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Abstract—There has been a growing literature on the malicious
data attack (or data injection attack) on power systems. Most
existing work focuses on the DC (linear) model with linear state
estimators. This paper examines the effects of nonlinearity in
the power systems on the effectiveness of malicious data attack
on state estimation and real-time market. It is demonstrated that
attack algorithms designed for the DC model may not be effective
when they are applied to nonlinear system with nonlinear state
estimators. Discussion and experiments results about nonlinearity
are provided.

Index Terms—State Estimation, Malicious Data Attack, Bad
Data Detection, Electricity Market, Nonlinear System

I. I NTRODUCTION

A. Background

Sophisticated cyber infrastructures are being integratedinto
power system operations. With the advanced development
of sensing, communications, and actuation technology, future
smart grid can provide more reliable real-time control, more
flexible demand options, and more efficiency to the system
operation.

However, the increasing reliance on networking for wide
area situation awareness comes with the risk of cyber attack
through the information network for the grid. An adversary
may break into the communication network, obtain vital
system information, and launch intelligent attacks that can
influence covertly the real-time operation of the power system.
While there is no publicized incidents of such attacks, it isof
significant value to assess the potential impacts of such attacks.
Such analysis may also reveal the vulnerability of the network
topology, the inadequacy of meter placement, and potential
security enhancement solutions. North American Reliability
Council (NERC) also publishes its Critical InfrastructurePro-
tection (CIP) requirements to guide the regulated entity to
secure the electric system operation [1].

Since first published paper on the potential of data attack in
[2], there has been considerable interests on this subject.The
properties of the sensitivity matrix has been examined along
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with intelligent attacking strategies and counter measures have
been proposed [3], [4], [5], [6]. However, an important and
nontrivial simplification in existing analysis is the use of
simple DC model. Such an approach, though significantly
simplifying the analysis, may not accurately characterizethe
effect of attacks. For example, the rank condition of the
sensitivity matrix plays a crucial role in most linear analysis.
For nonlinear system, no single rank condition can capture
all operating conditions. Also, the linear model makes certain
strategies unnecessary thus potentially masks certain more
insidious attacks.

Two important usages of the real-time state estimation
are estimating the state itself [3] and clearing the real-time
electricity market price[7]. If the attacker can alter the mea-
surements and affect indirectly state estimates, the adversary
can influence the decision by the system operator and poten-
tially profit in the real-time market. Perhaps more importantly,
with more active demand side participation, the price changes
caused by an adversary potentially can trigger instabilityas
generators react to price changes.

B. Summary of Results

In this paper, we examine system nonlinearity and the
use of nonlinear state estimation on the effectiveness of
malicious data attack. To our knowledge, this analysis is
the first of this kind in the literature. We demonstrate that
near optimal strategies designed for the linear model are not
necessarily effective under the nonlinear system model, even
if the attacker tracks the factor matrix. The interpretation of
this result is twofold. On the one hand, strategies developed
using simplifying linear assumption are not effective if applied
directly, and the nonlinearity of the power system seems to
provide a certain robustness against such attacks. On the
other hand, the results presented here should perhaps not be
misconstrued as data attacks are ineffective in general. A more
appropriate interpretation is that the linear assumption may
lead to incomplete and possibly misleading conclusion on the
potential risks of data attack.



C. Related work

Although the detection of bad data is a classic subject,
see [8] and references therein, the problem of malicious data
attack and its detection has only attracted attention recently,
due in large part by the work of Liu, Reiter and Ning [9].
They have shown that, by compromising enough meters, the
adversary can perturb the state estimate arbitrarily in some
subspace. Kosutet al. found that the condition for the existence
of such attacks is equivalent to the network observability
condition [10], and a graph theoretic approach is developed
to characterize the so-calledsecurity index—the smallest set
of attacked meters that will cause unobservability [3]. When
the attacker has only limited access to meters in the weak
attack regime, algorithms for detecting malicious attack have
been considered [10].

As a counterpart, the detection schemes for malicious attack
are also proposed. [3] shows that Generalized Likelihood Ratio
Detector performs much better than the traditional two-norm
detector and maximum residue detector. [5] points out that in
order to avoid being attacked by unobserved attack vectors,a
set of basic measurements must be protected.

