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ABSTRACT
This paper describes and evaluates Fireflies, a scalable pro-
tocol for supporting intrusion-tolerant network overlays.1

While such a protocol cannot distinguish Byzantine nodes
from correct nodes in general, Fireflies provides correct nodes
with a reasonably current view of which nodes are live, as
well as a pseudo-random mesh for communication. The
amount of data sent by correct nodes grows linearly with
the aggregate rate of failures and recoveries, even if pro-
voked by Byzantine nodes. The set of correct nodes form
a connected submesh; correct nodes cannot be eclipsed by
Byzantine nodes. Fireflies is deployed and evaluated on
PlanetLab.

1. INTRODUCTION
Network overlays provide important routing functionality

not supported directly by the Internet. Such functionality
includes multicast routing, content-based routing, and re-
silient routing, as well as combinations thereof. In recent
years, Distributed Hash Tables (DHTs) have been proposed
to support network overlays. While it is often straight-
forward to support network overlays on DHTs, this choice
can be questioned. DHTs dictate routes that are not op-
timal [25], and DHTs are hard to secure [30]. As network
overlays are starting to be deployed for critical applications,
efficiency and security are becoming important attributes.

In this paper we present an alternative support structure
called Fireflies. Fireflies provides each of its members with
a complete view of its live peers.2 A small subset of these

1This work is supported by the DARPA/IPTO SRS pro-
gram, the AFRL/Cornell Information Assurance Institute,
NSF grant 0430161, and the Research Council of Norway
IKT 2010 program.
2Fireflies, the beetles, model not only the on/off behavior of
members, but like Byzantine members they are also known
for their aggressive mimicry in order to dupe and devour
related species.
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peers are marked as neighbors. With high probability, the
mesh formed by the members and their neighbor links has
a diameter logarithmic in the number of live members and
connects all the reachable members that are not Byzantine.

An obvious disadvantage of providing members with a
view of the full membership, compared to only a partial view
as provided by a DHT, is decreased scalability. Memory re-
quirements per member will grow linearly in the number of
members. Given the availability of cheap memory this is not
necessarily a problem. More alarmingly, the rate of mem-
ber join and leave events will likely grow linearly with the
number of members as well, possibly leading to an unman-
ageable amount of network bandwidth or latency. Many of
these concerns have been addressed previously [2, 14, 15,
28]. We believe Fireflies can scale easily to thousands of
members and that this is sufficient for many applications.

Providing each member with membership is a form of
agreement. Previous works on Byzantine fault-tolerant agree-
ment establish invariants that are impossible to invalidate.
Even the most practical of these protocols (e.g., [5, 19]) re-
quire several rounds of all members broadcasting state to
all other members, and can consequently not scale up to
more than perhaps a few dozen members. In order to scale
to thousands or more members, we had to come up with
a radically different approach. Fireflies makes use of epi-
demic techniques to form a probabilistic agreement, which
can only establish invariants that hold with a certain prob-
ability. Because invariants never hold for certain, defense
against adversaries trying to break agreement can never rest.
The main contribution of this paper is this novel approach
towards tolerating intrusions. A formal specification and
correctness proof has been completed as well and is the sub-
ject of a future publication.

We distinguish three states of members: correct, stopped,
and Byzantine. Correct members execute the protocols de-
scribed in this paper faithfully. Stopped members are not
executing any protocol steps. Byzantine members are not
bound to the protocols. For convenience, we also refer to
members that are either correct or Byzantine as live mem-
bers. Members can switch between states at any time, which
is commonly referred to as churn. Informally, Fireflies pro-
vides its correct members with a membership view that in-
cludes all members that have been correct for sufficiently
long and excludes all members that have been stopped for
sufficiently long.

A group membership protocol that tolerates Byzantine
behavior of its members is said to be intrusion-tolerant.



There are limitations to group membership, particularly if
intrusions are allowed. Correct members may be unreach-
able and appear stopped to other members. Recently stopped
members may not yet have been detected and appear cor-
rect. A Byzantine member can disguise itself as a flaky
correct member. Nonetheless, intrusion-tolerant network
overlay routing protocols may be built using Fireflies as a
building block. Fireflies currently supports a DHT and a
multicast protocol, both of which are intrusion-tolerant as
well.

