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Abstract: Metamorphic viruses modify their code to produce viral copies that 
are syntactically different from their parents. The viral copies have the same 
functionality as the parent but typically have no common signature. This makes 
signature-based virus scanners ineffective for detecting metamorphic viruses. 
But machine learning tool such as Hidden Markov Models (HMMs) have 
proven effective at detecting metamorphic viruses. 
 Previous research has shown that most metamorphic generators do not 
produce a significant degree of metamorphism. In this project, we develop a 
metamorphic engine that yields highly diverse morphed copies of a base virus. 
We show that our metamorphic engine easily defeats commercial virus 
scanners. We then show that, perhaps surprisingly, HMM-based detection is 
effective against our highly metamorphic viruses. We conclude with a 
discussion of possible improvements to our generator that might enable it to 
defeat statistical-based detection methods, such as those that rely on HMMs. 
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1 Introduction 

There are many antivirus defence mechanisms available today, but chief among these is 
signature detection. Metamorphic viruses, that is, viruses that change their ‘appearance’ 
while maintaining their functionality, represent a powerful technique for evading 
signature detection. A metamorphic ‘engine’ uses a variety of code morphing techniques 
to change the structure of the viral code without altering its function. 

In Stamp and Wong (2006) and Attaluri et al. (2008), Hidden Markov Models 
(HMMs) are used to detect metamorphic viruses – including metamorphic viruses that 
evaded detection by commercial signature-based scanners. An HMM is a machine 
learning technique and HMMs have a lengthy history of success in applications such as 
speech recognition and protein modelling. 

In this paper, our primary goal is to develop a metamorphic generator that produces 
the most highly metamorphic viruses yet seen. We then investigate whether the resulting 
metamorphic viruses can evade both signature detection and HMM-based detection. Our 
results for the HMM-based detection scheme are, perhaps, somewhat surprising. 

This paper is organised as follows: Section 2 provides background information on 
computer viruses. Section 3 discusses common anti-virus technologies, while Section 4 
contains information about the evolution of computer viruses. In Section 5, various code 
morphing techniques are briefly discussed. Section 6 covers a ‘similarity test’ that we use 
to measure the effectiveness of our code morphing, and Section 7 gives an abbreviated 
introduction to HMMs. Sections 8 and 9 detail the design, implementation, and 
experimental results for our metamorphic engine. Section 10 draws conclusions and 
discusses future work. 

2 Computer virus 

Aycock (2006) states a computer virus consists of three parts, as illustrated in Figure 1. 

Figure 1 Pseudo code of a computer virus 

 def virus(): 
 infect () 
 if trigger () is true then  
  payload () 

 

Figure 2 Pseudo code of infect module 

 def infect(): 
 repeat k times: 
  target = select_target() 
  if no target then 
   return  
  infect_code (target)  

 

The infect module, which is further illustrated in Figure 2, defines how a virus spreads, 
where the most common infection mechanism is to modify the host to contain copy of 
virus code. The trigger module is a test that is used to decide whether to deliver the 
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payload or not, and the payload specifies the damage to be done by the virus. Note that 
the trigger and payload are optional. 

3 Antivirus techniques 

This section briefly discusses the two most popular virus detection techniques – signature 
detection and heuristic analysis. These techniques, which include code emulation, form 
the basis for virtually all current antivirus software. 

3.1 Signature detection 

A signature is a string of bits found in a virus (Stamp, 2005). An effective signature is a 
string of bits which is commonly found in a specific virus, but is not likely to be found in 
normal programmes. In general, it is possible to extract a reasonable signature from a 
given virus. 

All known signatures are organised in a database. A signature-based virus detection 
tool searches the files on a system for a known signature. For example, a signature for the 
W32/Beast virus is as follows: 

83EB 0274 EB0E 740A 81EB 0301 0000  

A virus scanner searches files on the system for this signature. If this signature is present 
in any executable file, it is likely to be the beast virus. 

3.2 Heuristic analysis 

Heuristic analysis is useful in detecting new, unknown, or ‘disguised’ viruses. Heuristic 
analysis can be static or dynamic. Static heuristics analyse the file format and the code 
structure looking for characteristics of a virus body. Dynamic heuristics use code 
emulators designed to detect viral code while it is running inside the emulator. 

The following are some of the suspicious characteristics that indicate a possible 32-bit 
windows virus (Szor, 2005): 

• code execution starts in the last section 

• virtual size is incorrect in PE header 

• ‘gaps’ between sections 

• suspicious code section name 

• suspicious imports from Kernel32.dll, such as importing by ordinal as opposed to 
importing by name. 

One shortcoming of heuristic analysis is that it can create many false positives. 

