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Abstract—There has been a growing literature on the malicious with intelligent attacking strategies and counter meashexe
data attack (or data injection attack) on power systems. Mos peen proposed [3], [4], [5], [6]. However, an important and
existing work focuses on the DC (linear) model with linear site 3o htrivial simplification in existing analysis is the use of

estimators. This paper examines the effects of nonlineasitin . S
the power systems on the effectiveness of malicious data atk simple DC model. Such an approach, though significantly

on state estimation and real-time market. It is demonstrate that ~ Simplifying the analysis, may not accurately charactetime
attack algorithms designed for the DC model may not be effeate  effect of attacks. For example, the rank condition of the

when they are applied to nonlinear system with nonlinear st  sensitivity matrix plays a crucial role in most linear arsady
estimators. Discussion and experiments results about ndnkarity For nonlinear system, no single rank condition can capture

are provided. A .- all operating conditions. Also, the linear model makesaiart
Index Terms—State Estimation, Malicious Data Attack, Bad p g : !

Data Detection, Electricity Market, Nonlinear System strategies unnecessary thus potentially masks certaire mor
insidious attacks.
[. INTRODUCTION Two important usages of the real-time state estimation

are estimating the state itself [3] and clearing the reakti

T ) o ) electricity market price[7]. If the attacker can alter thean
Sophisticated cyber infrastructures are being integrated g, -ements and affect indirectly state estimates, the adwer

power system operations. With the advanced developmenf, jhquence the decision by the system operator and poten-
of sensing, communications, and actuation technologyréut a1y profit in the real-time market. Perhaps more impotitan
smart grid can provide more reliable real-time control, @0, iih more active demand side participation, the price ckang

flexible demand options, and more efficiency to the syste@,qeq by an adversary potentially can trigger instabiity

operation. _ _ _ _ _ generators react to price changes.
However, the increasing reliance on networking for wide

area situation awareness comes with the risk of cyber attack

through the information network for the grid. An adversary

may break into the communication network, obtain vitad. Summary of Results

system information, and launch intelligent attacks that ca

influence covertly the real-time operation of the powereyst  In this paper, we examine system nonlinearity and the

While there is no publicized incidents of such attacks, ifis use of nonlinear state estimation on the effectiveness of

significant value to assess the potential impacts of suabkst malicious data attack. To our knowledge, this analysis is

Such analysis may also reveal the vulnerability of the nétwothe first of this kind in the literature. We demonstrate that

topology, the inadequacy of meter placement, and potentigar optimal strategies designed for the linear model ate no

security enhancement solutions. North American Religbilinecessarily effective under the nonlinear system modein ev

Council (NERC) also publishes its Critical Infrastructite- if the attacker tracks the factor matrix. The interpretatadf

tection (CIP) requirements to guide the regulated entity this result is twofold. On the one hand, strategies develope

secure the electric system operation [1]. using simplifying linear assumption are not effective ipled
Since first published paper on the potential of data attackdivectly, and the nonlinearity of the power system seems to

[2], there has been considerable interests on this sulijeet. provide a certain robustness against such attacks. On the

properties of the sensitivity matrix has been examined@loother hand, the results presented here should perhaps not be

misconstrued as data attacks are ineffective in generaloem

__ This work is supported in part by the NSF TRUST (The Team fas&Rech  gnnropriate interpretation is that the linear assumpticay m
in Ubiquitous Secure Technology) center under award CCH022, the

National Science Foundation under Grant CNS-1135844 arél DERTS €ad to_ inc_omplete and possibly misleading conclusion en th
research program. potential risks of data attack.