The attack problem in electricity market was first studied
in [11], [6]. In [6], the authors use a heuristic way to find
the profitable attack in virtual transaction. [7] points outthe
idea of price region and formulates an optimization problem
to gain profit in real-time market, considering the price and
estimated generation level at the same time.

All the papers above fall into the DC network assumption,
even though they may start from a nonlinear model. In
essential, the power system is nonlinear, and the modern
nonlinear state estimation methods are efficient and widely
used in practice [8]. So how these algorithms perform in a
nonlinear setting is an interesting topic to study.

The structure of the rest of the paper is as follows. In
Section (II), we will set up the system model and the attack
framework. Both nonlinear and linear models are presented,
and the difference between the two is stressed. In Section (III),
we briefly describe two applications of the attack, to disturb
the state estimates and to change real-time electricity market
price. The optimal strategies for attack under DC model are
shown. Then we discuss the nonlinearity issue in Section (IV).
We try to explain why it is a different story if the model is
nonlinear rather than linear. Section (V) gives the simulation
result based on IEEE 14bus system, and conclusion is in
Section (VI)

II. SYSTEM AND ATTACK MODELS

A. System model

Consider a standard power system model withn buses. At
bus i, the voltage isVi = |Vi|e

jδi , where|Vi| is the voltage
magnitude andδi is the phase. The network state is given by
the bus voltages,V = (V1, V2, ..., Vn). We can define two real
vectors,Xv = (|V1|, ..., |Vn|) andXδ = (δ1, ..., δn), and form
the real state vectorX = (XT

δ , X
T
v )

T . Note the entry ofXδ

corresponding to the reference bus can be removed. ThenX

has2n− 1 dimensions.

Let Z be thek-dimension measurement vector that includes
a subset of power injection, power flow, voltage magnitude,
PMU value, etc. as its entries. The measurement model is
given by

Z = h(X) +W (1)

whereh : R2n−1 → Rk is the measurement function for a
network with n nodes andk meters, andW is the additive
Gaussian noise, with covariance matrix,R.

For lossless power network (assuming the admittance in the
network is zero everywhere), the measurement model can be
reduced to DC model, given by

Z̃ = H̃Xδ + W̃ (2)

whereZ̃ is the part inZ corresponding to real values (such
as, real injections, real flows),̃H is the sensitivity matrix, and
W̃ is the corresponding measurement noises, with covariance
matrix R̃.

Linearization, on one hand gives us much convenience for
analysis and computation, on the other, brings lots of inaccu-
racy into the result. Currently, most of the research papersof
attack problem are based on the DC model, regardless what the
system parameters are. In this paper, we want to emphasize the
importance of nonlinearity, and what is the effect of neglecting
nonlinearity.

B. State estimation and bad data detector

One simple way to do the state estimation is to find the state
minimizing the weighted square error. The estimated state is
given by

X̂ = arg min
X

(h(X)− Z)TR−1(h(X)− Z). (3)

To find the solution, we need to use Newton-Raphson
iteration until the result converges. This method is quite time
consuming and does not guarantee convergence to the global
optimal value. But in general, it works well. For simplicity,
we will use it to get our simulation results.

If we approximate the system by the DC model, then the
WLS (Weighted Least Square) estimation of the state has a
simple form as below,

X̂δ = Kz̃, K
∆
=(H̃T R̃−1H̃)−1H̃T R̃−1, (4)

Sometimes, bad data appears when errors occur due to meter
malfunctions, bad communications, topological changes, etc.
Bad data detection determines if some of theZi’s are caused
by bad data. Once detected, bad data can be removed from
the actual state estimation.

A general approach for bad data detection is to compute
the residue after state estimation. Given the values of mea-
surements and corresponding estimated state,Z and X̂ , the
residue is given by

r = Z − h(X̂)



Fig. 1: PJM real-time LMP model
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In DC model, the mapping from measurementZ to residue
r has a close form solution as below

r = Z̃ − H̃X̂δ = GZ̃, G
∆
=I − H̃(H̃T R̃−1H̃)−1H̃T R̃−1.