4 Code evolution techniques 

Virus writers know that signature-based detection (supplemented by heuristic analysis) 
forms the cornerstone of modern virus detection. Consequently, virus writers have 
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developed many techniques designed to evade signature-based detection. The primary 
evasion strategies are discussed in this section (Daoud and Jebril, 2008). 

4.1 Encryption 

Encryption is the simplest way to hide the virus body, and thereby hide the signature. 
Encryption changes the appearance of a virus. An encrypted virus consists of a small 
decryption module (a decryptor) and the encrypted virus body. Generally, extremely 
simple (and cryptographically weak) encryption methods are used, such as the XOR of a 
fixed key byte (or word) with each byte (or word) of the virus body. If a different key is 
used for each infection, the encrypted virus bodies will look different, i.e., there will be 
no common signature. However, if the decryptor remains constant, signature detection is 
still possible – the virus scanner can simply look for a signature of the decryptor code. 

4.2 Polymorphism 

Polymorphic viruses begin with the concept of an encrypted virus, and push it one step 
further. In a polymorphic virus, the virus body is encrypted, and, in addition, the 
decryptor is morphed. By using different keys, there is no common signature in the body 
of the encrypted viruses, and by morphing the decryptor, there is no common signature in 
the decryptor itself. To detect polymorphic viruses, antivirus software often makes use  
of a code emulator, which emulates the decryption process. If the file is actually a 
polymorphic virus, it will eventually decrypt, at which point standard signature-based 
detection can be applied. 

4.3 Metamorphism 

Metamorphic viruses (or ‘body polymorphic’ viruses) take the idea of polymorphism to 
its limit. Whereas polymorphic viruses encrypt the virus and morph the decryptor, 
metamorphic viruses morph the entire virus code. The assumption is that the code is 
sufficiently morphed to disguise any possible signature and, consequently, there is no 
need to encrypt the viral code. 

Metamorphic viruses use a variety of code morphing techniques including instruction 
reordering, data reordering, subroutine inlining, subroutine outlining, register renaming, 
code permutation, instruction substitution, and garbage code insertion. Figure 3 illustrates 
the concept behind a metamorphic generator. 

Figure 3 Metamorphic virus generations (see online version for colours) 
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Often a metamorphic virus ‘carries its own metamorphic engine’, that is, the 
metamorphic engine is embedded within the virus. During infection such a metamorphic 
virus uses this engine to create a morphed copy of itself, which must again include the 
metamorphic generator. However, other metamorphic generators are stand-alone software 
that, in some cases, can be used to morph any given code – viral or not. 

General approaches to producing metamorphic viruses are discussed in 
VXHEAVENS (1999) and Borello and Me (2008). 

We have implemented our metamorphic engine as a stand-alone tool. This tool can be 
used to morph any x86 assembly programme. 

5 Code morphing techniques 

Metamorphic engines use code morphing techniques to generate morphed copies of the 
original programme. Often, the morphed code is more difficult to read and understand 
than the original, so it is, in effect, obfuscated, but that is not the primary goal 
(Chouchane et al., 2007). 

Code morphing can be used to generate a large number of distinct copies of a single 
parent file. This section describes some morphing techniques that can be applied to 
assembly code. 

Code morphing techniques for assembly programmes can apply to the control flow, 
code, or data (Borello and Me, 2008). Control flow obfuscation involves reordering of 
instructions, typically through insertion of jumps, or calls. Code morphing can be done in 
many ways such as equivalent code substitution, subroutine permutation, dead code 
insertion, register renaming, and transposition. Figure 4 summarises some well-known 
metamorphic viruses and the code obfuscation techniques they employ. 

Figure 4 Metamorphic viruses and code obfuscation techniques 

 

5.1 Register renaming 

Register renaming modifies register operands of an instruction without changing the 
instruction itself. RegSwap was one of the early metamorphic viruses to make heavy use 
of register renaming. Figure 5 shows two pieces of code from two different generations 
of RegSwap. 

Note that the two generations of RegSwap have the same sequence of instructions 
with the only change being the registers used. 
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Figure 5 Two different generations of RegSwap 

 

5.2 Dead code insertion 

If done with some care, inserting dead code or do-nothing instruction will not affect the 
execution of the original code. Dead code can consist of a single instruction or a block of 
instructions. Inserting dead code is perhaps the easiest way to obfuscate the signature of a 
programme. 

Do-nothing instructions such as ‘move eax, eax’, ‘shl eax, 0’, ‘add ax, 0’, or ‘inc eax’ 
followed by ‘dec eax’ make the morphed programme look different. The Evol virus 
implemented dead code insertion by adding a block of dead code between core 
instructions as shown in Figure 6. 

Figure 6 Dead code insertion in Evol virus 
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The two blocks of instructions in Figure 6 look very different, but careful analysis will 
show that they yield the same result. 

