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ABSTRACT

Collaborative information systems (CIS) are deployed within
a diverse array of environments, ranging from the Internet
to intelligence agencies to healthcare. It is increasingly the
case that such systems are applied to manage sensitive infor-
mation, making them targets for malicious insiders. While
sophisticated security mechanisms have been developed to
detect insider threats in various file systems, they are nei-
ther designed to model nor to monitor collaborative environ-
ments in which users function in dynamic teams with com-
plex behavior. In this paper, we introduce a community-
based anomaly detection system (CADS), an unsupervised
learning framework to detect insider threats based on infor-
mation recorded in the access logs of collaborative environ-
ments. CADS is based on the observation that typical users
tend to form community structures, such that users with
low affinity to such communities are indicative of anoma-
lous and potentially illicit behavior. The model consists of
two primary components: relational pattern extraction and
anomaly detection. For relational pattern extraction, CADS
infers community structures from CIS access logs, and sub-
sequently derives communities, which serve as the CADS
pattern core. CADS then uses a formal statistical model to
measure the deviation of users from the inferred communi-
ties to predict which users are anomalies. To empirically
evaluate the threat detection model, we perform an analysis
with six months of access logs from a real electronic health
record system in a large medical center, as well as a publicly-
available dataset for replication purposes. The results illus-
trate that CADS can distinguish simulated anomalous users
in the context of real user behavior with a high degree of cer-
tainty and with significant performance gains in comparison
to several competing anomaly detection models.

Categories and Subject Descriptors

H.2.8 [DATABASE MANAGEMENT]: Database Ap-
plications—Data mining; K.6.5 [MANAGEMENT OF

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODASPY’11, February 21-23, 2011, San Antonio, Texas, USA.
Copyright 2011 ACM 978-1-4503-0465-8/11/02 ...$10.00.

Bradley Malin
Department of Biomedical Informatics
School of Medicine
Vanderbilt University
Nashville, TN, USA 37203
b.malin@vanderbilt.edu

COMPUTING AND INFORMATION SYSTEMS]:
Security and Protection— Unauthorized access

General Terms

Algorithms, Experimentation, Security

Keywords

Privacy, Social Network Analysis, Data Mining, Insider Threat
Detection

1. INTRODUCTION

Collaborative information systems (CIS) allow groups of
users to communicate and cooperate over common tasks in
a virtual environment. They have long been called upon to
support and coordinate activities related to the domain of
“computer supported and cooperative work” [6], but, until
recently, CIS were primarily limited to specialized group-
ware tools. Recent breakthroughs in networking, storage,
and processing have facilitated an explosion in the develop-
ment and deployment of CIS over a wide range of environ-
ments. Beyond computational support, the adoption of CIS
has been spurred on by the observation that such systems
can increase organizational efficiency through streamlined
workflows (e.g., [5]), shave administrative costs (e.g., [10]),
assist innovation through brainstorming sessions (e.g., [15]),
and facilitate social engagement (e.g., [42]). On the Internet,
for instance, the notion of CIS is typified in wikis, video con-
ferencing, document sharing and editing, as well as dynamic
bookmarking [13].

At the same time, CIS are increasingly relied upon to
manage sensitive information [17]. For instance, various in-
telligence agencies have adopted CIS environments to enable
timely access and collaboration between groups of agents
and analysts [31]. These systems contain increasingly large
amounts of information on foreign, as well as national, cit-
izens, related to personal relationships, financial transac-
tions, and surveillance activities. The unauthorized passing
of information in such systems to emerging whistle-blowing
publication organizations, such as WikiLeaks, could be catas-
trophic to both the managing agency and the individuals to
whom the information corresponds. Yet, perhaps the most
significant CIS in modern society is the electronic health
record (EHR) system [43]. Evidence indicates that the man-
agement of patient data in electronic form can decrease health-
care costs, strengthen care provider productivity, and in-
crease patient safety [26]. As a result, the Obama adminis-



tration has pledged over $50 billion dollars to develop, net-
work, and promote the adoption of EHRs.

Given the detail and sensitive nature of the information in
emerging CIS, they are a prime target for adversaries origi-
nating from beyond, as well as within, the organizations that
manage them. Numerous technologies have been developed
to mitigate risks originating from outside of the CIS (e.g., [3,
32, 37, 44]). However, less attention has been directed to-
ward the detection of insider threats. While there are some
technologies that have been developed to safeguard infor-
mation from insiders, including the many variants of access
control to prevent exposures [2, 7, 11] as well as behavior
monitoring tools to discover exposures [23, 29, 30, 36, 38|,
these are insufficient for emerging CIS. In particular, there
are several key limitations of existing insider threat detec-
tion and prevention models that we wish to highlight. First,
existing models tend to manage each user (or group) as an
independent entity, which neglects the fact that CIS are in-
herently designed to support team-based environments. Sec-
ond, security models work under the expectation of a static
environment, where a user’s role or their relationship to a
team is well-defined. Again, CIS violate this principle be-
cause teams are often constructed on-the-fly, based on the
shifting needs of the operation and the availability of the
users.