We start with a description of related work in Section 2.
Section 3 presents an informal specification of Fireflies. The
membership protocol is the subject of Section 4. Section 5
describes the epidemic protocol that supports the member-
ship protocol. An evaluation of Fireflies appears in Sec-
tion 6. We discuss current applications of Fireflies in Sec-
tion 7. Section 8 concludes.

2. RELATED WORK
The first paper that describes concrete defenses against

Byzantine behavior in peer-to-peer (P2P) network overlays
is [4]. While this paper addresses the problem of imper-
sonation attacks, many of the problems discussed have to
do exclusively with overlay routing table maintenance and
message forwarding. In our protocol, the members do not
need to route messages, while in [4], the problem of mem-
bership is not considered.

Some peer-to-peer storage services like OceanStore [18]
and FARSITE [1] use traditional Byzantine consensus pro-
tocols among small groups of machines. These groups do
not protect the integrity of the peer-to-peer network as a
whole, but protect Byzantine failures among replicas of in-
dividual files or meta-files. Also, as the system scales up,
the likelihood that one of these groups fail as a whole grows,
potentially endangering the entire system. Recent work [10]
on FARSITE attempts to isolate such groups from one an-
other, at the cost of weakening the system’s semantics.

In [12], the authors propose a mechanism called Link At-
testation Groups to increase the robustness of overlay net-
works. A link attestation is a certificate stating that a par-
ticular participant x trusts that it has a good path to an-
other participant y. Using a link-state protocol, groups of
dozens of participants are formed. The authors argue that
by providing access to the graph of attestations, applications
will be able to build more reliable protocols, but so far none
of these have been evaluated.

The problem of impersonation attacks was first considered
in [9]. The paper proposes secure identifier generation as a
solution, and both our protocol and [4] have embraced this
solution.

The problem of intrusion-tolerant membership in P2P pro-
tocols is considered in [29]. The Eclipse attack is an attack
where malicious members isolate correct members by filling
the neighbor table of a correct member with addresses of
malicious members. The paper suggest thwarting this at-
tack by enforcing bounds on the in- and out-degrees of P2P
members.

Many group membership protocols are based on providing
members with consensus on membership views. Note that in
such systems views may still be stale. Versions that tolerate
Byzantine members have been designed and implemented
(e.g., [26, 27]), but the overhead of consensus renders such
systems unscalable beyond a few dozen members.

In [28], Rodrigues and Blake argue that in many environ-
ments multi-hop routing is not cost-effective, and full mem-
bership maintenance is both possible and desirable. One-
hop peer-to-peer routing protocols that maintain full mem-
bership for fail-stop environments are presented in [14, 15].
CONGRESS [2] is a non-P2P solution based on a scalable
server hierarchy. Neither tolerates Byzantine behavior.

Most closely related to our work is the SWIM protocol [7].
As in Fireflies, SWIM has a separate failure detection pro-
tocol and an epidemic dissemination protocol. Unlike Fire-
flies, SWIM’s failure detection protocol does not adapt to
varying message loss, and SWIM is not tolerant of Byzantine
behavior.

The SCAMP protocol [13] is another epidemic-style mem-
bership algorithm that, like Fireflies, uses a small number of
gossip partners per member in order to increase scalability.
SCAMP is not intrusion-tolerant, and does not have a fail-
ure detection component. Members have to leave the group
explicitly by gossiping a message. SCAMP may converge to
a non-random graph. CYCLON [32] presents an improve-
ment over SCAMP, maintaining randomness even with high
node churn.

There has been a variety of work on intrusion-tolerant epi-
demic protocols, apparently starting with [21]. These pro-
tocols consider the problem of correct members not accept-
ing any malicious updates without using unforgeable signa-
tures, and use a form of voting instead. Perhaps the earli-
est epidemic membership protocol is reported in [31], while
epidemic dissemination was pioneered in the Clearinghouse
system [8].

Drum [3] is a DoS-resistant multicast protocol. It uses a
combination of gossip techniques, resource bounds for cer-
tain operations, and random UDP ports in order to fight
DoS attacks, especially those directed against a small subset
of the correct members. These techniques are orthogonal to
the ones used by Fireflies, and can be used to make Fireflies
less susceptible to DoS attacks.