5.3 Subroutine permutation 

This is a simple obfuscation technique in which the subroutines of a programme are 
reordered. A programme with n different subroutines can generate (n – 1)! different 
subroutine permutations, so a large number of variants can easily be produced. 
Subroutine permutation does not affect the functionality of a programme, since the order 
of subroutine is not critical to its execution. Figure 7 illustrates the concept of subroutine 
permutation. 

Figure 7 Subroutine permutation 

 

5.4 Equivalent code substitution 

Equivalent code substitution is the replacement of an instruction with an equivalent 
instruction or an equivalent block of instructions. In assembly language, virtually any 
task can be achieved in many different ways. For example, ‘inc eax’ is equivalent to ‘add 
eax, 1’, ‘move eax, edx’ is equivalent to ‘push edx’ followed by ‘pop eax’, and so on. 
This makes code substitution a useful morphing technique. Figure 8 shows some 
examples of equivalent code substitution used by the Win32/MetaPhor virus 
(VXHEAVENS, 2002). 
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Figure 8 Examples of instruction substitution in W32/MetaPhor 

 

5.5 Transposition 

Transposition or instruction permutation modifies the instruction execution order in a 
programme. This can be done only if no dependency exists among instructions. Consider 
two instructions, say, instruction 1 which is of the form ‘op1 R1, R2’ and instruction 2 
which is of the form ‘op2 R3, R4’. These two instructions can be swapped provided the 
following conditions are satisfied: 

1 R1 is not equal to R3 

2 R1 is not equal to R4 

3 R2 is not equal to R3. 

For example, instructions ‘mov eax, edx’ and ‘add ecx, 5’ can be swapped since they 
satisfy the transpose criteria. 

5.6 Changing control flow 

Code reordering consists of inserting a conditional or unconditional branch instruction 
after a block of instructions. Blocks defined by such branching instructions can then be 
permuted to change the control flow. 

Figure 9 Example of control flow modification 
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Figure 9 illustrates the ‘spaghetti code’ that can easily be generated by this approach. 
Here, consecutive instructions are permutated and linked together by unconditional 
jumps. Note that the reordering of instructions does not modify the order in which they 
are executed, but it does break signatures that rely on the adjacency of certain sets of 
instructions. Given sufficiently small blocks of instructions, this approach alone could 
evade signature detection. 

5.7 Subroutine inlining and outlining 

Subroutine inlining is a technique in which a subroutine call is replaced with its code, as 
illustrated in Figure 10. 

Figure 10 Subroutine inlining 

 
 
 
… 
move eax, ebx 
add eax, 12h 
push eax 
mul ecx 
mov edx, eax 
… 
 

… 
Call S1 
Call S2 
… 
 
S1:  move eax, 
ebx 
 add eax, 12h 
 push eax 
 ret 
 
 
S2:  mul ecx 
 mov edx, eax 

ret  

Code outlining is the inverse of code inlining – code outlining converts a block of code 
into a subroutine and replaces the block with a call to the subroutine. Figure 11 gives an 
example of code outlining. 

Figure 11 Subroutine outlining 

  
… 
move eax, ebx 
add eax, 12h 
push eax 
mul ecx 
mov edx, eax 
… 

… 
move eax, ebx 
call S12 
mov edx, eax 
… 
 

S12: push eax 
add eax, 

12h 
mul ecx 
ret  
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6 Similarity test 

Metamorphic engines produce morphed copies of a given input programme. An effective 
metamorphic engine will generate highly dissimilar copies. A ‘similarity test’ can be used 
to quantify the effectiveness of a metamorphic engine, that is, we can quantify similarity 
(and, therefore, difference) between two pieces of assembly code. 

The similarity test we use here compares two assembly programmes and calculates 
the percentage of similarity between them as follows (Mishra, 2003): 

1 Given two assembly files a.asm and b.asm, extract the opcode sequences from each 
file. Call these opcode sequences A and B, respectively. 

2 Suppose that m and n are the number of opcodes in A and B, respectively. 

3 The opcodes in A are numbered consecutively, 0 through m – 1, and similarly the 
opcodes in B are numbered 0 through n – 1. 

4 The opcode sequences A and B are divided into overlapping subsequences of length 
three. 

5 Each subsequence in A is compared with all subsequences in B. It is considered  
a match if the opcodes of a subsequence in A are same as the opcodes of a 
subsequence of B, where the opcode subsequences are considered the same provided 
they contain the same opcodes. That is, the order of the opcodes within a 
subsequence does not matter. 

6 The total number of such matches is found. This total number of matches is divided 
by m to obtain the similarity of A to B. Call this similarity X. 

