Correlated Failures of Power Systems: Analysis of the Nordic Grid

Martin Andreasson^{*}, Saurabh Amin[†], Galina Schwartz[†], Karl H. Johansson^{*}, Henrik Sandberg^{*}, Shankar S. Sastry[†]

* ACCESS Linnaeus Centre, KTH † TRUST Center, UC Berkeley

April 11, 2011 - FDSCPS Workshop

Correlated failures in power systems

- New technology and software advancements pose new threats to power systems (e.g. PMUs, FACTS, WAMS)
- Failures due to software or hardware faults are more likely to be more correlated than other failures
- Current reliability criteria, such as the N - 1 criterion assume independent failures and do not work well for correlated failures
- How does increased correlation between faults affect losses, and how can these be measured?

DC power flow model

• Power injections P are given by:

 $P = V^2 A^T B A \theta =: L_B \theta$

- $P \in \mathbb{R}^n$ is a vector of power injections
- θ is a vector of phase angles
- V is the bus voltage
- A ∈ ℝ^{m×n} is the node-edge incidence matrix of the graph corresponding to the power system
- B = diag(b₁,..., b_n) ∈ ℝ^{m×m} is a matrix of edge admittances
- $L_B \in \mathbb{R}^{n \times n}$ is the weighted Laplacian of the power system, with weight matrix V^2B

Load shedding

• Load shed defined as:

$$S := P_{load} - P_{load}^{demand}$$

where P_{load} is the total power load of the load nodes, and $P_{\mathit{load}}^{\mathit{demand}}$ is the total power demand

- The load shed represents the gap between power supply and demand, and is used as a last resort to maintain stability in the power system
- In normal operation, the load shed S = 0

Optimal load shedding

 By using the DC-model, the problem of minimizing the load shed problem can be cast as a linear program¹:

¹Abur, Gomez. *Power System State Estimation: Theory and Implementation*. Dekker, Abingdon, 2004

Connection to the N-1 criterion

Definition

A power system is N-1 reliable if for all single disconnections of power lines, it holds that S=0

- The N-1 criterion is a widely used deterministic reliability criterion
- The N-1 criterion does not allow measuring the size of the losses
- There is an implicit assumption that 2 or more failures are very unlikely

Model of the Nordic power grid

- We derive a static model of the Nordic HV power grid
 - 470 buses, 717 power lines
 - Topology available from public sources
 - Line admittances estimated by line length
 - Generation capacities and line capacities are collected from public sources
 - Demand data estimated from census data

Problem formulation

• Failures are modeled as a binary random variable X:

- $X_i = 0 \Leftrightarrow$ line *i* is connected
- $X_i = 1 \Leftrightarrow$ line *i* is disconnected $(B_{ii} = 0)$
- Note that the line admittances $B_X = B(I \text{diag}(X))$ are random variables, hence the load shed $S(X) = \min_{\theta} \{ c(X)^T \theta | C(X) \theta \leq d \}$ is also a random variable
- Keep $\bar{X} = \mathsf{E}[X]$ constant, and vary $\sigma_X = \mathsf{E}[(X \bar{X})^T (X \bar{X})]$

Problem

How does the distribution of S(X) depend on the correlation of the failures X?

Monte Carlo sampling algorithm

for different covariances do for i=1:number of samples do Draw a sample \bar{X} from the Bernoulli RV X with given mean and covariance, then compute:

$$S(\bar{X}) = \min_{\theta} \{ c^T \theta | C(\bar{X}) \theta \leq d \}$$

end for end for

• The sampled mean converges asymptotically to the actual mean, in particular given $\epsilon > 0, \delta > 0$, there exists a number of samples $N \sim \frac{1}{\delta \epsilon^2}$ s.t.:

$$\Pr[|\hat{S}_N - \bar{S}| \ge \epsilon] \le \delta$$

where \hat{S}_N, \bar{S} are the sampled and the actual mean of S

Simulation results

- Consider a model where neighboring lines are more likely to fail simultaneously
- Let the covariance between power lines be nonzero iff they are incident
- Run the Monte Carlo simulation for N = 1000 samples

Sampled load shed distributions

- The load shed distribution for the uncorrelated case, $\sigma_X = \mathbf{0}$
- It is observed that the load shed distribution can be well approximated with a Weibull distribution

Sampled load shed distributions

- As correlations increase, Pr(X = 0) decreases
- The tails of the load shed distribution get fatter as correlations increase

Fitted Weibull distributions for different correlations

• When comparing the distributions side-by-side the differences are evident

Mean and standard deviation as a function of correlation

• Both the mean and the valance of S increase with correlations

Conclusions

- Traditional reliability criteria such as the N-1 criterion are not sufficient when the failure distributions are correlated
- N 2 may not be computationally or economically feasible. There is need for new measures of reliability
- Monte Carlo study is used for analyzing power system reliability, in particular under correlated failures
- Increased correlation between power line failures can increase the expected cost of system operation, as well as the variance, leading to higher risks
- Analytical studies are needed to provide further insight in the consequences of correlated failures

Thank you!

Correlation between power lines connected to PMU nodes

• Let:the failures between power lines connected to PMUs be correlated

- As correlations increase, the expected load shed increases.
- The tails of the load shed get fatter with correlations

• When comparing the distributions side-by-side the differences are evident

• Both the mean and the valance of S increase with correlations