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Threat

Brief Overview

This study explored the impact of 18 Trojans:

I All Trojans leaked sensitive information

I All Trojans were implemented on the same circuit

The Trojans explored in this study were found to have:

I Very small footprints
I No fixed cost

I Widely varies even for similar Trojans

I A cost dependent upon designer, not Trojan
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“The concept of trust requires an accepted dependence or reliance
upon another component or system” 1

7
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Figure (1). How trusted are steps in circuit production?2

1C. E. Irvine and K. Levitt, “Trusted hardware: Can it be trustworthy?” in 44th ACM/IEEE Design Automation Conference
(DAC ’07), 2007, pp. 1–4

2D. Collins, “DARPA Trust in IC’s Effort (BRIEFING CHARTS),” 2007
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Can we trust Fabrication Plants?

Table (1). 2011 Top-10 Semiconductor Foundries 3

Rank Foundry Location Sales (USD)
1 TSMC Taiwan 14,600M
2 UMC Taiwan 3,760M
3 GlobalFoundries U.S. 3,580M
4 Samsung South Korea 1,975M
5 SMIC China 1,315M
6 TowerJazz Israel 610M
7 Vanguard Taiwan 519M
8 Dongbu South Korea 500M
9 IBM U.S. 445M
10 MagnaChip South Korea 350M

3Semiconductor and Manufacturing Design Community,
http://semimd.com/blog/2012/02/10/umc-seeks-to-shed-image-as-’fast-follower’/
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Hardware Trojans
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Figure (2). Sample Hardware Trojan Taxonomy4

There are many possible ways to maliciously influence a circuit

4R. Karri, J. Rajendran, K. Rosenfeld, and M. Tehranipoor, “Trustworthy hardware: Identifying and classifying hardware
trojans,” Computer, vol. 43, no. 10, pp. 39–46, 2010
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Mitigating Techniques

Finding a Solution

How to mitigate Trojans inserted during fabrication:
I Prevent Trojan insertion

I Circuit Hardening
I Circuit Obfuscation

I Secure the fabrication step
I Fabricate in-house
I Rely on trusted Fabs

I Detect Trojan presence
I Reverse Engineering
I Exhaustive Testing
I Side-Channel measurements
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Mitigating Techniques

Side-Channel Techniques

Detection of Trojans through changes to secondary
measurements such as:

I power consumption

I critical path timing

I light emission

I electromagnetic measurements

These techniques rely on a Trojan having a large impact.

I What are the limits of their effectiveness?

I How much can they detect?

I What is the smallest Trojan they can detect?
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Mitigating Techniques

Process Variation

The largest obstacle to detection: Process Variation.
I Timing measurements are unreliable

I Leakage current varies by 5-10 times

I Total power varies by up to 50% 5

What can we detect?

Where do we draw the line?

5S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor variability and degradation,”
IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005
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Mitigating Techniques

Trojan Size

Some example Trojans have shown to be very small
I Even as low as 0.1% of total gate count in a LEON3 Processor 6

I Around 0.1% to 0.4% increase in power/area in a MC-8051
microcontroller7

However, each Trojan affects each circuit differently.
I What is the cost (in area/power) to implement a Trojan?

I Is there a minimum cost?

6S. T. King, J. Tucek, A. Cozzie, C. Grier, W. Jiang, and Y. Zhou, “Designing and implementing malicious hardware,” in
Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and Emergent Threats (LEET ’08), 2008

7T. Reece, D. Limbrick, X. Wang, B. Kiddie, and W. Robinson, “Stealth assessment of hardware trojans in a microcontroller,”
in IEEE 30th International Conference on Computer Design (ICCD ’12), 2012-Oct. 3, pp. 139–142
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Trust-HUB Trojans

Table (2). Trust-HUB Trojans on a 128-bit AES circuit

Trojan # Trigger/Payload
AES-T100 Always leak key covertly over many clock cycles
AES-T200 Always leak key covertly over many clock cycles
AES-T300 Leak parts of key intermittently
AES-T400 Always leaks key over RF
AES-T500 Drains the battery over time (not tested)
AES-T600 Always leak key covertly through leakage current
AES-T700 Leaks key after detecting specific sequence
AES-T800 Leaks key after detecting specific sequence
AES-T900 Leaks key after set number of clock cycles
AES-T1000 Leaks key after detecting specific sequence
AES-T1100 Leaks key after detecting specific sequence
AES-T1200 Leaks key after set number of clock cycles
AES-T1300 Leaks key after detecting specific sequence
AES-T1400 Leaks key after detecting specific sequence
AES-T1500 Leaks key after set number of clock cycles
AES-T1600 Always leaks key over RF
AES-T1700 Always leaks key over RF
AES-T1800 Drains the battery over time (not tested)
AES-T1900 Drains the battery over time (not tested)
AES-T2000 Leaks key after detecting specific sequence
AES-T2100 Leaks key after set number of encryptions
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Trust-HUB Trojans