7 Similarly, the similarity of B to A is computed. Let Y denote this similarity. 

8 The average of X and Y will be used as our similarity index for the files a.asm and 
b.asm. 

Figure 12 Similarity graph, (a) all matches (b) with threshold 
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A graph can be generated to help visualise the similarity of given assembly files – we 
simply mark a point in two-dimensional m × n space whenever a similarity match occurs. 
Figure 12(a) illustrated such a similarity graph. However, the resulting graph is somewhat 
‘noisy’, so for subsequent graphs, we set a threshold of five consecutive similarity 
matches before plotting a point. The plot in Figure 12(a) with a threshold of five is 
illustrated in Figure 12(b). 

Note that graphing the similarity of, say, a.asm with itself would result in a solid line 
on the main diagonal, with other sporadic matches off of the main diagonal. Also, if 
b.asm only differs from a.asm by shuffling blocks of code, we will tend to see many line 
segments parallel to the main diagonal. Some other types of morphing and/or obfuscation 
provide their own distinctive features in these graphs (Stamp and Wong, 2006). 

7 Hidden Markov Model 

HMMs are a machine learning technique. As the name implies, we assume that there is a 
Markov process involved in generating a given set of observation, but the precise details 
of the underlying Markov process are hidden. An HMM model can be generated, which 
represents the training data, where the training data consists of a sequence of observations 
from the hidden Markov process. One of the appealing features of HMMs is that it there 
are efficient algorithms to solve all of the fundamental HMM-related problems. 

HMMs are used, for example, in speech recognition and protein modelling, and 
recently HMMs have been successfully used to detect metamorphic viruses (Stamp and 
Wong, 2006). An HMM can effectively model some aspects of the statistical information 
in a given family of metamorphic viruses. Given such a model, any file can be scored, 
and the score quantifies the likelihood that the given file belongs to the metamorphic 
virus family represented by the HMM model. 

Next, we look at a simple example, which will help illustrate the basic idea behind an 
HMM (2004). Suppose we want to determine the average annual temperature at some 
location, at some various times in the past. Here, we assume the annual temperature can 
be classified as either hot (H) or cold (C). Further, suppose we know the probability of a 
hot year followed by another hot year is 0.7 and a cold year followed by another cold 
year is 0.6. These probabilities are represented in matrix in Figure 13. 

Figure 13 Temperature transition probability 

 

Suppose that we also know the correlation between tree growth-ring sizes and 
temperature. Tree ring sizes are classified as one of three types, namely, small (S), 
medium (M), and large (L). In a hot year, the probability of a tree ring being small is 0.1, 
medium is 0.4, and large is 0.5, while in a cold year, the probability of tree ring being 
small is 0.7, medium is 0.2, and large is 0.1. The relationship between tree ring sizes and 
annual temperatures is given in the matrix in Figure 14. 
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Figure 14 Tree size probability 

 

In this example, the annual temperatures are the ‘states’ of the (hidden) Markov process, 
while the tree ring sizes are the observations. The probability of the various tree ring sizes 
at each temperature represents the probability of the observation symbols in each state. 

To summarise, the states (H and C) are hidden, since we cannot directly observe the 
temperature at some time in the past, and these hidden states are driven by a Markov 
process, as given by the matrix in Figure 13. In addition, we can observation tree ring 
sizes (S, M, and L) over a series of years. Apparently, there is a statistically relationship 
between the observations (tree ring size) and the hidden states (annual temperature). In 
this example, we would like to recover information about the hidden states from the 
observations. 

Now suppose that we obtain the following sequence of observation symbols:  
(S, M, S, L). Note that this represents tree ring sizes for four consecutive years. We want 
to determine the most likely sequence of states (average annual temperature) for each of 
these four years, based on the given sequence of tree ring sizes. 

Before we can solve this problem, we need some notation. The following notation is 
fairly standard with HMMs: 

{ }0 1 1

    
     mod
    

  , , ,
   

 

T

T length of the observed sequence
N number of states in the el
M number of distinct observation symbols
O observation sequence O O O
A state transition probability matrix
B observation probabilit

−

=
=
=

=

=
=

K

  
   

y distribution matrix
initial state distribution matrixπ =

 

In this example, the matrix A appears in Figure 14, and we have N = 2. The observation 
probability distribution matrix B, is the matrix in Figure 13 and we see that M = 3. That 
is, we have the following: 

0.7 0.3
0.4 0.6

and
0.1 0.4 0.5
0.7 0.2 0.1

A

B

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

 

The A and B matrix probabilities are related as illustrated in the Figure 15. 
The initial state distribution matrix, π represents the probability of being in a state 

initially. Suppose that the initial state distribution matrix for this example is known to be 

[0.6 0.4]π =  
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The matrices A, B, and π define the HMM. Note that A, B, and π are row stochastic 
matrices, that is, each row is a probability distribution. 