A. Background



C. Related work Let Z be thek-dimension measurement vector that includes

Although the detection of bad data is a classic subje&,subset of power injection, power flow, voltage magnitude,
attack and its detection has only attracted attention tggendiven by
due in large part by the work of Liu, Reiter and Ning [9].
They have shown that, by compromising enough meters, the Z=nhX)+W (1)
adversary can perturb the state estimate arbitrarily mesomhereh R2-1 _y Rk is the measurement function for a
subspace. Kosut al. found that the condition for the existence” . -

etwork withn nodes andk meters, and¥ is the additive

of such attacks is equivalent to the network observabm&

. : : éaussmn noise, with covariance matrix,
condition [10], and a graph theoretic approach is develope For lossless power network (assuming the admittance in the
to characterize the so-callescurity index—the smallest set P 9

of attacked meters that will cause unobservability [3]. Whe network is zero everywhere), the measurement model can be

the attacker has only limited access to meters in the wea q(duced to DC model, given by
attack regime, algorithms for detecting malicious attaekeh Z=HXs+W (2)
been considered [10].

As a counterpart, the detection schemes for malicioustattaghere Z is the part inZ corresponding to real values (such
are also proposed. [3] shows that Generalized LikelihodibRaas, real injections, real flows}] is the sensitivity matrix, and
Detector performs much better than the traditional twormor#V is the corresponding measurement noises, with covariance
detector and maximum residue detector. [5] points out thatMatrix k.
order to avoid being attacked by unobserved attack vectors, Linearization, on one hand gives us much convenience for
set of basic measurements must be protected. analysis and computation, on the other, brings lots of inacc

The attack problem in electricity market was first studieticy into the result. Currently, most of the research papérs
in [11], [6]. In [6], the authors use a heuristic way to fincattack problem are based on the DC model, regardless what the
the profitable attack in virtual transaction. [7] points ¢bé System parameters are. In this paper, we want to emphasize th
idea of price region and formulates an optimization probleimportance of nonlinearity, and what is the effect of netirer
to gain profit in real-time market, considering the price angonlinearity.
estimated generation level at the same time.

All the papers above fall into the DC network assumptio
even though they may start from a nonlinear model. In One simple way to do the state estimation is to find the state
essential, the power system is nonlinear, and the modenmimizing the weighted square error. The estimated stte i
nonlinear state estimation methods are efficient and widedjwven by
used in practice [8]. So how these algorithms perform in a
nonlinear setting is an interesting topic to study. X = arg min(h(X) — 2)TR™Y(W(X) — 2). (3)

The structure of the rest of the paper is as follows. In X
Section (I1), we will set up the system model and the attack To find the solution, we need to use Newton-Raphson
framework. Both nonlinear and linear models are presentédration until the result converges. This method is quiiteet
and the difference between the two is stressed. In Sectin (Iconsuming and does not guarantee convergence to the global
we briefly describe two applications of the attack, to disturoptimal value. But in general, it works well. For simplicity
the state estimates and to change real-time electricitkeharwe will use it to get our simulation results.
price. The optimal strategies for attack under DC model arelf we approximate the system by the DC model, then the
shown. Then we discuss the nonlinearity issue in Sectioh (IMVLS (Weighted Least Square) estimation of the state has a
We try to explain why it is a different story if the model issimple form as below,
nonlinear rather than linear. Section (V) gives the simaoiat
result based on IEEE 14bus system, and conclusion is in X5 = K2, Ké(ﬁTR—lﬁ)—lﬁTR—{ (4)

Section (VI)
Sometimes, bad data appears when errors occur due to meter
Il. SYSTEM AND ATTACK MODELS malfunctions, bad communications, topological changes, e

A. System model Bad data detection determines if some of fiés are caused

Consider a standard power system model withuses. At by bad data. Once detected, bad data can be removed from
busi, the voltage isV; = |V;|e’%, where|V;| is the voltage the actual state estimation.
magnitude and; is the phase. The network state is given by A general approach for bad data detection is to compute
the bus voltagesy = (V1, Vs, ..., V;,). We can define two real the residue after state estimation. Given the values of mea-
vectors, X, = (|Vi], ..., |Vy,|) and X5 = (41, ..., 6,), and form surements and corresponding estimated statend X, the
the real state vectak = (X!, X)”. Note the entry ofX; residue is given by
corresponding to the reference bus can be removed. ’hen
has2n — 1 dimensions. r=Z—h(X)

IJ? State estimation and bad data detector



Fig. 1: PIM real-time LMP model programming problem [13],
FE r, minimize 3 CAP; — 3 C;AL
subjcetto Y AP, =) AL;
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geteeton) | Estmated demand, generation, where Ay, is the shift factor of branchk to busi. The

topology, congestions

set C is the set of estimated congested lines on which the
estimated flows are equal or above the flow limits. We call
¢ as congestion pattern in the following discussion. Since
the estimated flows are determined by the state estimate, the
estimated congested pattetnis also a function of the state
estimate. In practice, the upper and lower bound\gf are
chosen as 0.1MW and -2MW [14].

