		Summary

Analysis of Data-Leak Hardware Trojans In AES Cryptographic Circuits

Trey Reece, William H. Robinson

Department of Electrical Engineering and Computer Science Security and Fault-Tolerance Group Vanderbilt University

October 9, 2013

T. Reece, W.H. Robinson

Introduction ●○○○		
Threat		

Brief Overview

This study explored the impact of 18 Trojans:

- All Trojans leaked sensitive information
- All Trojans were implemented on the same circuit

The Trojans explored in this study were found to have:

- Very small footprints
- No fixed cost
 - Widely varies even for similar Trojans
- A cost dependent upon designer, not Trojan

Introduction		
Threat		

*"The concept of trust requires an accepted dependence or reliance upon another component or system"*¹

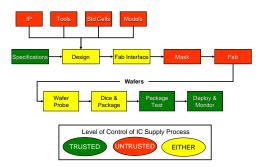


Figure (1). How trusted are steps in circuit production?²

²D. Collins, "DARPA Trust in IC's Effort (BRIEFING CHARTS)," 2007

T. Reece, W.H. Robinson

¹ C. E. Irvine and K. Levitt, "Trusted hardware: Can it be trustworthy?" in 44th ACM/IEEE Design Automation Conference (DAC '07), 2007, pp. 1–4

Introduction		
0000		
Threat		

Can we trust Fabrication Plants?

Table (1). 2011 Top-10 Semiconductor Foundries ³

Rank	Foundry	Location	Sales (USD)
1	TSMC	Taiwan	14,600M
2	UMC	Taiwan	3,760M
3	GlobalFoundries	U.S.	3,580M
4	Samsung	South Korea	1,975M
5	SMIC	China	1,315M
6	TowerJazz	Israel	610M
7	Vanguard	Taiwan	519M
8	Dongbu	South Korea	500M
9	IBM	U.S.	445M
10	MagnaChip	South Korea	350M

T. Reece, W.H. Robinson

³Semiconductor and Manufacturing Design Community,

http://semimd.com/blog/2012/02/10/umc-seeks-to-shed-image-as-'fast-follower'/

Introduction ○○○●		
Threat		

Hardware Trojans

Figure (2). Sample Hardware Trojan Taxonomy⁴

There are many possible ways to maliciously influence a circuit

T. Reece, W.H. Robinson

⁴ R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, "Trustworthy hardware: Identifying and classifying hardware trojans," *Computer*, vol. 43, no. 10, pp. 39–46, 2010

	Detecting Trojans ●○○○		
Mitigating Techniques			

Finding a Solution

How to mitigate Trojans inserted during fabrication:

- Prevent Trojan insertion
 - Circuit Hardening
 - Circuit Obfuscation
- Secure the fabrication step
 - Fabricate in-house
 - Rely on trusted Fabs
- Detect Trojan presence
 - Reverse Engineering
 - Exhaustive Testing
 - Side-Channel measurements

	Detecting Trojans		
Mitigating Techniques			

Side-Channel Techniques

Detection of Trojans through changes to secondary measurements such as:

- power consumption
- critical path timing
- light emission
- electromagnetic measurements

These techniques rely on a Trojan having a large impact.

- What are the limits of their effectiveness?
- How much can they detect?
- What is the smallest Trojan they can detect?

	Detecting Trojans ○○●○		
Mitigating Techniques			

Process Variation

The largest obstacle to detection: Process Variation.

- Timing measurements are unreliable
- Leakage current varies by 5-10 times
- Total power varies by up to 50%⁵

What can we detect?

Where do we draw the line?

⁵S. Borkar, "Designing reliable systems from unreliable components: the challenges of transistor variability and degradation," IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005

	Detecting Trojans 000●		
Mitigating Techniques			

Trojan Size

Some example Trojans have shown to be very small

- Even as low as 0.1% of total gate count in a LEON3 Processor ⁶
- Around 0.1% to 0.4% increase in power/area in a MC-8051 microcontroller⁷

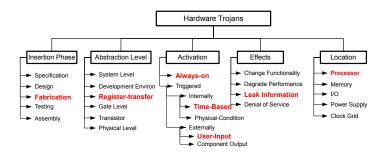
However, each Trojan affects each circuit differently.

- What is the cost (in area/power) to implement a Trojan?
- Is there a minimum cost?