3. MEMBERSHIP SPECIFICATION
Each member m has a unique identifier m.id. A member

cannot choose nor modify its identifier. Each member m has
a state that is either correct, stopped, or Byzantine.

Each correct member has a view m.view, which is a subset
of all members. Informally, m2 ∈ m1.view means that m1

believes that m2 is, at least until recently, not stopped. As
well, m2 /∈ m1.view means that m1 believes that m2 is, at
least until recently, not live.3

A correct member also has a set of neighbors m.neighbors,
which is a subset of its view. The number of neighbors is
logarithmic in the size of the view, i.e., |m.neighbors| =
O(log |m.view|). The mesh consisting of correct members
and the links to their correct neighbors is connected and
logarithmic in diameter, and thus forms a usable routing
substrate.

We also want, again informally, that all correct members
send a limited amount of data in that Byzantine members
cannot cause correct members to send large amounts of data
rendering the protocol unscalable. We cannot prevent a
Byzantine member from sending large amounts of data.

3We do not provide Virtual Synchrony properties such as
consensus on views among correct members.



Fireflies does not exactly provide these properties, as it
is a probabilistic protocol. For example, it is possible that
long time correct members are sometimes evicted from the
views of other correct members, and it is possible that long
time stopped members are included in the views of correct
members. Also, correct members may be partitioned. The
Fireflies protocol makes such inconsistent states infrequent,
with probabilistic guarantees.

4. MEMBERSHIP PROTOCOL
In this section we describe the membership protocol that

correct members4 follow. For now we will assume that mem-
bers have at their disposal a gossip channel that reliably
broadcasts a message to all members within a time ∆. Sec-
tion 5 will present a protocol that provides such a guarantee
with high probability.

The basic idea of the membership protocol is that mem-
bers monitor one another and use the gossip channel to dis-
seminate accusations (failure notices). When a member m1

receives an accusation for a member m2, m1 waits a time pe-
riod of length 2∆ before removing m2 from its view. Should
m2 receive, through gossip, an accusation about itself, then
m2 has the opportunity to gossip a rebuttal before 2∆ ex-
pires. There is an overhead associated with gossip, so we
have to prevent Byzantine members from submitting fre-
quent accusations about correct members. This is a com-
plicated issue because correct members may accidentally
accuse other correct members due, for example, to tran-
sient link failures. Thus not every false accusation is from a
Byzantine member.

4.1 Assumptions
While we allow the network to lose messages, we do as-

sume that all correct members can run a ping protocol effec-
tively and apply a gossip-style broadcast protocol that can
deliver messages to all correct members in a timely fash-
ion. Details on the ping protocol appear in Section 4.6,
while details on the implementation of the gossip protocol
are presented in Section 5. While we do not require clocks
to be synchronized, we do assume that clock rates among
correct members are identical, although rates only need to
be “similar” in practice.

Byzantine members have few restrictions. They know the
exact state of every other member, and have zero-latency
connections between each other. However, they do not have
sufficient computational power to break cryptographic build-
ing blocks, and in particular they cannot forge public key
certificates, or public key signatures of correct or stopped
members.

We assume that there is a bounded probability Pbyz that a
live member is Byzantine. Note that this is a stronger con-
dition than a bound on the probability that any member is
Byzantine. Such a weaker condition would not suffice, as
in the case that most non-Byzantine members are stopped,
the few remaining correct members could be overwhelmed
by Byzantine members. Nonetheless, the assumption that
among all live members only a fraction is Byzantine is rea-
sonable, particularly since we do not limit the fraction of
stopped members among all members.

We assume that each member m has a unique identifier
m.id (e.g., tax identifiers, passport numbers, etc.), and that

4We shall omit the adjective “correct” where obvious.

note most recently known note of the peer
accusations accusations, at most one per ring
nPings #pings sent since last “pong” response
avgLoss smoothed average of #pings lost + 1

Table 1: Fields in an info structure, one for each
peer. The last two entries are used only for successor
peers.

a shared Certificate Authority (CA) does a thorough back-
ground check on each potential member before handing the
member m a private key m.priv and a corresponding pub-
lic key certificate m.cert that binds the member’s identifier
and network address to its public key.5 Correct and stopped
members never reveal their private key.