In DC model, the mapping from measuremehnto residue
r has a close form solution as below

5y 5 A 0 57T =1 7\ —1 77T P
r=2-HX;=GZ, G=I-HH"R'H)'H'R". The real-time LMP is calculated as
The two-norm residue detectéris a threshold detector of A=A Z Ajif (6)
T Jjee
5(z) = 1 it frlP>r (5) where A and /i; are the dual variable corresponding to the
0 if ||r]]? <7 linear constraint and line flow constraints, respectively.

_ _ Since the state estimation is the result of real-time measur
wherer is the threshold calculated from a certain false alarfjent values, the real-time price is naturally a function eten

probability. In DC model, according to [12], it is shown thilat yajues, which can be affected by the attack scheme intrabuce
W is normal,r has ay?-distribution withk —n+1 degrees of i the next subsection.
freedom, wheré andn—1 are the row and column dimensions
of H respectively. D. Attack model
Assume there exists an adversary who has access to a subset
of the measurement values in real-time operation. Den@&e th
set of meters that can be observed in real-timé&ashe set
One of the important applications of state estimation #at can be manipulated in real-time .4s We callB and A
clearing the real-time price in electricity market. Nowgsla as observation set and attack pattern respectively. Auxtditiy,
the deregulated electricity market in the U.S. consistsaaf t We take a strong assumption that the adversary knows exactly
components, a day-ahead market and a real-time market Intihe topology and system parameters of the system. Then based
day-ahead market, given the load forecasan optimal power on the prior knowledge of the operating state and the read-ti
flow (OPF) problem is solved under the security constraintobservationZ,, the adversary can inject an attack vectdr,
The solutionP* of the OPF is called theconomic dispatch into the system. Note that has only nonzero values on the
The locational marginal price (LMP) is defined as the cost €t of A. The attack model can be represented by
supplying an additional MW of load at a particular location.
As for the real-time market, fig. (1) shows the PIM real-time Zo = h(X)+ W + A(Z,)
LMP model [13] with four main parts, State Estimator (SE)ere, we useA(Z,) to emphasize that the attack vector is
Unit Dispatch System (UDS), Locational Price Algorithmndeed a function of real-time observation.
(LPA) and LPA preprocessor. State estimator takes the realysually, the goals of the adversary may include disturbing
time measurements to make state estimate. UDS makes tthesystem (enlarging the mean square error of estimatisj,sta
real-time re-dispatch for the next 5 minutes according faking profit (disturbing the price in real-time market)dan
the current system state. LPA preprocesser takes the resulion. However, due to the existence of the bad data detector,
of SE and UDS, generating the available set of generatere adversary faces trade-off between achieving the goals
and their real-time offer in real-time LMP calculation. Fognd avoiding being detected, especially when the adversary
simplicity and tractability, we only consider the the eff@¢ knows only part of the measurement values or no real-time
state estimator on real-time LMP. We assume UDS doesmtormation at all.
execute the real-time re-dispatch and LPA preprocess@yalw To the control center, the measurement data receiveq.is
gives the same set of available generators in real-timela@d Then the state estimation is made based on this attacked data
same real-time offer. and also the residue bad data detector. If the attack vector
The function of the LPA is to determine the real-time pric&riggers the bad data detector, the system operator wittiche
in every bus. An ex-post formulation (adopted by PJM, 1ISQhe system manually. We simply assume the attack attempt
NE, and etc.) is used to solve the following incrementaldine fails in this case.