In a CIS, a user’s role and relationship to other users is
dynamic and changes over time. As a result, it is difficult
to differentiate between “normal” and “abnormal” actions in
a CIS based on roles alone. To detect insider threats in a
CIS we need to focus on the behavior of the users. More
specifically, if we shift the focus to behavior, we need to de-
cide upon which models of behavior to pursue. And, once a
prospective set of models is defined, we need to determine
which allow for sufficient detection of steady behavior. For
this work, we work under the hypothesis that typical users
within a CIS are likely to form and function as communities.
As such, the likelihood that a user acting in an unpredicat-
able (or unexpected) manner will be characterized by these
communities is low. Based on this hypothesis, we focus on
the access logs of a CIS to mine relations of users and to
model behavioral patterns.

The goal of this paper is to introduce a framework to de-
tect anomalous insiders from the access logs of a CIS in a
manner that leverages the relational nature and behavior
of system users. The framework is called the community-
based anomaly detection system (CADS). CADS leverages
the fact that, in collaborative environments, users tend to be
team-oriented. As a result, a user should be similar to other
users based on their co-access of similar objects in the CIS.
For example, in an EHR system, an arbitrary user should ac-
cesses similar sets of patients’ records as other users because
of commonalities in care pathways (or business operations),
such that we can infer which groups of users tend to collabo-
rate by their co-access patterns. This, in turn, should enable
the establishment of user communities as a core set of rep-
resentative patterns for the CIS. Then, given such patterns,
CADS can predict which users are anomalous by measuring
their distance to such communities.

The main contributions of this paper can be summarized
as follows:

¢ Relational Patterns from Access Logs: We in-
troduce a process to transform the access logs of a
CIS into community structures using a combination

of graph-based modeling and dimensionality reduction
techniques.

e Anomaly Detection from Relational Patterns:
We propose a technique, rooted in statistical formal-
ism, to measure the deviation of users within a CIS
from the extracted community structures.

e Empirical Evaluation: We utilize several datasets
to systematically evaluate the effectiveness of CADS.
First, we study five months of real world access logs
from the the EMR system of the Vanderbilt University
Medical Center, a large system that is well integrated
to the everday functions of healthcare. In addition,
to facilitate replication of this work, we report on an
evaluation of CADS with a publicly available dataset
of editorial board memberships in various journals. In
lieu of annotated data, we simulate user behavior, and
empirically demonstrate that CADS is more effective
than existing anomaly detection approaches (e.g., [23]
and [36]). Our analysis provides evidence that the typi-
cal system user is likely to join a community with other
users, whereas the likelihood that a simulated user will
join a community is very low.

The remainder of this paper is organized as follows. In
Section 2, we present prior research related to this work,
with a particular focus on access control and anomaly de-
tection. In Section 3, we introduce the CADS framework
and describe the specific community extraction and anomaly
detection methods that were developed for the framework.
In Section 4, we provide a detailed experimental analysis of
our methods with several datasets and illustrate how various
facets of user behavior influence the likelihood of detection.
Finally, we summarize the findings, discuss the limitations,
and propose next steps for extensions of this work in Sec-
tions 5 and 6.

2. RELATED WORK

The focus of this work is on the detection of insider threats
and the mitigation of risk in exposing sensitive information.
In general, there are two types of related security mecha-
nisms that have been designed to address this problem. The
first is to model and/or mine access rules to manage re-
courses of the system and its users. The second is to learn
patterns of user behavior to detect anomalous insiders. In
this section, we review prior research in these areas and re-
late them to the needs and challenges of CIS.

2.1 Access Control

Formal access control schemas are designed to specify how
resources in a system are made available to users. There are
a variety of access control models that have been proposed in
the literature, some of which have been integrated into real
working systems. Here, we review several that are notable
with respect to CIS.

The access matrix model (AMM) is a conceptual frame-
work that specifies each user’s permissions for each object in
the system [37]. Though AMM permits fine-grained map-
ping of access rights, there are several weaknesses of this
framework with respect to CIS. First, it does not scale well,
which makes it difficult to apply to CIS, which can contain
on the order of thousands of users and millions of objects
(e.g., Kaiser Permanente covers over 8 million patients in its



healthcare network [9]). Second, the AMM framework lacks
the ability to support dynamic changes of access rights.

Role-based access control (RBAC) is designed to simplify
the allocation of access rights, by mapping users to roles and
then mapping permissions to the roles [2, 32]. While compu-
tationally more tractable, the roles created in RBAC tend to
be static. As such, they are inflexible and not responsive to
the shifting nature of roles, or the allocation of users to rules,
in CIS. There are no clear ways to update or evolve RBAC
over time. Recently, there have been investigations into role
mining [20, 27, 41], which attempts to automatically group
users based on the similarity of their permissions, but it is
currently unknown how such approaches scale or could be
managed dynamically.

The Task-based access control (TBAC) model extends the
traditional user-object relationship through the inclusion of
task-based and contextual information [29, 40]. TBAC, how-
ever, is limited to contexts that relate to activities, tasks, or
workflow progress. Collaborative systems require a much
broader definition of context, and the nature of collabora-
tion cannot always be easily partitioned into tasks associated
with usage counts.