⁶S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, "Designing and implementing malicious hardware," in Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET '08), 2008

⁷ T. Reece, D. Limbrick, X. Wang, B. Kiddie, and W. Robinson, "Stealth assessment of hardware trojans in a microcontroller," in *IEEE 30th International Conference on Computer Design (ICCD '12)*, 2012-Oct. 3, pp. 139–142

	Data-Leaks ●0000	
Trust-HUB Trojans		


Table (2). Trust-HUB Trojans on a 128-bit AES circuit

Trojan #	Trigger/Payload
AES-T100	Always leak key covertly over many clock cycles
AES-T200	Always leak key covertly over many clock cycles
AES-T300	Leak parts of key intermittently
AES-T400	Always leaks key over RF
AES-T500	Drains the battery over time (not tested)
AES-T600	Always leak key covertly through leakage current
AES-T700	Leaks key after detecting specific sequence
AES-T800	Leaks key after detecting specific sequence
AES-T900	Leaks key after set number of clock cycles
AES-T1000	Leaks key after detecting specific sequence
AES-T1100	Leaks key after detecting specific sequence
AES-T1200	Leaks key after set number of clock cycles
AES-T1300	Leaks key after detecting specific sequence
AES-T1400	Leaks key after detecting specific sequence
AES-T1500	Leaks key after set number of clock cycles
AES-T1600	Always leaks key over RF
AES-T1700	Always leaks key over RF
AES-T1800	Drains the battery over time (not tested)
AES-T1900	Drains the battery over time (not tested)
AES-T2000	Leaks key after detecting specific sequence
AES-T2100	Leaks key after set number of encryptions

	Data-Leaks ○●○○○	
Trust-HUB Trojans		

Hardware Trojans

T. Reece, W.H. Robinson

Vanderbilt University

	Detecting Trojans	Data-Leaks	
		00000	
Trust-HLIB Trojans			

Understanding the Implementation Cost of Trojans

Trust-HUB Trojan 128-bit AES cryptographic circuit:

- 18 different implementations of data-leaks
- Identical host-circuit

What is the minimum Trojan impact?

Results: There is no meaningful minimum impact

	Detecting Trojans	Data-Leaks	
		00000	
Trust-HLIB Trojans			

Understanding the Implementation Cost of Trojans

Trust-HUB Trojan 128-bit AES cryptographic circuit:

- 18 different implementations of data-leaks
- Identical host-circuit

What is the minimum Trojan impact?

Results: There is no meaningful minimum impact

	Data-Leaks 000●0	
Trust-HUB Trojans		

Methodology

- 1. Circuits were synthesized to standard cell libraries
- 2. Trojan circuits were compared to clean circuits to identify:
 - Changes in area
 - Differences in leakage power
 - Differences in dynamic power

	Data-Leaks ○○○○●	
Trust-HUB Trojans		

Tools

These results were observed with

- Synopsys Design Compiler
- Cadence RTL Compiler

When synthesized to

- Synopsys 90-nm Cell Library
- OSU 45-nm Cell library

		Results ●00000000	
Results from Compared Circuit	S		

Impact on Area

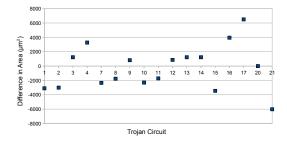


Figure (3). Footprint when synthesized to the Synopsys 90-nm cell library

		Results ○●○○○○○○○	
Results from Compared Circuit	S		

Impact on Area

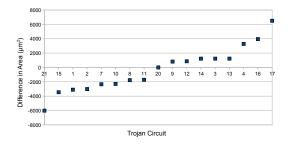


Figure (4). Footprint when synthesized to the Synopsys 90-nm cell library

The impact on area had a very even spread, with no observed "minimum".

		Results ○○●○○○○○○	
Results from Compared Circuit	is		

Impact on Area

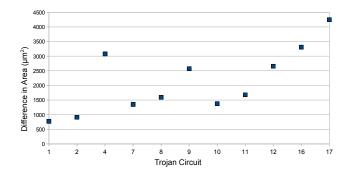


Figure (5). Footprint of Trojan circuits in area (μ m²) when synthesized to the OSU FreePDK 45-nm cell library.