C. Electricity market operation



I1l. ATTACK STRATEGY FOR THE ADVERSARY UNDERDC  when no confusion arises). FroM, one obtains the estimated
MODEL congestion patteré (also a function of7). From the estimated
A How to disturb the state estimation congestion patter@, a real-time price\ is obtained.
. i : Since the state estimat§ is taken as a sufficient statistic,
The following attack strategy first appeared in [3]. Now we

apply the strategy to the case that the adversary may have °an drop the original data As a result, eact < X is

access to part of the real-time measurement values. Wish tassomated with a congestion pattéfthus a real-time price

i T . )
" ; : . . (X), as shown in Fig. (IlI-B). Definer(C) as the region
additional information, the attack vector now is a functmin of X’s which give the congestion pattern & Notice that

the real-time observation values. we have dropped the "hat” on the corresponding variables to
In this section, we assume the system model is DC. Alsg P P 9

by histori . %n'dicate that the relation betweeti € X and real-time price
y historical data, the system state follows a Gaussmmldls)\ is not a function of real-time data
bution, X5 ~ N(Xo, X,.), which is known to the adversary. '

First, let's set up the goal of the adversary. Given the
observatior?Z,, under the existence of the attack vectrthe
conditional MSE(Mean Square Error) of the state estimation
is

E[|[Xs — X5]%|Z0] = E[|K(HXs + W + A) — X;]*| Z]
E[|KW + KA|?|Z,]
(7

In order to disturb the system operation, the adversary can
set the goal as maximizing this conditional MSE, subjechto t
detection probability constraint. Then, we want to exantiree
detection part. After attack injection, the conditionapegted
squared value of the residue vector with attack, can be
represented as,

State space

EllralP1Z:) = E[IGZd?12) @
= E[|GW + GA|* ]

For a specific attack pattera, let I'(A) denote the set of
attack vectors that have nonzero values only/nThen to

. . Fig. 2: Partition of the state space by real-time price
the adversary, the attack problem can be viewed as solving g P y P

Minger)  [|Gla+E[W]|Z])|>

¢ 9
subject to || (a + E[W|Z,])|* = C © Based on the linear DC model and this concept of partition,

whereC' is the constant control the conditional MSE value.[15] described a method to increase the price in real-time

In [3], it is shown that the optimal attack vector can benarket by injecting attack vector. The estimated fldwy,has
solved easily by calculating the smallest generalized reigdinear relationship with the measurement values as in Eq.(4
value of the characteristic function. AlSB[IW|Z,] can also be So after injecting the attack vectet,
easily solved sincé’ andZ, are jointly Gaussian distributed.

After finding the optimal attack vector, the adversary will F=HpX,=HrKZ+ HpKA
inject it into the system. In our simulation part, we teststhi _ ]
algorithm on the IEEE-14 bus system. We try both DC modyhereHF is the matrix factor between state and flow under
and nonlinear model (AC model). We want to show that evd{year model. o o
though the performance of this algorithm is good for the DC The basic idea is first estimating the state based on the
model, it can hardly achieve anything when the real model igal-time observation, then starting from the estimatedest

nonlinear. moving the estimated state with attack injection to the eent
o o . of highest price region with the power constraint of theckta
B. Gaining profit in the real-time market vector. We will also compare the result under linear and

From the calculation of the real-time LMP, we can see thapnlinear models for this algorithm.
if the set of available generators in real-time remains #mees
the real-time LMP only depends on the congestion pattern.