Team-based access control (TeBAC) appears to provide a
more natural way of grouping users in an enterprise or or-
ganization and associating a collaboration context with the
activity to be performed [11]. Yet, at the present moment,
these models have not yet been fully developed or imple-
mented, and it remains unclear how to incorporate the team
concept into a dynamic framework.

2.2 Anomaly Detection

Anomaly detection techniques are designed to utilize pat-
terns of system use or behavior to determine if any particular
user is sufficiently different than expected. These techniques
can be roughly categorized into supervised and unsupervised
learning approaches.

In a supervised anomaly detection approach, a set of la-
beled training instances are provided. The labels are usually
of the form “anomaly” and “non-anomaly”, though any num-
ber of labels can be applied. The instances are then supplied
to learn or parameterize a classification model based on the
variable features of the instances. The resulting models are
then applied to classify new actions into one (or more) of
the labels. Examples of such approaches include support
vector machines and Bayesian networks [4, 38]. Supervised
models have been shown to have relatively high rates of per-
formance for anomaly detection, however, they are limited
in the context of CIS. This is because the key prerequisite
(i.e., a clearly labeled training dataset) is difficult to gen-
erate for a CIS, particularly in the context of a dynamic
and evolving environment. Additionally, it may not be clear
what the “features” are that can be used to represent the
instances.

By contrast, unsupervised anomaly detection approaches
are designed to make use of the inherent structure, or pat-
terns, in a dataset to determine when a particular instance
is sufficiently different. There are numerous variants of un-
supervised learning that have been applied to insider thread
detection. Three types of unsupervised approaches, in par-
ticular, specifically relate to our work: 1) nearest neighbors,
2) clustering, and 3) spectral projection.

Nearest neighbor anomaly detection techniques [23, 39,
30] have been widely used and are related to the approach

proposed in this paper. These approaches are designed to
measure the distances between instances using features such
as social structures. They determine how similar an instance
is to other “close” instances. If the instance is not sufficiently
similar, then it can be classified as an anomaly. However, so-
cial structures in a CIS are not explicitly defined, and need
to be inferred from the utilization of system resources. If
distance measurement procedures are not tuned to the way
in which social structures have been constructed, the dis-
tances will not represent the structures well. In our exper-
iments, we compare our model to a state-of-the-art nearest
neighbor-based method. The results demonstrate that the
social structure is crucial to the design of a distance measure.

A second approach is Clustering [19, 14], which is invoked
to integrate similar data instances into groups. Methods for
clustering depend on a distance measurement similar to that
utilized in nearest neighbor methods. The key difference be-
tween the two techniques, however, is that clustering tech-
niques evaluate each instance with respect to the cluster it
belongs to, while nearest neighbor techniques analyze each
instance with respect to its local neighborhood. The per-
formance of clustering-based techniques is highly dependent
on the effectiveness of clustering algorithms in capturing the
structure of normal instances. If the clustering technique re-
quires computation of the pairwise distance for all data in-
stances, then techniques, such as that described in [16], can
be quadratic in complexity, which may not be reasonable for
real world applications. In collaborative environment, such
as EHR, the system can have a large number of users, and
there is no obvious social structure, which makes distance
measurement and cluster calculation both complex and in-
appropriate.

A third unsupervised approach is based on spectral pro-
jection of the data. Shyu et al. [36], for instance, present a
spectral anomaly detection model to estimate the principal
components from the covariance matrix of the training data
of “normal” events. The testing phase involves comparing
each point with the components and assigning an anomaly
score based on the point’s distance from the principal com-
ponents. The model can reduce noise and redundancy, how-
ever, collaborative systems are team-oriented, which can de-
teriorate performance of the model as we demonstrate ex-
perimentally (See Section 4).

3. CADS FRAMEWORK

In this section, we present the community-based anomaly
detection system (CADS). To formalize the problem studied
in this work, we will use the following notation. Let U be
the set of users who are authorized to access records in the
CIS. Let S be the set of subjects whose records exist in
the CIS. And, let T be a database of access transactions
captured by the CIS, such that ¢ € T is a 3-tuple of the
form < w,s,time >, where u € U = {u1,u2,...,un}, s €
S ={s1,82,...,8m}, and time is the date the user accessed
the subject’s record. In this paper, m is the number of
subjects in collection, and n is the number of users.

We begin this section with a high-level view of the CADS
framework. This will be followed by the specific empirical
methods applied within the framework.

3.1 Opverview of Framework

The CADS framework consists of two general components,
as depicted in Figure 1. We refer to the two components
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Figure 1: An overview of the community-based
anomaly detection system (CADS).

as 1) Pattern Eztraction (CADS-PE), which feeds into 2)
Anomaly Detection (CADS-AD).

In the CADS-PE component, the CIS access logs are mined
for communities of users. One of the challenges of working
with CIS access logs is their transactional nature. They do
not report the social structure of the organization. Thus, it
is necessary to transform the basic transactions into a data
structure that facilitates the inference of social relations.
The pattern extraction process in CADS-PE consists of a
series of steps that result in a set of community patterns.
First, the transactions are mapped onto a data structure
that captures the relationships between users and subjects.
Next, the structure is translated into a relational network of
users. Then, the network is decomposed into a spectrum of
patterns that models the user communities as probabilistic
models.

