number between 0 and 3

3 if the random number is 0 then perform transpose
4

to perform transpose:
a read third instruction
b if the third instruction is not any conditional jump instruction then:

e if to-operands of both instructions are not equal and to-operand of first
instruction is not equal to from-operand of second instruction and
from-operand of first instruction is not equal to to-operand of second
instruction:

1 swap two instructions.

The above transpose algorithm applies only to instructions with register operands. We
extended this algorithm to include instructions with memory operands. To achieve this
extension, we added another condition. While comparing the operands in both the
instructions, we had to make sure that none of the registers are used as memory pointers.
For example, the following two instructions can be swapped:

A highly metamorphic virus generator 421

mov ax,cx

add [dx+2],5

but the following two instructions cannot be swapped:

mov ax,cx

add [ax+2],5

A high level description of our metamorphic engine is as follows:

1 determine the start of code section

RAND_ NUM = random number between 0 and 3

If RAND NUM = 0 then perform NOP sequence insertion at entry point
RAND_ NUM = random number between 50 and 100

for every RADN_NUM instruction, perform random NOP sequence insertion

RAND NUM_SUB = random number between 0 and 3

N N AW

if RAND NUM_SUB = 0 then select the instruction for Substitution //substitution is
done for about one in four instructions

8 substitution:
a RAND DEAD_ EQUI = random number between 0 and 3
b if (RAND DEAD EQUI < 2) //equivalent code substitution is done 66%
e perform equivalent code substitution
c else

e perform dead code insertion //randomly select among single NOP
instruction insertion, //jump NOP, and Evol transformations

9 repeat Steps 5 to 8 till end of the file

10 perform transpose on the generated morphed code.

9 Experiments

Using our metamorphic engine, we generated a large of number of metamorphic virus
variants of a base virus. The metamorphic virus variants were generated by applying the
metamorphic engine iteratively to a single base virus. Applying the metamorphic engine
once on to the base file yields a first generation metamorphic variant, applying the
metamorphic engine twice yields a second generation variant, and so on.

The metamorphic engine can take any assembly programme as input and the output is
a morphed copy of the input. These assembly files were then compiled into executables
using FASM. These executables were then disassembled using IDA Pro with default
settings. The resulting assembly programmes were used to perform all tests. This process
makes the tests more realistic, since a virus scanner must deal with virus binary files, not
the original assembly code that was used to generate the virus. This process is illustrated
in Figure 24.

422 P. Desai and M. Stamp

Figure 24 Overall process (see online version for colours)

(N\

Any assembly program

L J

v

Apply Metamorphic
Engine on input program

. J

L 2

Metamorphic engine
generates Morphed
copies

v

Assemble output
programs using

L assembler J
R 2
Disassemble executables
using IDA-Pro
~ J,

v

Model HMM on assembly programs and
conduct Similarity Test on morphed
assemblies

9.1 Commercial virus scanner

In our testing, the base virus was successfully detected and quarantined by all commercial
virus scanners tested. The same virus scanners failed to detect morphed copies of the base
virus. This confirmed that our metamorphic engine evades signature-based detection.
This was not surprising since similar results were shown for weakly metamorphic viruses
in Stamp and Wong (2006).

9.2 Similarity test

Using the similarity test discussed in Section 6, we compared the base virus with first
through ninth generation metamorphic copies. The results of these tests appear in
Figure 25. The similarity between the base virus and first generation virus is typically
about 70% while the similarity decreases to about 10% by the ninth generation.

After applying the metamorphic engine to the base virus, the number of opcodes in
the morphed copies tends to increase. The dissimilar length of the compared files may
affect similarity test. So we also compared pairs of viruses from the same generation.
Note that the viruses from the same generation are of similar length. We found that first
generation viruses are about 50% similar whereas ninth generation viruses are only about
2.5% similar, as summarised in Figure 26.

A highly metamorphic virus generator 423

Figure 25 Similarity results of the base virus v/s nine different generations (see online version
for colours)

Similarity with Base
70.00%
60.00%
g 50.00%
£ 4000%
S 3000%
& 2000%
10.00%
0.00%
3rd
Gen Gen Gon é'z: Sth Gy i
Gen gen o th o
Gen Gen
1stGen ég: 3rd Gen [4th Gen [Sth Gen|6th Gen|7th Gen [8th Gen|9th Gen
M Similarity with Base |67.79%|41.54%|25.57%| 20.12%|18.90% [17.14%(16.71% 12.81%10.82%

Figure 26 Similarity of two N generation viruses (see online version for colours)