Our approach relies on a geometric characterization of theTo handle a research problem, we always start from an
state space. LeX ¢ RM be the set of possible state vectorseasy scenario, such as using DC model in this power attack
Given a realization of meter data the control center obtains problem. Linearization here gives us a bunch of theoretical
the state estimaté'(Z) (we shall drop the dependency &f results and intelligent attack strategies. It is the timpaase

IV. DISCUSSION ABOUT NONLINEARITY



and think about how far we are now from solving the actualrror in the measurement. This means that each point on the
problem under AC model. trade-off curve of attack under linear system moves inward

In the early study of state estimation on power system [16]nder nonlinear system.
it was shown that decomposition of real and reactive power isThe fourth is the effect of attack vector on the system. In [6]
valid in most of the normal cases, due to the reasons such[3ls no matter what metrics are used in the analysis, thetsffe
the reactance is much larger than the resistance, the eoltadter injecting an attack vector are evaluated by the linear
on each bus is quite close to each other and so on. Lingaodel. In linear model, linear relationship can be esthklis
state estimation is based on this argument and has achiebetiveen the value change of estimated states and attaak.vect
great success in actual power system control, optimal poweris consequence is very helpful for analysis and algorithm
flow analysis and economic dispatch calculation. Followingesign but unrealistic for nonlinear system. Since noaline
this path, almost all of recent research work on power systeratimator is much more powerful than the linear counterpart
attack problem is formulated and solved based on the lindhe effect of attack is largely alleviated. Especially ire th
system assumption, such as [2], [6], [3], as our discuss étectricity market we study, only when the estimated states
section IlIl. We'd like to ask in the following whether thisare moved far enough into another congestion pattern region
assumption is valid or not. the attack vector can change the price as the adversary.wants

At least four things are in doubt. The first is the undetectéiche actual movement of estimated states is much shorter than
attack vector. In [2] and other related work, effort is put téthe linear model gives. This means on one hand, the adversary
find the null space of the linear system factor matfik, By needs to take much higher risk to achieve the same effect as
using DC model, they claimed that if there exists a spargethe linear model; on the other hand, the evaluation othtta
vector living in the null space, then a sparse undetectedlatt vector is much less accurate. The adversary doesn’t agtuall
vector is found. As long as the original set of measuremeknow what will happen after injecting attack vector, or atde
values passes the bad data detector, such an attack can ndybirrent method, the adversary cannot find the optimatlatta
detected. vector.

However, this argument no longer holds for nonlinear sys- As we can see from the simulation part, our results are
tem. Assume the system equationZis= f(X)+ W (same as very pessimistic. The algorithms considered in Section V is
eq. 1). The state estimate } given the measurement. By very successful under linear assumption, but can affect the
injecting attack vector = v/ f(X)AX, the adversary hopesnonlinear system little, although we try local linearipati
the control center will get state estimates¥s A X, without based on the observation and prior knowledge of the system
increasing the residue value. states.

We do second order approximation of the system,
V. SIMULATION RESULTS

. . We use IEEE 14 bus system to illustrate the effect of using
F(X +AX) = f(X)+ Vf(X)AX + (AX)T ? f(X)AX  nonlinear system instead of linear system. Here, all the,dat
(10) including the branch parameters, quantity of loads, geivera
We can see that even though we make the local namarginal price and so on. The measurements include all the
linearization, when the curvature of the system function igal power injections and real branch flows for both direwtio
large, a small perturbation of the measurement values miblye false alarm probability of the detector is set to be 0.1.
cause big inconsistence in the nonlinear weighted leastraqu First we will check the optimal attack to maximizing the
estimation. The added residue valug4sX)” 72 f(X)AX. conditional MSE. We plot the curve of detection probability
We need to evaluate this value first before claiming the effegersus the percentage change of MSE. Fig.(3) and Fig.(4)
of so-called undetected attack. show the performance of the MSE attack algorithm under
The second is the detection probability, which is much largénear system and nonlinear system. In Fig.(3), only the grow
under AC model. When the attack is sparse, doing iteratiamjection meter at bus 1 is available to the adversary tckita
can effectively reduce the effect of the attack vector and gehile in Fig.(4), power injection meters at bus 1-4 are all
the state estimate much closer to the actual one than linasailable to the adversary to attack. Here this 4-sparsiacia
estimator, which makes the residue obvious to be identifiedia still observable in DC model.
abnormal. So, if the adversary designs the attack vect@dobas From the result, we can see that under detection probability
on the linear model, it can hardly avoid being detected whi®5, under two different attack scenarios, the adversary ca
making effect to the system, as we’ll see in the simulaticachieve aboutl50% and 250% percent increase of MSE,
part. while the numbers are only abott% and60% for nonlinear
The third is the state estimation result. We point out earlisystem. These two curves show that even though the adversary
that to disturb the system, the adversary faces the trddetbinks the attack can achieve great disturbance to therayste
between enlarging the state estimate MSE and avoiding bethg actual impact will be greatly discounted due to the more
detected. However, under nonlinear system model, not enlypowerful nonlinear state estimation.
is easier to detect the attack, the effect of disturbing taees  Then we try the attack on electricity market. Still we use
estimate is waken. To some extent, iteration will correet thhe IEEE 14 bus system, only setting the real line flow limit