Analysis of Data-Leak Hardware Trojans In AES Cryptographic Circuits

Vanderbilt University

		Results ୦୦୦●୦୦୦୦୦	
Results from Compared Circuit	S		

Impact on Leakage Power

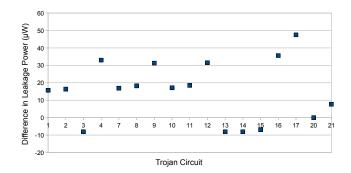


Figure (6). Footprint of Trojan circuits in leakage power (μ W) when synthesized to the Synopsys 90-nm library.

Analysis of Data-Leak Hardware Trojans In AES Cryptographic Circuits

Vanderbilt University

		Results oooo●oooo	
Results from Compared Circuit	s		

Impact on Leakage Power

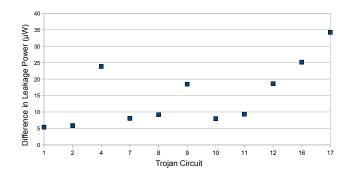


Figure (7). Footprint of Trojan circuits in leakage power (μ W) when synthesized to the 45-nm OSU FreePDK cell library.

		Results ooooo●ooo	
Results from Compared Circuit	s		

Impact on Dynamic Power

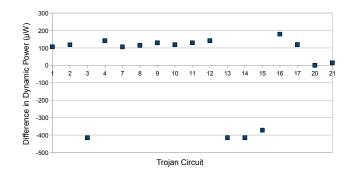


Figure (8). Footprint of Trojan circuits in dynamic power (μ W) when synthesized to the Synopsys 90-nm library.

Vanderbilt University

		Results oooooo●oo	
Results from Compared Circuit	S		

Impact on Dynamic Power

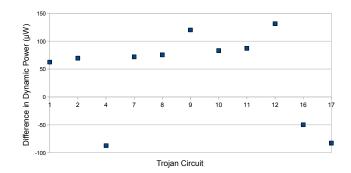


Figure (9). Footprint of Trojan circuits in dynamic power (μ W) when synthesized to the 45-nm OSU FreePDK cell library.

			Results ooooooo●o	
Results from Compared Circuits				

Summary of results - 90-nm Library

Area

- Even spread between -6,018 μm^2 and 6,506 μm^2
- +/- 6,000 represents 0.4% of the clean area
- Absolute average impact was closer to 0.16%

Leakage Power

- Impact between 6.9 μW and 47.5 μW
- Percent impact varied between 0.19% and 1.34%

Dynamic Power

- Even spread between 13.9 μ W and 415 μ W
- Percent impact varied between 0.2% and 6%

			Results oooooooo●	
Results from Compared Circuits				

Summary of results - 45-nm Library

Area

- Impact between 770.1 μm^2 and 4,247 μm^2
- Percent impact varied between 0.28% and 1.56%

Leakage Power

- Impact between 5.4 μW and 34.1 μW
- Percent impact varied between 0.17% and 1.05%

Dynamic Power

- Even spread between 49.8 μ W and 131 μ W
- Percent impact varied between 0.29% and 0.77%

		Summary

Key Findings

There were several key results:

- Very small footprints
- No fixed cost
 - Widely varies even for similar Trojans
- Cost is dependent upon designer, not Trojan
- Differences in timing were so small that they could not be distinguished with the granularity of the software.

T. Reece, W.H. Robinson

		Summary

Questions?

T. Reece, W.H. Robinson

Vanderbilt University

Detecting Trojans		Summary

- C. E. Irvine and K. Levitt, "Trusted hardware: Can it be trustworthy?" in 44th ACM/IEEE Design Automation Conference (DAC '07), 2007, pp. 1–4.
- D. Collins, "DARPA Trust in IC's Effort (BRIEFING CHARTS)," 2007.
- Semiconductor and Manufacturing Design Community, http://semimd.com/blog/2012/02/10/umc-seeks-to-shed-image-as-'fast-follower'/.
- R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, "Trustworthy hardware: Identifying and classifying hardware trojans," *Computer*, vol. 43, no. 10, pp. 39–46, 2010.
- S. Borkar, "Designing reliable systems from unreliable components: the challenges of transistor variability and degradation," *IEEE Micro*, vol. 25, no. 6, pp. 10–16, 2005.

25/25

"Designing and implementing malicious hardware," in *Proceedings* of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET '08), 2008.

T. Reece, D. Limbrick, X. Wang, B. Kiddie, and W. Robinson, "Stealth assessment of hardware trojans in a microcontroller," in *IEEE 30th International Conference on Computer Design (ICCD* '12), 2012-Oct. 3, pp. 139–142.