The two-norm residue detectorδ is a threshold detector of
r:

δ(z) =

{

1 if ||r||2 > τ

0 if ||r||2 ≤ τ
(5)

whereτ is the threshold calculated from a certain false alarm
probability. In DC model, according to [12], it is shown thatif
W̃ is normal,r has aχ2-distribution withk̃−n+1 degrees of
freedom, wherẽk andn−1 are the row and column dimensions
of H̃ respectively.

C. Electricity market operation

One of the important applications of state estimation is
clearing the real-time price in electricity market. Nowadays,
the deregulated electricity market in the U.S. consists of two
components, a day-ahead market and a real-time market. In the
day-ahead market, given the load forecastL, an optimal power
flow (OPF) problem is solved under the security constraint.

The solutionP ∗ of the OPF is called theeconomic dispatch.
The locational marginal price (LMP) is defined as the cost of
supplying an additional MW of load at a particular location.

As for the real-time market, fig. (1) shows the PJM real-time
LMP model [13] with four main parts, State Estimator (SE),
Unit Dispatch System (UDS), Locational Price Algorithm
(LPA) and LPA preprocessor. State estimator takes the real-
time measurements to make state estimate. UDS makes the
real-time re-dispatch for the next 5 minutes according to
the current system state. LPA preprocesser takes the result
of SE and UDS, generating the available set of generators
and their real-time offer in real-time LMP calculation. For
simplicity and tractability, we only consider the the effect of
state estimator on real-time LMP. We assume UDS doesn’t
execute the real-time re-dispatch and LPA preprocesser always
gives the same set of available generators in real-time and the
same real-time offer.

The function of the LPA is to determine the real-time price
in every bus. An ex-post formulation (adopted by PJM, ISO-
NE, and etc.) is used to solve the following incremental linear

programming problem [13],

minimize
∑

Ci∆Pi −
∑

Cj∆Lj

subjcet to
∑

∆Pi =
∑

∆Lj

∆Pmin
i ≤ ∆Pi ≤ ∆Pmax

i

∆Lmin
j ≤ ∆Lj ≤ ∆Lmax

i
∑

i Aki∆Pi +
∑

j Akj∆Lj ≤ 0, for all k ∈ Ĉ

where Aki is the shift factor of branchk to bus i. The
set Ĉ is the set of estimated congested lines on which the
estimated flows are equal or above the flow limits. We call
Ĉ as congestion pattern in the following discussion. Since
the estimated flows are determined by the state estimate, the
estimated congested patternĈ is also a function of the state
estimate. In practice, the upper and lower bound of∆pi are
chosen as 0.1MW and -2MW [14].

The real-time LMP is calculated as

λ̂i := λ̂−
∑

j∈Ĉ

Ajiµ̂j (6)

where λ̂ and µ̂j are the dual variable corresponding to the
linear constraint and line flow constraints, respectively.

Since the state estimation is the result of real-time measure-
ment values, the real-time price is naturally a function of meter
values, which can be affected by the attack scheme introduced
in the next subsection.

D. Attack model

Assume there exists an adversary who has access to a subset
of the measurement values in real-time operation. Denote the
set of meters that can be observed in real-time asB, the set
that can be manipulated in real-time asA. We callB andA

as observation set and attack pattern respectively. Additionally,
we take a strong assumption that the adversary knows exactly
the topology and system parameters of the system. Then based
on the prior knowledge of the operating state and the real-time
observationZo, the adversary can inject an attack vector,A

into the system. Note thatA has only nonzero values on the
set ofA. The attack model can be represented by

Za = h(X) +W +A(Zo)

Here, we useA(Zo) to emphasize that the attack vector is
indeed a function of real-time observation.

Usually, the goals of the adversary may include disturbing
the system (enlarging the mean square error of estimated state),
making profit (disturbing the price in real-time market), and
so on. However, due to the existence of the bad data detector,
the adversary faces trade-off between achieving the goals
and avoiding being detected, especially when the adversary
knows only part of the measurement values or no real-time
information at all.