Figure 15 HMM model 

 

Now we are ready to consider our given observation sequence, (S, M, S, L), which is of 
length T = 4. To determine the most probable state transitions for this sequence, we could 
use the following brute force approach: 

1 Determine all of the NT possible state transitions. 

2 Calculate the probability of the given observation sequence for each state transition 
obtained in Step 1. For example, to compute the probability of the state sequence 
HHCC, we have: 

, , ,( ) * ( )* * ( )* * ( )* * ( )

(0.6)*(0.1)*(0.7)*(0.4)*(0.3)*(0.7)*(0.6)*(0.1)
0.000212

H H H H H H C C C C CP HHCC b S a b M a b S a b Lπ=

=
=

 

3 The state sequence with highest probability is selected. 

Figure 16 lists the probabilities of observing (S, M, S, L) for each of the 16 possible state 
sequences. We conclude that for the given sequence of observations, the most probable 
state sequence is CCCH. That is, given the observed tree ring sizes, the most likely 
scenario for the four-year period under consideration is that that there were three cold 
years followed by one hot year. 

The real strength of the HMM approach is that we can derive an efficiently algorithm 
for determining this probability, as opposed to using an exponential brute-force approach. 

In addition, there are efficient algorithms to ‘train’ the HMM model given a sequence 
of observations. That is, we can use an efficient iterative process to determine the model, 
A, B, and π, given a sequence of observations. The only free parameter that we need to 
specify in advance is N, the dimension of the A matrix. This is the sense that an HMM is 
a machine learning technique – it ‘learns’ from the observation sequence, with virtually 
no input required from the user. 
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Figure 16 Probabilities of observing (S, M, S, L) for all possible state sequences 

 

There is a third problem that can be solved using HMMs. If we are given a model and a 
sequence of observations, we can use the model to efficiently assign a probability to the 
observation sequence. This probability represents the likelihood that the given sequence 
was generated by the same (hidden) Markov process that the model represents. For 
computational reasons, it is necessary to use log odds instead of computing actual 
probabilities, so the closer the resulting ‘score’ is used to determine whether the 
observations match the model or not. With proper testing, a sensible threshold score can 
be determined. 

7.1 HMM as virus detection tool 

Using HMMs as a virus detection tool requires a sequence of observations that can be 
used as training data to generate a model. For training data, we follow (Stamp and Wong, 
2006) and extract the opcodes from a ‘family’ of metamorphic viruses, where the family 
viruses all share the same functionality. We assume that we can obtain a number of such 
family viruses and we then disassemble each and extract the opcodes. The resulting 
sequences of opcodes are concatenated to yield our training data. The initial part of an 
observation sequence appears in Figure 17 with (part of) the resulting model given in 
Figure 18. 

Once the model has been constructed, we can test it on family viruses that were not 
used to construct the model, as well as on ‘normal’ files. Using the resulting scores, we 
can set a threshold for scoring unknown files. 

When given a file to test against the HMM model, we first disassemble the file and 
extract its sequence of opcodes. This sequence is then scored against the model that we 
previously constructed and the predetermined threshold is used to categorise the file as 
either a ‘family virus’ or ‘other’. We will present several examples of scoring results in 
Section 9, below. 

For much more on HMMs, including pseudo-code for each of the three problems 
discussed here (see HMM, 2004). 
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Figure 17 Training data, (a) unique symbols (b) observation sequence (see online version  
for colours) 

 
 (a) (b) 

Figure 18 HMM model (see online version for colours) 
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8 Implementation 

8.1 Introduction 

Our metamorphic generator is inspired, to an extent, by the Evol virus. Evol uses code 
morphing techniques such as dead code insertion, register/operands usage exchange, and 
equivalent instruction substitution. However, our approach includes more metamorphic 
techniques than Evol. The remainder of this section gives a fairly detailed explanation of 
our metamorphic engine. 

Our implementation aimed to achieve the following goals: 

• Generate morphed copies of a single input virus. These morphed copies should have 
minimum similarity with the base virus and among themselves, as measured by the 
similarity index discussed in Section 6. 

• The morphed copies should have the same functionality as the base virus. 

• A morphed copy should be as close (in terms of similarity) to ‘normal’ code as 
possible. For our examples of normal programmes, we rely on a set of cygwin utility 
files, which are each about the same size as the base virus. The reason we chose 
these ‘normal’ files is because they are probably doing somewhat similar low-level 
operations that we might expect from a virus. 

• The metamorphic engine should work with any functioning assembly programme as 
input. 

8.2 Code obfuscation techniques 

8.2.1 Dead code insertion 

Our dead code insertion consists of adding NOPs or other do-noting instructions. We also 
use dead code insertion to introduce opcodes that are not present or uncommon in the 
base virus. 