We also assume that trivial Denial-of-Service attacks by
flooding can be detected and suppressed (see [3] for how this
might be accomplished).

4.2 Data Structures
The members are organized on 2t + 1 rings, which are

circular address spaces (the value t is discussed below). Each
member m attains a position on each ring by evaluating a
secure collision-resistant hash function H:

m.pos[ring] = H(m.id || ring)

(where ‘||’ is the concatenation operation). The ordering of
members on each ring is different (with high probability) as
a result. Member m ranks members on each ring clockwise,
with itself being 0, its first successor being rank 1, and so
on. The basic idea of the protocol is that each member m1

monitors, on each ring, the lowest ranked successor m2 that
m1 believes to be live.

The members use two data structures that are gossiped:
notes and accusations. A member creates notes in order to
notify and convince the other members that it is live. A note
is a tuple (cert, epoch, enabled), signed using the private
key of the member. Here cert is the public key certificate
of the member, epoch a number used to order its notes, and
enabled a bitmap with 2t + 1 bits, controlling which of the
2t + 1 predecessors are allowed to issue accusations against
the member.

If a member m1 suspects a successor m2 on a particular
ring of having stopped, then m1 accuses the note of m2 last
known to m1 by creating an accusation. An accusation is
a tuple (note, ring, accuser), signed by m1, where note is
the note of m2, ring is the ring on which m2 is a successor
of m1, and accuser is the identifier of m1. A requirement
on the accusation is that note.enabled[ring] is set. Thus a
member can use the enabled bitmap in the notes it generates
to restrict which predecessors can accuse the member, an
ability that we will use to defeat repeated false accusations
by Byzantine members.

The value t governs the number of Byzantine predecessors
a member can tolerate. We choose t so that the probability
of a member having more than t out of 2t + 1 live predeces-
sors being Byzantine is small (see Section 4.5). Members set
exactly t+1 bits in their notes’ enabled bitmaps. If a mem-
ber m has at most t Byzantine predecessors, then m can
disable all Byzantine predecessors that make repeated false

5Note that the CA can provide access control as well.
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Figure 1: 3 rings with 7 members A through G.
Valid accusations are shown with solid arrows, while
invalid ones are shown in dashed arrows.

accusations while m is live. If, by mistake, m disables only
correct predecessors and leaves t Byzantine predecessors en-
abled, then there is still at least one correct predecessor that
can accuse m should m fail.

Each member m maintains a mapping m.info of peer iden-
tifiers to information about these peers. (m1.info(m2) =⊥
means that m1 does not have any information about m2.)
The fields in the info structure are listed in Table 1. The
Fireflies protocol strives to ensure that the set of accusa-
tions is empty for a correct member and non-empty for a
stopped member.

4.3 Valid Accusations
As we have not bounded the probability that a member is

stopped, all predecessors of a member may be stopped with
non-negligible probability. In order to allow such members
to be accused in case they fail as well, a member must be able
not only to accuse its immediate successor, but must also be
able to make accusations skipping over stopped successors.
Doing so may allow a Byzantine member to accuse any of
its successors simply by claiming that it believes that the
more immediate successors are all stopped.

In order to counter such attacks, we create rules that gov-
ern which accusations are considered valid. Informally, m1

only allows the highest ranked live member to make valid
accusations of m2, and only on those rings that are enabled
by m2. Validity is defined recursively. Member m1 considers
an accusation for m2 valid iff

• the accusation is correctly signed; and

• the note contained in the accusation corresponds to
m1.info(m2).note; and

• the ring in the accusation is enabled in the note’s en-
abled bitmap; and

• m1 holds valid accusations for all members it ranks
(on the given ring) between the accuser and m2 itself,
if any.