Similarity

60.00%
50.00%
40.00%
30.00%
20.00%
10.00%
0.00%

Percentage

Gen 7th gy

Gen 9th

Gen

Gen Gen

1stGen |2nd Gen | 3rd Gen |4th Gen | 5thGen | 6th Gen 7thGen‘8thGen 9thGen
|lSimiIarity 50.18% | 25.26% | 13.55% | 9.98% | 7.08% | 5.16% | 4.95%

3.51% | 2.46%

In Stamp and Wong (2006), it was found that the next generation virus creation kit
(NGVCK) produces the most highly metamorphic variants of any of the ‘hacker’
metamorphic engines tested. On average, NGVCK variants are about 10% similar (Stamp
and Wong, 2006). Note that our ninth generation metamorphic variants are much more
diverse than NGVCK viruses — the average similarity between our viruses is only about
2.5%, while the comparable number for NGVCK is about 10%. This shows that we
achieved our goal of producing the most highly metamorphic virus variants yet seen.

424 P. Desai and M. Stamp

Next, we consider HMM-based detection, using our highly dissimilar ninth
generation viruses. This would appear to provide a tremendous challenge for the
HMM-based detection approach.

9.3 HMM-based detection

Next, we attempt to detect our morphed virus variants using the HMM-based detection
methods from Stamp and Wong (2006).

9.3.1 A ninth generation virus model

We trained an HMM based on a set of 120 viruses, all of which were ninth generation
metamorphic variants of a single base virus. The HMM model was developed using 90 of
the viruses, with the 30 remaining viruses reserved for tested against the resulting model.
This model used two hidden states. Stamp and Wong (2006) has shown that a larger
number of hidden states does not significantly improve the model. Using the resulting
model, scores for family viruses and normal files are given in Figure 27 and plotted in
Figure 28.

Figure 27 Ninth generation HMM model

Ninth generation model with N =2

Family viruses Normal files
G9 0 -3.1677 G9 15 —4.2650 NO —14.4239 NI5 -356.9657
Go 1 -3.164 G9 16 -3.1277 N1 —42.9527 N16 —34.4798
G9 2 -3.1269 G9_17 -3.1266 N2 —444.9695 N17 —11.7943
G9 3 -3.1419 G9 18 —-3.1248 N3 —532.4239 N18 —406.5270
G9 4 -3.1596 G9 19 -3.1138 N4 —20.8160 N19 —406.5270
G9 5 -3.1692 G9_20 -3.1250 N5 —18.7624 N20 -507.2849
G9 6 -3.1419 G_21 —3.1486 N6 —20.8160 N21 —-15.2849
G9 7 -3.1782 G9 22 -3.1517 N7 —17.2520 N22 -507.2849
G9_8 -3.1115 G9 23 -3.1661 N8 —27.8287 N23 -473.7664
G9 9 -3.1305 G9 24 —-3.1420 N9 —19.0357 N24 -356.7943
G9 10 -3.1404 G9 25 -3.1743 N10 —406.5270 N25 -36.2016
G9_11 -3.1262 G9_26 -3.1522 NI11 —37.8043 N26 -32.1237
G9 12 -3.1299 G9 27 -3.1638 N12 —25.4653 N27 —507.2849
G9 13 -3.1424 G9 28 -3.2038 N13 —23.9582 N28 -35.0315
G9_14 -3.1300 G9_29 -3.1714 N14 —25.2204 N29 -356.9657
Min score =—4.2650 Max score = —11.7943

Based on the results in Figure 27, we would like to set a threshold. Then any file scoring
higher than this threshold is deemed a metamorphic virus variant of the type the model
was trained to detect, and any file scoring lower is considered to not be such a virus.
Using a threshold of, say, —0.6, we would have perfect detection, that is, the HMM would
never make a mistake.

A highly metamorphic virus generator 425

Figure 28 Family viruses and normal files tested against ninth generation model (see online
version for colours)

#Seriesl

)

This result is surprising and clearly shows the strength of an HMM-based detection
technique. Our ninth generation virus variants have virtually no similarity to each other,
yet a properly trained HMM model is able to easily distinguish between these
metamorphic viruses and normal files. Several more related experiments are discussed in
Desai (2008).

10 Conclusions and future work

We developed a metamorphic engine that yields morphed copies of a given base
assembly file. We showed that by using a known virus as our base file, and iterating this
process over several generations, we can produce highly morphed and highly dissimilar
virus files. These were among the main criteria suggested in Stamp and Wong (2006) as
ways to defeat an HMM-based detection scheme. From this perspective, it appeared
likely that these morphed viruses would successfully evade HMM-based detection.

Surprisingly, the HMM-based detector was still able to correctly classify viruses and
normal files in every case tested. This shows that even with high metamorphism and
virtually no similarity between the morphed viruses, an HMM is able to identify a
common pattern in the morphed viruses. In short, the HMM has proved itself extremely
robust and very difficult to defeat.