Figure 19 Base virus opcodes and their frequency (see online version for colours) 
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We first generate opcode statistics of the given base virus. The graph in Figure 19 lists 
the opcodes used in a particular base virus along with their relative frequencies. 

The base virus in Figure 19 has 27 unique opcodes and six of them appear more than 
ten times. The most common opcodes are mov, push, add, call, cmp, and jz. 

We then computed opcode frequencies for normal programmes. The graph in Figure 
20 shows typical statistics. 

Figure 20 Opcodes of normal file and their frequency (see online version for colours) 

 

When the statistics of the normal file is compared with the base virus, we obtain the 
following list of opcodes that are unique to a normal file: and, int, fnstcw, or, fldcw, 
leave, jns, setnz, setz, jb, cld, jnb, shl, inc, fld, fstp, and repe. 

These unique opcodes are included in our dead code insertion so as to make the 
morphed code look, in a statistical sense, somewhat more normal than the original virus. 
Figure 21 shows some examples of dead code instructions generated by our metamorphic 
generator for this example. 

Figure 21 Arithmetic dead code instructions 

1 add R, 0 
2 sub R, 0 
3 adc bx, 0 
4 sbb bx, 0 
5 inc R followed by dec R 

The dead code instructions in Figure 21 are injected at randomly selected locations in the 
base virus. 

We also introduced a simple unconditional jump NOP instruction. The jump NOP 
works by placing an unconditional jump to the next immediate instruction. An example 
of this variation is shown below. 
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 ,  [ int]
 010235

010235 :
 ,  [ int]

Mov edx esi entryPo
jmp pl
pl
mov edx esi entryPo

+

+

 

8.2.1.1 Dead code sequences 

In addition to inserting single instruction dead code, we also inserted dead code 
sequences. As above, the insertion location and the dead code sequences are selected 
randomly. 

8.2.1.2 Transformations used in Evol 

Along with dead code insertion, we introduced several Evol-inspired transformations 
(OpenRCE, 2002). The Evol virus substitutes a single instruction by surrounding it with 
dead code. Some of the specific Evol transformations we used are listed in Figure 22. 

Figure 22 Evol transformations 
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One disadvantage to these transformations is that we substitute a block of instructions for 
a single instruction. The ‘push’ and ‘pop’ bounding of each block is also distinctive. 
Excessive use of these transformations would increase the number of push and pop 
opcodes and could conceivably lead to an effective heuristic for detecting the code 
produced by our metamorphic engine (ISCAS, 2007). However, we used these 
transformations relatively sparingly. 

8.2.2 Equivalent code substitution 

Opcodes such as mov, push, add, call, cmp, and jz appear frequently in the base virus. To 
adjust the frequencies of these common opcodes, we used equivalent instruction 
substitution. In an equivalent instruction substitution, an instruction is replaced with 
another instruction or a block of instructions with the same functionality. For example 
substitutions for add are listed in Figure 23. 

Figure 23 Substitutions for add 

add R, imm 1 sub R, new_imm 
  where new_imm = imm x(–1) 
 2 lea R, [R + imm] 
add R, 1 1 not R 
 2 neg R 

8.2.3 Transpose 

We also apply transposition to morph the code. Our transpose algorithm is outlined 
below: 

1 read two instructions with two operands 

2 generate a random number between 0 and 3 

3 if the random number is 0 then perform transpose 

4 to perform transpose: 
a read third instruction 
b if the third instruction is not any conditional jump instruction then: 

• if to-operands of both instructions are not equal and to-operand of first 
instruction is not equal to from-operand of second instruction and  
from-operand of first instruction is not equal to to-operand of second 
instruction: 
1 swap two instructions. 

The above transpose algorithm applies only to instructions with register operands. We 
extended this algorithm to include instructions with memory operands. To achieve this 
extension, we added another condition. While comparing the operands in both the 
instructions, we had to make sure that none of the registers are used as memory pointers. 
For example, the following two instructions can be swapped: 
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,
 

[ 2],5
mov ax cx
add dx +

 

but the following two instructions cannot be swapped: 

,
[ 2],5

mov ax cx
add ax +

 

A high level description of our metamorphic engine is as follows: 

1 determine the start of code section 

2 RAND_NUM = random number between 0 and 3 

3 If RAND_NUM = 0 then perform NOP sequence insertion at entry point 

4 RAND_NUM = random number between 50 and 100 

5 for every RADN_NUM instruction, perform random NOP sequence insertion 

6 RAND_NUM_SUB = random number between 0 and 3 

7 if RAND_NUM_SUB = 0 then select the instruction for Substitution //substitution is 
done for about one in four instructions 

8 substitution: 
a RAND_DEAD_EQUI = random number between 0 and 3 
b if (RAND_DEAD_EQUI < 2) //equivalent code substitution is done 66% 

• perform equivalent code substitution 
c else 

• perform dead code insertion //randomly select among single NOP 
instruction insertion, //jump NOP, and Evol transformations 

9 repeat Steps 5 to 8 till end of the file 

10 perform transpose on the generated morphed code. 