In Figure 1, we show a schematic depiction of how one of
the members observes a group with 7 members, A through
G. In this case, t = 1, and for simplicity we ignore ring
deactivation. An accusation of B by D on the middle ring

is a valid accusation (assuming the accusation refers to the
note of B and is correctly signed by D) because there are
no nodes in between D and B. This accusation is valid
even though the accuser D is validly accused by C. The
accusation by A of C on the outer ring is valid because
there is a valid accusation against B, the node in between
A and C. The accusation of A by E is invalid as there is no
valid accusation of F .

A Fireflies member only maintains accusations that it
considers valid, and associates a timer with each valid accu-
sation that is set to 2∆ when the member first learns of the
accusation. A valid accusation may depend on other valid
accusations, and in case such a dependency changes, the
timer needs to be reset. When the timer expires, the accu-
sation leads to the removal of the accusee from the member’s
view.

4.4 Protocol Steps
Each correct member runs the same protocol. There are

four events that trigger protocol transitions.

m1 receives a note for a peer member m2. If m1 has a
note for m2 that is as recent as the one that arrived, then m1

ignores it. Otherwise m1 updates its note for m2, removes
any accusations that it has for m2, cancels m2’s view removal
timer if any, and includes m2 in its view. In addition, the
removal of accusations for m2 may invalidate accusations
that m1 holds for other members. These accusations are
removed as well.

m1 suspects m2. On each ring, m1 monitors the lowest
ranked successor m2 for which m1 does not hold valid accu-
sations (unless m2 has disabled the ring, in which case m1

does not monitor anybody on that ring). Should m1 sus-
pect that m2 has stopped, then it creates an accusation of
m2 that is subsequently gossiped to the other members.

m1 receives an accusation for m2. If m1 does not con-
sider the accusation valid, then m1 ignores it. If m2 = m1,
then m1 replaces its note with a new one to act as a rebut-
tal, which is subsequently gossiped to the other members. If
m2 6= m1 and m1 already has an accusation for m2 on the
same ring as the new accusation, then m1 replaces its accu-
sation only if the new one is from a higher ranked accuser.

At m1, the timer of an accusation of m2 expires. m1

removes m2 from its view.

4.5 Calculating t

We now turn to calculating a suitable value for t. If there
are too few rings, correct members may not be able to fight
Byzantine behavior. However, more rings result in higher
overhead. Since we cannot give deterministic bounds on the
number of Byzantine predecessors, we use a probabilistic
approach. We want the minimum value of t so that the
probability of a member having more than t out of 2t + 1
live predecessors being Byzantine is smaller than ε:

min
t

: B(t; 2t + 1; 1 − Pbyz) < ε

where B(x;n; p) is a cumulative binomial distribution. We
may want to make ε smaller for larger N so that the expected
number of members for which this condition is violated does
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not grow linearly with N . For example, if we set ε = 1/N ,
then the expected number of such unfortunate members is
1, independent of N altogether. In Figure 2 we used the
normal approximation to the binomial distribution to solve
this equation for various N and Pbyz, using ε = 1/N .

The protocol described above assumes a static t, imply-
ing that a maximum membership should be anticipated and
enforced. It is, however, possible for a member to specify a
number of rings that depends on the size of its view. Care
should be taken to deal with Byzantine members specifying
an enabled map in their note with a very large number of
rings in order to try to consume all memory of correct mem-
bers. The resulting extensions to the protocol are trivial
and are not discussed in this paper.

Even if a stopped member m1 has fewer than t+1 Byzan-
tine live predecessors, it is possible that an enabled correct
live predecessor m2 cannot accuse m1. Consider the stopped
members between m2 and m1 on the corresponding ring and
call them s1, . . . , sm. If the ring is enabled for all si, then m2

can accuse all si and thus m1. Assume there is a member
sj that disabled the ring. Then m2 cannot accuse m1 until
m2 has received a valid accusation for sj on a different ring.
We say that the accusation of m1 is blocked by sj . Unfortu-
nately, m2 may never receive an accusation for sj . Member

sj may have fewer than t+1 correct live predecessors, all of
which being disabled. It may even be that the accusation
of sj is blocked by m1, thus creating a loop preventing both
m1 and sj of being accused.