In the CADS-AD component, the behaviors of the users
in the CIS access logs are compared to the community pat-
terns. Users that are found to deviate significantly from
expected behavior, as prescribed by the patterns, are pre-
dicted as anomalous users. As in the CADS-PE component,
the CADS-AD component consists of a process to translate
access log transactions into scored events. First, each user is
projected onto a subset of the resulting spectrum of commu-
nities. Next, the distance between the user and their clos-
est neighbors in the communities is computed. In essence,
the distance serves as the basis for a measure of deviance
for each user from the derived community structures. The
greater the deviance, the greater the likelihood that the user
is an anomaly. The following section describes how each of
these components is constructed in greater depth.

3.2 Community Pattern Extraction

The goal of the CADS-PE component is to model com-
munities of users in the CIS. Since communities are not ex-
plicitly documented, CADS infers them from the relation-
ships observed between users and subject’s records in the
CIS access logs. The community extraction process consists
of three subcomponents: 1) user-subject network construc-
tion, 2) transformation to a user-user network, and 3) com-
munity inference.

3.2.1 Access Networks of Users and Subjects

The extraction process begins by mapping the transac-
tions in T onto a bipartite graph. This graph is representa-
tive of the user-subject access network, such that users and
subjects are modeled as vertices, and an edge represents the
number of times that a user accessed the subject’s record.
Figure 2 depicts the translation of transactions into a bipar-
tite graph of users and subjects.

We summarize the information in this graph in an adja-
cency matrix B of size m X n over an arbitrary time period
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Figure 2: Process of community pattern extraction.
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where count({u;, s;,time)) is the number of access transac-
tions that appeared in the database during the [start, end)
period. The cells in this matrix are weighted according to
inverse frequency; i.e., the importance of a subject’s record
is inversely proportionally to the number of users that ac-
cess their record (e.g., subjects with 2 users contribute 0.5,
and with 3 users contribute 0.33). In this way, subjects re-
late users proportionally to the rarity with which they are
accessed [1].

3.2.2 Relational Networks of Users

The access network summarizes the frequency with which
a user accesses a subject’s record, but to infer communities
we need to transform this data structure into one indicative
of the relationships between the users. CADS achieves this
by generating a user relationship network. This is repre-
sented by a matrix C of size n x n, where cell C(4,7) in-
dicates the similarity of the access patterns of users u; and
u; in B. To measure the similarity between users, we adopt
an information retrieval metric C = BT B, which was de-
picted in Figure 2. This matrix characterizes the magnitude
of the distance between the sets of patients accessed by each
pair of users. In general, this matrix represents the inferred
relations of users in the CIS.

3.2.3 Community Inference via Spectral Analysis

While the C' matrix contains the similarities between all
pairs of users, it does not relate sets of users in the form
of communities. Principal component analysis (PCA) has
been used in earlier social network analysis studies to iden-
tify communities (e.g., [8, 28, 24, 33]). Most relevant to
this work, [36] utilized PCA to build an intrusion detection
model. Specifically, PCA was applied to “normal” training
instances to build a model that was composed of the ma-
jor and minor principal components. The model was then
applied to measure the difference of an anomaly from nor-
mal instance via a distance measure based on the princi-
pal components. We will compare our model to [36], so we
take a moment to illustrate how we do so. In terms of C,
the goal is to find a basis P that is a linear combination
of the n measurement types, such that P x C' =Y, where



Y =[Y1,Ys,...
ponents of C.!

In a collaborative environment, there are a large number
of users and subjects, and, as our experiments illustrate (see
Section 4), the C' matrix tends to be extremely sparse. The
general form of PCA does not scale well, so we use singular
value decomposition (SVD), a special case of PCA, to infer
communities of normal users. SVD is capable of handing
large scale datasets and is particularly useful for sparse ma-
trices [35]. Instead of capturing differences between users by
via distances between all connected vertices in the network
[36], we filter the network to retain only the nearest neigh-
bors for each node. For an arbitrary node in the network,
the nearest neighbors are discovered via a distance measure
based on the principal component space.

For SVD, we define Y’ = (v/n — 1)"*C”. The covariance

,Y,]. The rows of P are the principal com-

of Y'is calculated as Y'Y'" = ((v/n —1)7'CT)T((vVn —=1)"'CT),

which is equal to Cov = (n — 1)7*CCT. So, by apply-
ing SVD, C can be represented as wAv?, where w is an
orthonormal matrix of size n X n, A is a diagonal matrix
of n x n with eigenvalues A1, A2, ..., A\, on the diagonal and
values of zero elsewhere, and v is an orthonormal matrix
of size n X n. The columns of v are the principal compo-
nents of C. The user relationship matrix C' can be projected
into the new space to generate a matrix Z = vTC, where
Zi = Zi1, Zia, .., Zin). This matrix can reveal the structure
of the user communities. It is this set of communities that
CADS uses as the basis of the anomaly detection.