To the control center, the measurement data received isZa.
Then the state estimation is made based on this attacked data,
and also the residue bad data detector. If the attack vector
triggers the bad data detector, the system operator will check
the system manually. We simply assume the attack attempt
fails in this case.



III. A TTACK STRATEGY FOR THE ADVERSARY UNDERDC
MODEL

A. How to disturb the state estimation

The following attack strategy first appeared in [3]. Now we
apply the strategy to the case that the adversary may have
access to part of the real-time measurement values. With this
additional information, the attack vector now is a functionof
the real-time observation values.

In this section, we assume the system model is DC. Also,
by historical data, the system state follows a Gaussian distri-
bution,Xδ ∼ N(X0,Σx), which is known to the adversary.

First, let’s set up the goal of the adversary. Given the
observationZo, under the existence of the attack vectorA, the
conditional MSE(Mean Square Error) of the state estimation
is

E[‖X̂δ −Xδ‖
2|Zo] = E[‖K(H̃Xδ +W +A)−Xδ‖

2|Zo]

= E[‖KW̃ +KA‖2|Zo]
(7)

In order to disturb the system operation, the adversary can
set the goal as maximizing this conditional MSE, subject to the
detection probability constraint. Then, we want to examinethe
detection part. After attack injection, the conditional expected
squared value of the residue vector with attack,ra, can be
represented as,

E[‖ra‖
2|Zo] = E[‖GZa‖

2|Zo]

= E[‖GW̃ +GA‖2|Zo]
(8)

For a specific attack patternA, let Γ(A) denote the set of
attack vectors that have nonzero values only onA. Then to
the adversary, the attack problem can be viewed as solving

minA∈Γ(A) ‖G(a+ E[W |Zo])‖
2

subject to ‖K(a+ E[W |Zo])‖
2 ≥ C

(9)

whereC is the constant control the conditional MSE value.
In [3], it is shown that the optimal attack vector can be

solved easily by calculating the smallest generalized eigen-
value of the characteristic function. Also,E[W |Zo] can also be
easily solved sinceW andZo are jointly Gaussian distributed.

After finding the optimal attack vector, the adversary will
inject it into the system. In our simulation part, we test this
algorithm on the IEEE-14 bus system. We try both DC model
and nonlinear model (AC model). We want to show that even
though the performance of this algorithm is good for the DC
model, it can hardly achieve anything when the real model is
nonlinear.

B. Gaining profit in the real-time market

From the calculation of the real-time LMP, we can see that
if the set of available generators in real-time remains the same,
the real-time LMP only depends on the congestion pattern.

Our approach relies on a geometric characterization of the
state space. LetX ⊂ ℜM be the set of possible state vectors.
Given a realization of meter dataz, the control center obtains
the state estimatêX(Z) (we shall drop the dependency ofZ

when no confusion arises). From̂X, one obtains the estimated
congestion pattern̂C (also a function ofZ). From the estimated
congestion pattern̂C, a real-time pricêλ is obtained.

Since the state estimatêX is taken as a sufficient statistic,
we can drop the original dataz. As a result, eachX ∈ X is
associated with a congestion patternC thus a real-time price
λ(X), as shown in Fig. (III-B). Defineπ(C) as the region
of X ’s which give the congestion pattern asC. Notice that
we have dropped the ”hat” on the corresponding variables to
indicate that the relation betweenX ∈ X and real-time price
λ is not a function of real-time data.

State space

π0

π1

π2

π3
π4

X

Fig. 2: Partition of the state space by real-time price

Based on the linear DC model and this concept of partition,
[15] described a method to increase the price in real-time
market by injecting attack vector. The estimated flow,F̂ , has
linear relationship with the measurement values as in Eq.(4).
So after injecting the attack vectorA,

F̂ = HF X̂a = HFKZ̃ +HFKA

whereHF is the matrix factor between state and flow under
linear model.

The basic idea is first estimating the state based on the
real-time observation, then starting from the estimated state,
moving the estimated state with attack injection to the center
of highest price region with the power constraint of the attack
vector. We will also compare the result under linear and
nonlinear models for this algorithm.