Hardware Trojans

  

Hardware Trojans

Insertion Phase Abstraction Level Activation Effects Location

Specification

Design

Fabrication
Testing

Assembly

System Level

Development Environ

Register-transfer
Gate Level

Transistor

Always-on
Triggered

Internally

Time-Based
Physical-Condition

Processor

Memory
I/O

Power Supply

Clock Grid

Physical Level Externally
User-Input
Component Output

Change Functionality

Degrade Performance

Leak Information
Denial of Service

T. Reece, W.H. Robinson Vanderbilt University

Analysis of Data-Leak Hardware Trojans In AES Cryptographic Circuits 11 / 25



  

Introduction Detecting Trojans Data-Leaks Results Summary

Trust-HUB Trojans

Understanding the Implementation Cost of Trojans

Trust-HUB Trojan 128-bit AES cryptographic circuit:
I 18 different implementations of data-leaks

I Identical host-circuit

What is the minimum Trojan impact?

Results: There is no meaningful minimum impact
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Trust-HUB Trojans

Methodology

1. Circuits were synthesized to standard cell libraries
2. Trojan circuits were compared to clean circuits to identify:

I Changes in area
I Differences in leakage power
I Differences in dynamic power
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Trust-HUB Trojans

Tools

These results were observed with
I Synopsys Design Compiler

I Cadence RTL Compiler

When synthesized to
I Synopsys 90-nm Cell Library

I OSU 45-nm Cell library
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Results from Compared Circuits

Impact on Area
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Figure (3). Footprint when synthesized to the Synopsys 90-nm cell library
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Results from Compared Circuits
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Figure (4). Footprint when synthesized to the Synopsys 90-nm cell library

The impact on area had a very even spread, with no observed
“minimum”.
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Results from Compared Circuits

Impact on Area
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Figure (5). Footprint of Trojan circuits in area (µm2) when synthesized to the
OSU FreePDK 45-nm cell library.
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Results from Compared Circuits

Impact on Leakage Power
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Figure (6). Footprint of Trojan circuits in leakage power (µW) when
synthesized to the Synopsys 90-nm library.
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Results from Compared Circuits

Impact on Leakage Power

  
1 2 4 7 8 9 10 11 12 16 17

0

5

10

15

20

25

30

35

40

 

 
D

iff
er

en
ce

 in
 L

ea
ka

ge
 P

ow
er

 (μ
W

)

Trojan Circuit

Figure (7). Footprint of Trojan circuits in leakage power (µW) when
synthesized to the 45-nm OSU FreePDK cell library.
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Results from Compared Circuits

Impact on Dynamic Power
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Figure (8). Footprint of Trojan circuits in dynamic power (µW) when
synthesized to the Synopsys 90-nm library.
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Results from Compared Circuits

Impact on Dynamic Power
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Figure (9). Footprint of Trojan circuits in dynamic power (µW) when
synthesized to the 45-nm OSU FreePDK cell library.
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Results from Compared Circuits

Summary of results - 90-nm Library

Area
I Even spread between -6,018 µm2 and 6,506 µm2

I +/- 6,000 represents 0.4% of the clean area

I Absolute average impact was closer to 0.16%

Leakage Power
I Impact between 6.9 µW and 47.5 µW

I Percent impact varied between 0.19% and 1.34%

Dynamic Power
I Even spread between 13.9 µW and 415 µW

I Percent impact varied between 0.2% and 6%
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Results from Compared Circuits

Summary of results - 45-nm Library

Area
I Impact between 770.1 µm2 and 4,247 µm2

I Percent impact varied between 0.28% and 1.56%

Leakage Power
I Impact between 5.4 µW and 34.1 µW

I Percent impact varied between 0.17% and 1.05%

Dynamic Power
I Even spread between 49.8 µW and 131 µW

I Percent impact varied between 0.29% and 0.77%
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Key Findings

There were several key results:
I Very small footprints
I No fixed cost

I Widely varies even for similar Trojans

I Cost is dependent upon designer, not Trojan

I Differences in timing were so small that they could not be
distinguished with the granularity of the software.
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Questions?
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