Each row in matrix Z is the projection of all users on a
principal component, or community. For example, the first
row of Z corresponds to the projection of the users on the
first principal component. We define the rate r as

1 n
ZMZ X;i(l < n)

which demonstrates the degree that [ principal components
account for the original information. [35] showed that when
r reaches a destination rate usually as 0.8, the selected [
principal components can represent the original information
with minimal information loss. Supposing selecting [ compo-
nents from n components r can be reached as a destination
rate. In doing so, we truncate the set of communities, such
that users are projected onto a subset [Z1, Za, ..., Z;]. The
4" user can be presented as (Z1;, Za2j, ..., Zij)-

The distance between a pair of users is calculated using
a Euclidean distance function. Since each principal com-
ponent Z; in Z has a different “weight” in the form of the
corresponding eigenvalue, A; should be applied to weight the
components when computing the distance. We adopt a mod-
ified a Euclidean distance function to measure the distance

We define the covariance Cov = (n — 1)"1CCT. The diag-
onal terms of Cov are the variance of particular measurement
types. The off-diagonal terms of Cov are the covariance between
measurement types. Cov captures the relationships between all
possible pairs of measurements. The correlation values reflect
the noise and redundancy in our measurements. In the diago-
nal terms, large values correspond to interesting communities; in
the off diagonal terms, large values correspond to high redun-
dancy. The principal components of C are the eigenvectors of
CCT, which are the rows of P.

as follows.

Dis(us,uj) =

Z((Zqi — Zq;)? X Aq/Atotar) (2)

q=1

where
!
>\tota,l - Z >\] (3)
j=1

This measure provides more emphasis on the principal
components that describe a greater amount of variance in
the system. We use this distance measure to derive a matrix
D of size n x n. Cell D(4,j) indicates the distance between
u; and u;.

3.3 Community-Based Anomaly Detection

The goal of the CADS-AD component is to predict which
users in the CIS are anomalous. We developed a process for
CADS-AD that consists of two subcomponents 1) discover
the nearest neighbors of each user via the CADS-PE com-
munity structures and 2) calculate the deviation of each user
to their nearest neighbors.

3.3.1 Finding Nearest Neighbors

Let Gp be the graph described by matrix D. We need
to find the k£ nearest neighbors for each user, but first we
need determine the value of k. To do so, we used a measure
known as conductance, which was designed for characteriz-
ing network quality [34, 18].

For this work, we define the conductance for a set of nodes
A as Y(A) = Na/min(Vol(A),Vol(V \ A)), where N4 de-

notes the size of the edge boundary, Na = |(g,h) : g € A,h ¢ A|,

and Vol(A) =37 . d(g), where d(g) is the degree of node
g. Figure 3 depicts an example of a small cellular network. If
we set the size of the cluster to 4 vertices, there are two clus-
ters: « and 3 with conductance ¢ (o) = 2/14,¢(8) = 1/11,
respectively. Notice, ¥(a) > ¥(8), which implies that the
set of vertices in [ exhibits stronger community structure
than the vertices in a.

To set k we use the network community profile (NCP),
which is a measure of community quality. Building on the
work in [22, 21], we define a NCP as a function of the
community size. Specifically, for each value k, we compute
d(k) = min 4=, (A). That is, for every possible commu-
nity size k, NCP measures the score of the most community-
like set of nodes of that size. When ¢(k) reaches the min-
imum value, the correspond value of k will be assigned as
the size of the communities.

Figure 3: Example network with clusters a and S.

3.3.2  Measuring Deviation from Nearest Neighbors

The radius of a user d is defined as the distance to his k"
nearest neighbor. Every user can be assigned a radius value
d by recording the distance to his k*"nearest neighbor. Users



can be characterized as a radius vector d = [d1,d2, ..., dx],
and neighbors set knn;. The smaller the radius, the higher
the density of the user’s network.

However, detecting anomalous users through radius is not
sufficient. As shown in Figure 4, user g2 and the users in
cluster F' are anomalous and can be detected via their radius.
However, based on the radius of nodes, we cannot detect g1
as an anomaly. Compared with nodes in area F', ¢; has a
smaller radius, but it is anomalous. So we use deviation of
the radius to calculate deviation of a node from its k nearest
neighbors to detect qi1.

Figure 4: Illustration of different types of nodes in
the neighborhood networks.

For a given user u;, we calculate the deviation of the radius
of the k nearest neighbors of the given user, including the
user himself as follows:

Dev(w) = | > (dj —d)?/k (4)

u; €Eknn;
where

d= > d;j/(k+1) (5)
uj €knn;

Based on the measurement of radius deviation Dewv, devia-
tions of nodes in area E are nearly zero, and the deviation
of node ¢ is larger. Normal users are likely to have smaller
Dev, whereas anomalous users are likely to have higher Dev.
Figure 5 is an example of deviation distribution on a real
EHR data set (See Section 4). The figure shows that in a
real system, most users have smaller deviations, such there
are not many users with larger deviations.
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Figure 5: Distribution of user deviations on a real
EHR data set

The deviation for every user can be assigned as Dev =
[Dev(ui), Dev(uz), ..., Dev(un)].

