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Correlated failures in power systems

New technology and software
advancements pose new threats to
power systems (e.g. PMUs,
FACTS, WAMS)

Failures due to software or
hardware faults are more likely to
be more correlated than other
failures

Current reliability criteria, such as
the N − 1 criterion assume
independent failures and do not
work well for correlated failures

How does increased correlation
between faults affect losses, and
how can these be measured?
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DC power flow model

Power injections P are given by:

P = V 2ATBAθ =: LBθ

P ∈ Rn is a vector of power injections
θ is a vector of phase angles
V is the bus voltage
A ∈ Rm×n is the node-edge incidence
matrix of the graph corresponding to
the power system
B = diag(b1, . . . , bn) ∈ Rm×m is a
matrix of edge admittances
LB ∈ Rn×n is the weighted Laplacian
of the power system, with weight
matrix V 2B

vi

vj

Pij=V 2bij(θj − θi )



Load shedding

Load shed defined as:

S := Pload − Pdemand
load

where Pload is the total power load of the load nodes, and
Pdemand
load is the total power demand

The load shed represents the gap between power supply and
demand, and is used as a last resort to maintain stability in
the power system

In normal operation, the load shed S = 0



Optimal load shedding
By using the DC-model, the problem of minimizing the load
shed problem can be cast as a linear program1:

min Load shed
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Implementation. Dekker, Abingdon, 2004



Connection to the N − 1 criterion

Definition

A power system is N − 1 reliable if for all single disconnections of
power lines, it holds that S = 0

The N − 1 criterion is a widely used deterministic reliability
criterion

The N − 1 criterion does not allow measuring the size of the
losses

There is an implicit assumption that 2 or more failures are
very unlikely



Model of the Nordic power grid

We derive a static model of the Nordic
HV power grid

470 buses, 717 power lines
Topology available from public
sources
Line admittances estimated by line
length
Generation capacities and line
capacities are collected from public
sources
Demand data estimated from census
data

Production node

Demand node

400 kV power line

300 kV power line

220 kV power line

132 kV power line



Problem formulation

Failures are modeled as a binary random variable X :

Xi = 0⇔ line i is connected
Xi = 1⇔ line i is disconnected (Bii = 0)

Note that the line admittances BX = B(I − diag(X )) are
random variables, hence the load shed
S(X ) = minθ{c(X )T θ|C (X )θ � d} is also a random variable

Keep X̄ = E[X ] constant, and vary σX = E[(X − X̄ )T (X − X̄ )]

Problem

How does the distribution of S(X ) depend on the correlation of
the failures X?



Monte Carlo sampling algorithm

for different covariances do
for i=1:number of samples do

Draw a sample X̄ from the Bernoulli RV X with given
mean and covariance, then compute:

S(X̄ ) = min
θ
{cT θ|C (X̄ )θ ≤ d}

end for
end for

The sampled mean converges asymptotically to the actual
mean, in particular given ε > 0, δ > 0, there exists a number
of samples N ∼ 1

δε2
s.t.:

Pr[|ŜN − S̄ | ≥ ε] ≤ δ

where ŜN , S̄ are the sampled and the actual mean of S



Simulation results

Consider a model where neighboring lines
are more likely to fail simultaneously

Let the covariance between power lines be
nonzero iff they are incident

Run the Monte Carlo simulation for
N = 1000 samples

Production node

Demand node

400 kV power line

300 kV power line

220 kV power line

132 kV power line



Sampled load shed distributions

The load shed distribution
for the uncorrelated case,
σX = 0

It is observed that the
load shed distribution can
be well approximated with
a Weibull distribution



Sampled load shed distributions
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As correlations increase, Pr(X = 0) decreases

The tails of the load shed distribution get fatter as
correlations increase



Fitted Weibull distributions for different correlations
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When comparing the distributions side-by-side the differences
are evident



Mean and standard deviation as a function of correlation
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Conclusions

Traditional reliability criteria such as the N − 1 criterion are
not sufficient when the failure distributions are correlated

N − 2 may not be computationally or economically feasible.
There is need for new measures of reliability

Monte Carlo study is used for analyzing power system
reliability, in particular under correlated failures

Increased correlation between power line failures can increase
the expected cost of system operation, as well as the variance,
leading to higher risks

Analytical studies are needed to provide further insight in the
consequences of correlated failures



Thank you!



Correlation between power lines connected to PMU nodes

Let:the failures between power lines connected to PMUs be
correlated
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As correlations increase, the expected load shed increases.
The tails of the load shed get fatter with correlations
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Both the mean and the vaiance of S increase with correlations
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