9 Experiments 

Using our metamorphic engine, we generated a large of number of metamorphic virus 
variants of a base virus. The metamorphic virus variants were generated by applying the 
metamorphic engine iteratively to a single base virus. Applying the metamorphic engine 
once on to the base file yields a first generation metamorphic variant, applying the 
metamorphic engine twice yields a second generation variant, and so on. 

The metamorphic engine can take any assembly programme as input and the output is 
a morphed copy of the input. These assembly files were then compiled into executables 
using FASM. These executables were then disassembled using IDA Pro with default 
settings. The resulting assembly programmes were used to perform all tests. This process 
makes the tests more realistic, since a virus scanner must deal with virus binary files, not 
the original assembly code that was used to generate the virus. This process is illustrated 
in Figure 24. 
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Figure 24 Overall process (see online version for colours) 

Any assembly program

Apply Metamorphic 
Engine on input program

Metamorphic engine 
generates Morphed 

copies

Assemble output 
programs using 

assembler

Disassemble executables 
using IDA-Pro

Model HMM on assembly programs and 
conduct Similarity Test on morphed 

assemblies
 

9.1 Commercial virus scanner 

In our testing, the base virus was successfully detected and quarantined by all commercial 
virus scanners tested. The same virus scanners failed to detect morphed copies of the base 
virus. This confirmed that our metamorphic engine evades signature-based detection. 
This was not surprising since similar results were shown for weakly metamorphic viruses 
in Stamp and Wong (2006). 

9.2 Similarity test 

Using the similarity test discussed in Section 6, we compared the base virus with first 
through ninth generation metamorphic copies. The results of these tests appear in  
Figure 25. The similarity between the base virus and first generation virus is typically 
about 70% while the similarity decreases to about 10% by the ninth generation. 

After applying the metamorphic engine to the base virus, the number of opcodes in 
the morphed copies tends to increase. The dissimilar length of the compared files may 
affect similarity test. So we also compared pairs of viruses from the same generation. 
Note that the viruses from the same generation are of similar length. We found that first 
generation viruses are about 50% similar whereas ninth generation viruses are only about 
2.5% similar, as summarised in Figure 26. 
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Figure 25 Similarity results of the base virus v/s nine different generations (see online version  
for colours) 

 

Figure 26 Similarity of two N generation viruses (see online version for colours) 

 

In Stamp and Wong (2006), it was found that the next generation virus creation kit 
(NGVCK) produces the most highly metamorphic variants of any of the ‘hacker’ 
metamorphic engines tested. On average, NGVCK variants are about 10% similar (Stamp 
and Wong, 2006). Note that our ninth generation metamorphic variants are much more 
diverse than NGVCK viruses – the average similarity between our viruses is only about 
2.5%, while the comparable number for NGVCK is about 10%. This shows that we 
achieved our goal of producing the most highly metamorphic virus variants yet seen. 
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Next, we consider HMM-based detection, using our highly dissimilar ninth 
generation viruses. This would appear to provide a tremendous challenge for the  
HMM-based detection approach. 

9.3 HMM-based detection 

Next, we attempt to detect our morphed virus variants using the HMM-based detection 
methods from Stamp and Wong (2006). 

9.3.1 A ninth generation virus model 

We trained an HMM based on a set of 120 viruses, all of which were ninth generation 
metamorphic variants of a single base virus. The HMM model was developed using 90 of 
the viruses, with the 30 remaining viruses reserved for tested against the resulting model. 
This model used two hidden states. Stamp and Wong (2006) has shown that a larger 
number of hidden states does not significantly improve the model. Using the resulting 
model, scores for family viruses and normal files are given in Figure 27 and plotted in 
Figure 28. 