4. EXPERIMENTS

4.1 Anomaly Detection Models

As alluded to, there are alternative models to CADS that
have been proposed in the literature. As such, we evaluate
four models for anomaly detection.

e High volume users: This model serves as a base-
line and uses a very simple rule to predict which user
is anomalous. Fundamentally, this model ranks users
based on the number of subjects accessed. The greater
the number of subjects accessed, the higher the rank.

e k-nearest neighbors (KNN): [23] proposed an in-
trusion detection model based on the k-nearest neigh-
bor principle. The approach first ranks a user’s neigh-
bors among the vectors of training users. It then uses
the class labels of the k most similar neighbors to pre-
dict the class of the new user. The classes of these
neighbors are weighted using the similarities of each
neighbor to new user, which is measured by the cosine
similarity of the vectors. For this work, we use the user
vector in the B matrix in CADS. Each user is charac-
terized by access records of m subjects. This model is
then tested with a mix of real and simulated users as
discussed below.

e PCA: [36] proposed an anomaly detection scheme based
on a principal component classifier. The distance of
a user is computed as the distance to known normal
users in the system according to the weighted principal
components. Again, we use B as the basis for training
the system with the normal users and then evaluate
the system with a mix of real and simulated users as
discussed below.

e CADS: In essence, CADS is a hybrid of KNN and
PCA. It utilizes SVD to infer communities from re-
lational networks of users and KNN to establish sets
of nearest neighbor. This model attempts to detect
anomalous users by computing a users’ deviation from
their k nearest neighbors’ networks.

4.2 Data Sets

We evaluate the anomaly detection models with two datasets.
The first is a private dataset of real EHR access logs from
a large academic medical center. The second is a public
dataset and, though not representative of access logs, pro-
vides a dataset of social relationships for replication.

4.2.1 EHR Access Log Dataset

StarPanel is a longitudinal electronic patient chart devel-
oped and maintained by Department of Biomedical Infor-
matics faculty working with staff in the Informatics Center
of the Vanderbilt University Medical Center [12]. StarPanel
is ideal for this study because it aggregates all patient data
as fed into the system from any clinical domain and is the
primary point of clinical information management. The user
interfaces are Internet-accessible on the medical center’s in-
tranet and remotely accessible via the Internet. The system
has been in operation for over a decade and is well-integrated
into the daily patient care workflows and healthcare opera-
tions. In all, the EHR stores over 300,000,000 observations
on over 1.5 million patient records.

We analyze the access logs of 6 months from the year
2006. The access network in this dataset is very sparse. For



example, in an arbitrary week, there are 35,531 patients,
2,377 users and 66,441 access transactions. In other words,
only 66,441/(34,431 x 2,377), or 0.07% of the possible user-
patient edges were observed.?

For this dataset, we evaluate the anomaly detection mod-
els on a weekly basis, and report on the average performance.
We refer to this as the EHR dataset.

4.2.2 Public Relational Network Dataset

‘We recognize that using a private dataset makes it difficult
to replicate and validate our results. Thus, we supplement
our study with an analysis on a publicly available dataset.

This dataset was initially studied in [25] and reports the
editorial board memberships for a set of journals in a sim-
ilar discipline (biomedical informatics) over the years 2000
to 2005.% Tt contains 1,245 editors and 49 journals. In our
experiments, we treated the editors as users, and the jour-
nals as subjects. For this dataset, we evaluate the anomaly
detection models on the complete dataset and report on the
performance. We refer to this as the Editor dataset.

4.3 Simulation of Users

One of the challenges of working with real data from an
operational setting is that it is unknown if there are anoma-
lies in the dataset. Thus, to test the performance of the
anomaly detection models, we designed an evaluation pro-
cess that mixes simulated users with the real users of the
aforementioned datasets. We worked under the assumption
that an anomalous user would not exhibit steady behavior.
We believe that such behavior is indicative of the record ac-
cess behavior committed by users that have accessed patient
records for malicious purposes, such as identity theft.

The evaluation is divided into three types of settings:

1.0

conductance

00 02 04 06 08
1

number of nodes in the cluster

Figure 6: The NCP plot of network in the EHR
dataset.

Sensitivity to Number of Records Accessed: The
first setting investigates how the number of subjects accessed
by a simulated user influences the extent to which the user
can be predicted as anomalous. In this case, we mix a lone
simulated user into the set of real users. The simulated user
accesses a set of randomly selected subjects, the size of which
ranges from 1 to 1,000 in the EHR dataset and from 1 to
20 in the Editor dataset.

2The sparseness enabled us to utilize an adjacency list to
construct the user-patient and user-user matrices to reduce
memory consumption and time calculation.

3This dataset can be downloaded from
http://hiplab.mc.vanderbilt.edu/bmiEdBoards.

Figure 7: The 50-nearest neighbor network for fifty
users in an arbitrary week of the EHR dataset.

Sensitivity to Number of Anomalous Users: The
second setting investigates how the number of simulated
users influences the rate of detection. In this case, we vary
the number of simulated users from 0.5% to 5% of the total
number of users, which we refer to as the mix rate(e.g. 5%
implies 5 out of 100 users are simulated). Each of the simu-
lated users access an equivalent-sized set of random subjects’
records.