IV. D ISCUSSION ABOUT NONLINEARITY

To handle a research problem, we always start from an
easy scenario, such as using DC model in this power attack
problem. Linearization here gives us a bunch of theoretical
results and intelligent attack strategies. It is the time topause



and think about how far we are now from solving the actual
problem under AC model.

In the early study of state estimation on power system [16],
it was shown that decomposition of real and reactive power is
valid in most of the normal cases, due to the reasons such as
the reactance is much larger than the resistance, the voltage
on each bus is quite close to each other and so on. Linear
state estimation is based on this argument and has achieved
great success in actual power system control, optimal power
flow analysis and economic dispatch calculation. Following
this path, almost all of recent research work on power system
attack problem is formulated and solved based on the linear
system assumption, such as [2], [6], [3], as our discuss in
section III. We’d like to ask in the following whether this
assumption is valid or not.

At least four things are in doubt. The first is the undetected
attack vector. In [2] and other related work, effort is put to
find the null space of the linear system factor matrix,H . By
using DC model, they claimed that if there exists a sparse
vector living in the null space, then a sparse undetected attack
vector is found. As long as the original set of measurement
values passes the bad data detector, such an attack can not be
detected.

However, this argument no longer holds for nonlinear sys-
tem. Assume the system equation isZ = f(X)+W (same as
eq. 1). The state estimate iŝX given the measurementZ. By
injecting attack vectorA = ▽f(X)∆X , the adversary hopes
the control center will get state estimates asX̂+∆X , without
increasing the residue value.

We do second order approximation of the system,

f(X̂ +∆X) ≈ f(X̂) +▽f(X)∆X + (∆X)T ▽2 f(X)∆X

(10)
We can see that even though we make the local non-

linearization, when the curvature of the system function is
large, a small perturbation of the measurement values may
cause big inconsistence in the nonlinear weighted least square
estimation. The added residue value is(∆X)T ▽2 f(X)∆X .
We need to evaluate this value first before claiming the effect
of so-called undetected attack.

The second is the detection probability, which is much larger
under AC model. When the attack is sparse, doing iteration
can effectively reduce the effect of the attack vector and get
the state estimate much closer to the actual one than linear
estimator, which makes the residue obvious to be identified as
abnormal. So, if the adversary designs the attack vector based
on the linear model, it can hardly avoid being detected while
making effect to the system, as we’ll see in the simulation
part.

The third is the state estimation result. We point out earlier
that to disturb the system, the adversary faces the trade-off
between enlarging the state estimate MSE and avoiding being
detected. However, under nonlinear system model, not only it
is easier to detect the attack, the effect of disturbing the state
estimate is waken. To some extent, iteration will correct the

error in the measurement. This means that each point on the
trade-off curve of attack under linear system moves inward
under nonlinear system.

The fourth is the effect of attack vector on the system. In [6],
[3], no matter what metrics are used in the analysis, the effects
after injecting an attack vector are evaluated by the linear
model. In linear model, linear relationship can be established
between the value change of estimated states and attack vector.
This consequence is very helpful for analysis and algorithm
design but unrealistic for nonlinear system. Since nonlinear
estimator is much more powerful than the linear counterpart,
the effect of attack is largely alleviated. Especially in the
electricity market we study, only when the estimated states
are moved far enough into another congestion pattern region,
the attack vector can change the price as the adversary wants.
The actual movement of estimated states is much shorter than
the linear model gives. This means on one hand, the adversary
needs to take much higher risk to achieve the same effect as
in the linear model; on the other hand, the evaluation of attack
vector is much less accurate. The adversary doesn’t actually
know what will happen after injecting attack vector, or at least
by current method, the adversary cannot find the optimal attack
vector.

As we can see from the simulation part, our results are
very pessimistic. The algorithms considered in Section V is
very successful under linear assumption, but can affect the
nonlinear system little, although we try local linearization
based on the observation and prior knowledge of the system
states.

V. SIMULATION RESULTS

We use IEEE 14 bus system to illustrate the effect of using
nonlinear system instead of linear system. Here, all the data,
including the branch parameters, quantity of loads, generation
marginal price and so on. The measurements include all the
real power injections and real branch flows for both directions.
The false alarm probability of the detector is set to be 0.1.