Perhaps, one area for improvement over our approach lies with dead code insertion
and its effect on the file size. The size of the base virus we selected was 1.5 KB.
Applying our metamorphic engine tends to increase the file size, and applying the engine
over several generations increases the original file size significantly. The increase is size
as a function of the number of iterations is illustrated in Figure 29.

426 P. Desai and M. Stamp

Figure 29 Change in file sizes over nine generations (see online version for colours)

File Sizes

3 4
2
15 4 M Size in KB
1
0.5 -
0
1 2 3 4 5 6 7 8 9

Generations

KB
o
wn

While it is possible to produce metamorphic viruses that do not grow, this constraint
makes it difficult to insert dead code, and without dead code, we might lose some of the
metamorphism, and we would certainly lose much of our ability to make the
metamorphic viruses look more ‘normal’. Consequently, it might be better to accept that
the metamorphic files will grow, but try to limit the growth to a smaller percentage.

We believe that the most straightforward way to defeat HMM-based detection lies in
the direction of equivalent code substitution. Equivalent code substitution will not tend to
increase file sizes significantly, and it can certainly yield a great deal of metamorphism.
And if the code substitutions were chosen appropriately, they could even make the
resulting code appear to be more ‘normal’. However, this approach is not as simple as it
might at first appear. The difficulty here is that the number of code segments that we
would want to be able to substitute for would need to be very large. In addition, for most
(if not all) possible substitution, we would require a large number of possible substitutes.
While in principle this appears to be feasible, in practice it would be challenging to create
such a massive ‘library’ of pre-defined code substitutions, all of which could be used
without fear of breaking the underlying application.

Perhaps, the most intriguing approach to making HMM-proof metamorphic viruses is
to look closely at the parameters of the HMM model itself (i.e., the 4 and B matrices).
More precisely, we could generate an HMM model for a given set of normal code, then
adjust our metamorphic engine parameters until the metamorphic viral code yields an
HMM model that closely resembles the model for normal code. If this could be done, it
would certainly defeat HMM-based detection. However, there are many obstacles along
this path. However, the potential payoff would be significant, since such an approach
would represent a fundamental attack on the HMM itself and therefore would yield an
attack on any technology that relies on HMMs. For example, such a technique would
provide a novel attack on speech recognition software.

A highly metamorphic virus generator 427

References

Attaluri, S., McGhee, S. and Stamp, M. (2008) ‘Profile hidden Markov models and metamorphic
virus detection’, Journal in Computer Virology, Vol. 5, No. 2, pp.151-169.

Aycock, J. (2006) Computer Viruses and Malware, Springer.

Borello, J. and Me, L. (2008) ‘Code obfuscation techniques for metamorphic viruses’, Journal in
Computer Virology, Vol. 4, No. 3, pp.211-220.

Chouchane, M., Lakhotia, A., Mathur, R. and Walenstein, A. (2007) ‘The design space of
metamorphic malware’, Paper presented at the Proceedings of the 2nd International
Conference on Information Warfare, 8-9 March, California, USA.

Daoud, E. and Jebril, 1. (2008) ‘Computer virus strategies and detection methods’, Int. J. Open
Problems Compt. Math., Vol. 1, No. 2, pp.29-36.

Desai, P. (2008) ‘Towards an undetectable computer virus’, Masters report, San Jose State
University, USA.

HMM (2004) 4 Revealing Introduction to Hidden Markov Models, available at
http://www.cs.sjsu.edu/faculty/stamp/RUA/HMM.pdf (accessed on 23 February 2008).

ISCAS (2007) Are Metamorphic Viruses Really Invincible?, available at
http://www.iscas2007.org/~arun/papers/invincible-complete.pdf (accessed on 3 April 2008).

Mishra, P. (2003) ‘A taxonomy of software uniqueness transformations’, Masters report, San Jose
State University, USA.

OpenRCE (2006) ‘The viral Darwinism of W32.Evol: an in-depth analysis of a metamorphic
engine’, available at http://www.antilife.org/files/Evol.pdf (accessed on 23 February 2008).

Stamp, M. (2005) Information Security: Principles and Practice, Wiley.

Stamp, M. and Wong, W. (2006) ‘Hunting for metamorphic engines’, Journal in Computer
Virology, Vol. 2, No. 3, pp.211-229.

Szor, P. (2005) The Art of Computer Virus Defense and Research, Symantec Press.

VXHEAVENS (1999) Theme: Metamorphism, available at
http://www.vx.netlux.org/lib/static/vdat/ep metam2.htm (accessed on 3 March 2008).

VXHEAVENS (2002) How I Made MetaPHOR and What I've Learnt, available at
http://vx.netlux.org/lib/vmd01.html (accessed on 5 March 2008).