Sensitivity to Diversity: The third setting investigates
a more diverse environment. In this case, we set the mix rate
of simulated and the total number of users as 0.5% and 5%.
And, in addition, we allow the number of patients accessed
by the simulated users to range from 1 to 1,000 in the EHR
dataset and from 1 to 20 in Editor dataset.

4.4 Tuning the Neighborhood Parameter

Both the KNN and CADS model incorporate a parameter
that limits the number of users to compare to for an arbi-
trary user. We tuned this parameter for each of the datasets
empirically.

In the EHR dataset, we calculate the network community
profile (NCP) for the user networks. The result is depicted
in Figure 6, where we observed that NCP is minimized at 50
neighbors. For illustrative purposes, we show the network
in Figure 7 that results from a selection of 50 users from an
arbitrary week of the study to their 50 nearest neighbors.

In contrast, we find the NCP in the Editor dataset was
minimized at 18 neighbors. This is smaller than the value
for the Editor dataset and highlights its sensitivity to the
network being studied. For instance, for the NCP dataset,
we suspect this decrease in the value is because the number
of users and size of the user network is smaller in the Editor
dataset.

4.5 Results

4.5.1 Random Number of Accessed Patients
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Figure 8: CADS deviation score of the simulated
user as a function of number of subjects accessed.

The first set of experiments focus on the sensitivity of
CADS. To begin, we mixed a single simulated user with the
real users. We varied the number of subjects accessed by
the simulated user to investigate how volume impacts the
CADS deviation score and the performance of the anomaly
detection models in general. For illustration, the CADS de-
viation scores for the simulated users in the EHR and Edi-
tor datasets are summarized in Figure 8. Notice that as the
number of the subjects accessed by the users increases, so
too does the deviation score. Note, the magnitude of the
deviation score is significantly larger in the EHR dataset,
which is because the number of subjects accessed by the
simulated users is much greater (i.e., from 1 to 1,000 vs. 1
to 20). The observation that the deviation score tends to
increases with the number of subjects accessed is what sug-
gests why an organization might be tempted to utilize an
anomaly detection model based on high volume accesses.

Next, we need to determine when the CADS deviation
score is sufficiently large to detect the simulated user in the
context of the real users. In Figure 9, we show how the
number of subjects accessed by a simulated user influences
the performance of CADS. We find that when the number
of accessed subjects for the simulated user is small, it is
difficult for CADS to discover the user via the largest de-

viation score. This is not unexpected because CADS is an
evidence-based framework. It needs to accumulate a certain
amount of evidence before it can determine that the actions
of the user are not the result of noise in the system. As
the number of subjects accessed increases, however, so too
does the performance of CADS. And, by the time number
of accessed subjects is greater than 100 in the EHR dataset
(Figure 9(a)) and 10 in the Editor dataset (Figure 9(b)), the
simulated user can be detected with very high precision.
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Figure 9: Rate of detection of the simulated user
via the largest CADS deviation score as a function
of the number of patients accessed.

4.5.2 Random Number of Simulated Users

In order to verify how the number of simulated users in-
fluences the performance of CADS, we conducted several
experiments when the number of simulated users was ran-
domly generated. In these experiments, the number of sub-
jects accessed by the simulated users was fixed at 100 in the
EHR dataset and 5 in the Editor dataset. The mix rates of
simulated users and the total number of users were set from
0.5% to 5%. The average true and false positive rates for
CADS are depicted in Figure 10.

The figures show that when the number of simulated users
increases, CADS achieves a higher area under the ROC curve
(AUCQC). In the previous experiment, the number of simulated
users is only one, so the false positive rates in Figure 9 is a
little high.
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Figure 10: CADS performance with various mix
rates of simulated and real users.

4.5.3 Random Number of Simulated User and Ac-
cessed Patients

In this experiment, we simulated a more realistic environ-
ment to compare all four of the anomaly detection models.
Specifically, we allowed both the number of simulated users
and the number of patients accessed by the simulated users
to vary. For each week, we constructed four test datasets.
The mix rate between simulated users and the total number
of users in each dataset was set as 0.5% and 5%. Addition-
ally, the number of accessed subjects for each simulated user
was selected at random.

The results are depicted in Figures 11 and 12. It can be
seen that CADS exhibits the best performance of simulated
user detection (according to AUC). At the lowest mix rate,
CADS was almost two times more accurate at the most spe-
cific tuning level. Moreover, CADS is only marginally af-
fected by the mix rate, whereas the other approaches are
much more sensitive.

The results for the Editor dataset set are nearly the same
as the EHR dataset, except for the high volume model. In
the Editor dataset, the high volume model achieves very high
performance. We believe that the reason why high volume

models achieve better in the Editor dataset is because the
majority of real editors are related to only 1 or 2 journals
each, whereas the majority of simulated editors are related
to more than 2. Nonetheless, we find that the performance
of CADS is competitive with the high volume model, while
the PCA and KNN models are outperformed.
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Figure 11: Comparison of different anomaly detec-
tion methods on the EHR dataset. The number of
accessed subjects for simulated user is random.