Fig. 3: MSE increase versus Detection probability, one Fig. 6: Real-time price percentage change at bus 1,
meter to attack with 10 meters to attack, nonlinear model
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. 4: MSE increase versus Detection probability, scenario with no real-time information.
four meters to attack As we can see from the results, although in the nonlinear
‘ ‘ ‘ ‘ ‘ ‘ case has much more meters to attack, the performance is very
] poor. With very high detection probability, the adversaanc
] achieve little in real-time market.

VI. CONCLUSION

MSE increase (percentage)

1 With the development of smart grid, security has become
a serious problem to the power system operator. Many re-
searchers put their effort on the effect of malicious attack
and the corresponding protection methods. To the authors’
knowledge, almost all of them are based on DC model, which
to be 350MW for every line. We assume the the variance gfakes the problem tractable. As the first step of handling the
states is 6MW, and the variance of the measurements is 3M\ack problem, under linearization assumption, lots efret
Fig.(5) is the percentage change of real-time price vetsis ttack strategies and detection schemes are proposed and
detection probability with arbitrary 5 meters to attack @nd proved effective by simulation results. Although we havedjo
DC model. Here we mean that we assume the actual physiggdsons to make linear assumption since the decomposition
law is given by the DC model, and the algorithm is designest state estimation is valid in most of the normal operation
based on the DC model. The three curves represent thie@narios, we still need to proceed to the realistic setting
different scenarios, knowing all real-time measuremehte&® nonlinear system model. Then, naturally a question comes ou
(black), knowing half of the measurement values in reaktimis the lineariztion assumption really valid?”. If so, werdb
(blue), knowing nothing about the actual measurement 8alugeed to do much change to the current results. Otherwise, we
(red). need to take nonlinearity more seriously and cannot just sta
Then we add 5 more meters for the attack to attack in thi¢the DC model, doing those "fancy” things to linear system.
nonlinear system. Fig.(6) shows the percentage changelf re |n this paper, we briefly discussed two types of malicious
time price versus the detection probability. We use the Aitack, increasing state estimates MSE and disturbingethle r
power flow equation to generate the measurement values Wjife electricity market price. According to our simulation
random measurement noises. The attack vector is still degig results, significant difference under the two system models
based on linear model with the local linearization. The blaQ:an be observed. We can rough|y claim that the ab|||ty of
line represent the full information scenario. Here, since t malicious attack designed for DC model is largely allewdate
adversary is USing the DC model to deSign, so there is Stl”b? using more accurate AC state estimation.
chance for the vector to be detected. The red line denote thq’he purpose of this paper is to serve as a beginning Study
of attack on nonlinear power system. It is far from being
comprehensive. The NERC cyber security criteria [1] presid
Fig. 5: Real-time price percentage change at bus 1,  a excellent guide for responsible entity(RE) to follow. Man
with 5 meters to attack, linear model of the standards require the RE to take a specific security
assessment on the system. Simulating the attack under DC
model may prevent the RE from finding the worst case. It is
1 quite interesting for us to study in the future how the cosuputi
] utility could be affected by using a realistic model. On the
“1 other hand, since nonlinearity cannot be simply negleated,
need to take the effort to design attack strategy under AC
‘ ‘ ‘ ‘ ‘ model to find the worst effect or the most vulnerable location
7 petcionroasity N B of the system.
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