Figure 27 Ninth generation HMM model 

Ninth generation model with N =2 

Family viruses Normal files 
G9_0 –3.1677 G9_15 –4.2650 N0 –14.4239 N15 –356.9657 
G9_1 –3.164 G9_16 –3.1277 N1 –42.9527 N16 –34.4798 
G9_2 –3.1269 G9_17 –3.1266 N2 –444.9695 N17 –11.7943 
G9_3 –3.1419 G9_18 –3.1248 N3 –532.4239 N18 –406.5270 
G9_4 –3.1596 G9_19 –3.1138 N4 –20.8160 N19 –406.5270 
G9_5 –3.1692 G9_20 –3.1250 N5 –18.7624 N20 –507.2849 
G9_6 –3.1419 G_21 –3.1486 N6 –20.8160 N21 –15.2849 
G9_7 –3.1782 G9_22 –3.1517 N7 –17.2520 N22 –507.2849 
G9_8 –3.1115 G9_23 –3.1661 N8 –27.8287 N23 –473.7664 
G9_9 –3.1305 G9_24 –3.1420 N9 –19.0357 N24 –356.7943 
G9_10 –3.1404 G9_25 –3.1743 N10 –406.5270 N25 –36.2016 
G9_11 –3.1262 G9_26 –3.1522 N11 –37.8043 N26 –32.1237 
G9_12 –3.1299 G9_27 –3.1638 N12 –25.4653 N27 –507.2849 
G9_13 –3.1424 G9_28 –3.2038 N13 –23.9582 N28 –35.0315 
G9_14 –3.1300 G9_29 –3.1714 N14 –25.2204 N29 –356.9657 

Min score = –4.2650 Max score = –11.7943 

Based on the results in Figure 27, we would like to set a threshold. Then any file scoring 
higher than this threshold is deemed a metamorphic virus variant of the type the model 
was trained to detect, and any file scoring lower is considered to not be such a virus. 
Using a threshold of, say, –0.6, we would have perfect detection, that is, the HMM would 
never make a mistake. 
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Figure 28 Family viruses and normal files tested against ninth generation model (see online 
version for colours) 

 

This result is surprising and clearly shows the strength of an HMM-based detection 
technique. Our ninth generation virus variants have virtually no similarity to each other, 
yet a properly trained HMM model is able to easily distinguish between these 
metamorphic viruses and normal files. Several more related experiments are discussed in 
Desai (2008). 

10 Conclusions and future work 

We developed a metamorphic engine that yields morphed copies of a given base 
assembly file. We showed that by using a known virus as our base file, and iterating this 
process over several generations, we can produce highly morphed and highly dissimilar 
virus files. These were among the main criteria suggested in Stamp and Wong (2006) as 
ways to defeat an HMM-based detection scheme. From this perspective, it appeared 
likely that these morphed viruses would successfully evade HMM-based detection. 

Surprisingly, the HMM-based detector was still able to correctly classify viruses and 
normal files in every case tested. This shows that even with high metamorphism and 
virtually no similarity between the morphed viruses, an HMM is able to identify a 
common pattern in the morphed viruses. In short, the HMM has proved itself extremely 
robust and very difficult to defeat. 

Perhaps, one area for improvement over our approach lies with dead code insertion 
and its effect on the file size. The size of the base virus we selected was 1.5 KB. 
Applying our metamorphic engine tends to increase the file size, and applying the engine 
over several generations increases the original file size significantly. The increase is size 
as a function of the number of iterations is illustrated in Figure 29. 
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Figure 29 Change in file sizes over nine generations (see online version for colours) 

 

While it is possible to produce metamorphic viruses that do not grow, this constraint 
makes it difficult to insert dead code, and without dead code, we might lose some of the 
metamorphism, and we would certainly lose much of our ability to make the 
metamorphic viruses look more ‘normal’. Consequently, it might be better to accept that 
the metamorphic files will grow, but try to limit the growth to a smaller percentage. 

We believe that the most straightforward way to defeat HMM-based detection lies in 
the direction of equivalent code substitution. Equivalent code substitution will not tend to 
increase file sizes significantly, and it can certainly yield a great deal of metamorphism. 
And if the code substitutions were chosen appropriately, they could even make the 
resulting code appear to be more ‘normal’. However, this approach is not as simple as it 
might at first appear. The difficulty here is that the number of code segments that we 
would want to be able to substitute for would need to be very large. In addition, for most 
(if not all) possible substitution, we would require a large number of possible substitutes. 
While in principle this appears to be feasible, in practice it would be challenging to create 
such a massive ‘library’ of pre-defined code substitutions, all of which could be used 
without fear of breaking the underlying application. 

Perhaps, the most intriguing approach to making HMM-proof metamorphic viruses is 
to look closely at the parameters of the HMM model itself (i.e., the A and B matrices). 
More precisely, we could generate an HMM model for a given set of normal code, then 
adjust our metamorphic engine parameters until the metamorphic viral code yields an 
HMM model that closely resembles the model for normal code. If this could be done, it 
would certainly defeat HMM-based detection. However, there are many obstacles along 
this path. However, the potential payoff would be significant, since such an approach 
would represent a fundamental attack on the HMM itself and therefore would yield an 
attack on any technology that relies on HMMs. For example, such a technique would 
provide a novel attack on speech recognition software. 
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