First we will check the optimal attack to maximizing the
conditional MSE. We plot the curve of detection probability
versus the percentage change of MSE. Fig.(3) and Fig.(4)
show the performance of the MSE attack algorithm under
linear system and nonlinear system. In Fig.(3), only the power
injection meter at bus 1 is available to the adversary to attack,
while in Fig.(4), power injection meters at bus 1-4 are all
available to the adversary to attack. Here this 4-sparsity attack
is still observable in DC model.

From the result, we can see that under detection probability
0.5, under two different attack scenarios, the adversary can
achieve about150% and 250% percent increase of MSE,
while the numbers are only about40% and60% for nonlinear
system. These two curves show that even though the adversary
thinks the attack can achieve great disturbance to the system,
the actual impact will be greatly discounted due to the more
powerful nonlinear state estimation.

Then we try the attack on electricity market. Still we use
the IEEE 14 bus system, only setting the real line flow limit



Fig. 3: MSE increase versus Detection probability, one
meter to attack
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Fig. 4: MSE increase versus Detection probability,
four meters to attack
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to be 350MW for every line. We assume the the variance of
states is 6MW, and the variance of the measurements is 3MW.

Fig.(5) is the percentage change of real-time price versus the
detection probability with arbitrary 5 meters to attack under
DC model. Here we mean that we assume the actual physical
law is given by the DC model, and the algorithm is designed
based on the DC model. The three curves represent three
different scenarios, knowing all real-time measurement values
(black), knowing half of the measurement values in real-time
(blue), knowing nothing about the actual measurement values
(red).

Then we add 5 more meters for the attack to attack in the
nonlinear system. Fig.(6) shows the percentage change of real-
time price versus the detection probability. We use the AC
power flow equation to generate the measurement values with
random measurement noises. The attack vector is still designed
based on linear model with the local linearization. The black
line represent the full information scenario. Here, since the
adversary is using the DC model to design, so there is still a
chance for the vector to be detected. The red line denote the

Fig. 5: Real-time price percentage change at bus 1,
with 5 meters to attack, linear model
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Fig. 6: Real-time price percentage change at bus 1,
with 10 meters to attack, nonlinear model
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scenario with no real-time information.
As we can see from the results, although in the nonlinear

case has much more meters to attack, the performance is very
poor. With very high detection probability, the adversary can
achieve little in real-time market.

VI. CONCLUSION

With the development of smart grid, security has become
a serious problem to the power system operator. Many re-
searchers put their effort on the effect of malicious attack
and the corresponding protection methods. To the authors’
knowledge, almost all of them are based on DC model, which
makes the problem tractable. As the first step of handling the
attack problem, under linearization assumption, lots of clever
attack strategies and detection schemes are proposed and
proved effective by simulation results. Although we have good
reasons to make linear assumption since the decomposition
of state estimation is valid in most of the normal operation
scenarios, we still need to proceed to the realistic setting,
nonlinear system model. Then, naturally a question comes out,
”is the lineariztion assumption really valid?”. If so, we don’t
need to do much change to the current results. Otherwise, we
need to take nonlinearity more seriously and cannot just stay
in the DC model, doing those ”fancy” things to linear system.

In this paper, we briefly discussed two types of malicious
attack, increasing state estimates MSE and disturbing the real-
time electricity market price. According to our simulation
results, significant difference under the two system models
can be observed. We can roughly claim that the ability of
malicious attack designed for DC model is largely alleviated
by using more accurate AC state estimation.

The purpose of this paper is to serve as a beginning study
of attack on nonlinear power system. It is far from being
comprehensive. The NERC cyber security criteria [1] provides
a excellent guide for responsible entity(RE) to follow. Many
of the standards require the RE to take a specific security
assessment on the system. Simulating the attack under DC
model may prevent the RE from finding the worst case. It is
quite interesting for us to study in the future how the compliant
utility could be affected by using a realistic model. On the
other hand, since nonlinearity cannot be simply neglected,we
need to take the effort to design attack strategy under AC
model to find the worst effect or the most vulnerable location
of the system.
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