Figure 13 depicts the CADS deviation score for simulated
users as a function of the number of subjects accessed in the
EHR dataset. The trend illustrates that the deviation score
increases with the number of patients accessed. However, by
returning to Figures 11, it can be seen that the performance
of the high volume model in this setting is poor. This is
because the CADS deviation score is small for many of the
real users that accessed a large number of patients. As a
result, if an administrator was to use a high volume model
to detect anomalous insiders, it could lead to a very high
false positive rate.

Figure 14 shows the distribution of subjects accessed per
real user in an arbitrary week of the EHR dataset. Notice
that the majority of users accessed less than 100 patients.
However, there are also many simulated users that accessed
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Figure 12: Comparison of different anomaly detec-
tion methods on the Editor dataset. The number of
accessed subjects for simulated user is random.
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dataset.
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Figure 14: Number of patients accessed by real EHR
users in an arbitrary week.

less than 100 subjects’ records (Figure 13). CADS can dis-
tinguish these simulated users from the real users with high
performance. This is because, as we hypothesized, real users
tend to form communities with a high probability, whereas
the simulated users are more dispersed.

5. DISCUSSION

To detect anomalous insiders in a CIS, we proposed CADS,
a community-based anomaly detection model that utilizes
a relational analytic framework. CADS inferred communi-
ties from the relationships observed between users and sub-
ject’s records in the CIS access logs. To predict which users
are anomalous, CADS calculates deviation of users based on
their nearest neighbor’s networks. To investigate the flexi-
bility and performances of CADS, we simulated anomalous
users and performed evaluations with respect to the number
of simulated users in the sysem and the number of records
accessed by the user. Furthermore, we compared CADS
with other three models: PCA, KNN and high volume users.
The experimental findings suggest that when the number
of users and complexity of the social networks in the CIS
are low, very simple models of anomaly detection, such as
high volume user detection, may be sufficient. But, as the
complexity of the system grows tools that model complex
behavior, tools such as CADS, are certainly necessary.

CADS blends the basis of both PCA and KNN and our
empirical findings suggest that the former is significantly
better at detecting anomalies than either of the latter. In
part, this is because PCA and KNN capture different as-
pects of the problem. PCA is adept at reducing noise and
revealing hidden (or latent) structure in a system, whereas
KNN is for detecting overlapping neighborhoods with com-
plex structure.

There are several limitations of this study that wish to
point out, which we believe can serve as a guidebook for
future research on this topic. First, our results are a lower
bound on the performance of the anomaly detection meth-
ods evaluated in this paper. This is because in complex
collaborative environments, such as EHR systems, we need
to evaluate the false positives with real humans, such as the
privacy and administrative officials of the medical center. It
is possible that the false positives we reported were, in fact,
malicious users. This is a process that we have initiated with



officials and believe it will help tune the anomaly detection
approach further via expert feedback.

Second, this work did not incorporate additional seman-
tics that are often associated with users and subjects that
could be useful in constructing more meaningful patterns.
For instance, the anomaly detection framework could use
the “role” or “departmental affiliation” of the EHR users to
construct more specific models about the users. Similarly,
we could use the “diagnoses” or “treatments performed” for
the patients to determine if clinically-related groups of pa-
tients are accessed in similar ways. We intend to analyze
the impact of such information in the future, but point out
that the goal of the current work was to determine how the
basic information in the access logs could assist in anomaly
detection. We are encouraged by the results of our initial
work and expect that such semantics will only improve the
system.

Third, in this paper, we set the size of the communities
to the users’ k nearest neighbors, but we assumed that k
was equivalent for each user in the system. However, it
is known that the size of communities and local networks
can be variable [22]. As such, in future work, we intend
on parameterizing such models based on local, rather than
global, observations.

Finally, the CADS model aims to detect anomalous insid-
ers, but this is only one type of anomalous insiders. As a
result, CADS may be susceptible to mimicry if an adversary
has the ability to game the system by imitating group be-
havior or the behavior of another user. Moreover, there are
many different types of anomalies in collaborative systems,
each of which depends on the perspective and goals of the
administrators. For instance, models could be developed
to search for anomalies at the level of individual accesses
or sequences of events. We aim to design models to detect
various types of anomalies in the future.

6. CONCLUSIONS

In this paper, we proposed CADS, an unsupervised model
based on social network analysis to detect anomalous in-
siders in collaborative environments. Our model assumed
that “normal” users are likely to form clusters, while anoma-
lous users are not. The model consists of two parts: pat-
tern extraction and anomaly detection. In order to eval-
uate the performance of our model, we conducted a series
of experiments and compared CADS with other established
anomaly detection models In the experiments, we mixed
simulated users with into systems of real users and evalu-
ated the anomaly detection models on two types of access
logs: 1) a real electronic health record system (EHR) and
2) a publicly-available set of editorial board memberships
for various journals. Our results illustrate that CADS ex-
hibited the highest performance at detecting simulated in-
sider threats. Our empirical studies indicate that the CADS
model performs best in complex collaborative environments,
especially in EHR systems, in which users are team-oriented
and dynamic. Since CADS is an unsupervised learning sys-
tem, we believe it may be implemented in real time envi-
ronments without training. There are limitations of the sys-
tem; however, and in particular, we intend to validate and
improve our system with adjudication through real human
experts.
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