Fortunately, it can be shown that the probability of blocked
accusations is negligible. Formally, the probability of a
stopped node not being accused is upper bounded by:

P ≈ Pbyz + (1 − Pbyz)P
lnn
stopped)t+1

While the proof is outside the scope of this paper, a simula-
tion bears this out as well. In Figure 3, we show the results
of the following simulation. Initially, all members are cor-
rect and are present in all the views. At time T = 0, 75%
of the members stop, 20% of the remaining members be-
come Byzantine. In order to generate a worst-case scenario,
the correct members disable as many correct predecessors as
possible, and the Byzantine members do not emit any accu-
sations. The graph shows that even for large N , a relatively
small value for t makes blocked accusations highly unlikely.

4.6 Pinging
Members use pinging to detect failures. Essentially, a

member m1 monitors a member m2 by sending “ping” mes-
sages to m2 at regular intervals. Member m2 returns a
“pong” message for each ping that it receives. If m1 does
not receive pong messages from m2 for more than some time
period, m1 considers m2 stopped and issues an accusation.

A tricky detail is determining how long to wait before is-
suing an accusation. Using a static global timeout is not a
good choice, as this will not scale well and can cause correct
members to accuse other correct members more often than
necessary. In particular, the timeout period has to adapt to
the message loss characteristics between monitor and mon-
itoree.

In Figure 4, we present a simple but effective protocol
based on unreliable message passing. The members individ-
ually estimate the probability of message loss. We model
pinging as a negative binomial experiment with parame-
ters r = 1 and the probability of success p. Then the
expected number of consecutively failed ping exchanges is
E(X) = (1 − p)/p. It follows that p = 1/(E(X) + 1). We
estimate E(X) + 1 by avgLoss using exponential smooth-
ing. (The smoothing factor α is set to .999 in our current
implementation.)

Having p, we can calculate the probability of making τ
mistakes: (1 − p)τ . We want this probability to be smaller
than a configured constant Pmistake. It follows that τ >
log(Pmistake)/ log(1 − p).

If message loss is very low, τ would be set unrealistically
low, and if p = 1, the expression would be undefined. We
address both problems by having a minimum threshold τmin.

It follows that p should be set no higher than 1 − P
1/τmin

mistake.
Byzantine members could potentially prevent detection

of stopped members by forging pong messages. This is pre-
vented by having each ping message contain a nonce that
has to be signed by the monitoree and returned in the cor-
responding pong message. This strategy prevents both forg-
ing of pong messages and replay attacks, and this is why we
chose pinging over a heartbeat protocol.

Byzantine members can, however, generate a modest amount
of overhead on the system by not responding to ping mes-
sages from correct members, and rebutting the ensuing ac-
cusations. Such “nuisance attacks” are easily identifiable,



on time to ping m on ring r:

p = min(1/info(m).avgLoss, 1 − P
1/τmin

mistake); // est. probability of successful ping exchange
τ = log(Pmistake)/ log(1 − p); // calculate threshold
if (info(m).nPing > τ )

info(m).accusation = new Accusation(info(m).note, r, self.id);
else

send(m,new Ping(self.id));
info(m).nPing + +;

on receive Pong(m):
info(m).avgLoss = (α ∗ info(m).avgLoss + (1 − α) · (info(m).nPing));
info(m).nPing = 0;

Figure 4: Pinging protocol. Pmistake (probability of making a mistake), τmin (minimum threshold), and α
(smoothing factor), are configuration constants.

and such members can be manually removed by revoking
their public key certificates.6

5. GOSSIP PROTOCOL
A gossip protocol is a simple group communication proto-

col whereby each member periodically picks a random mem-
ber from its view and exchanges state information. Such
protocols are known to be highly robust, as they are es-
sentially flooding protocols. But unlike flooding protocols,
they are efficient with probabilistic bounds on delivery la-
tency [17]. In our particular situation, we have to concern
ourselves with Byzantine members.

Say we have two members m1 and m2 exchanging notes
and accusations. All notes and accusations are signed, and
because we assume that Byzantine members cannot break
the cryptographic building blocks, we do not have to worry
about impersonation attacks [9]. We have also assumed that
trivial Denial-of-Service attacks can be detected and sup-
pressed.

Byzantine members can still attack the gossip protocol in
the following two ways. In order to slow down dissemination,
they can neglect to forward recent updates. This slow-down
can be incorporated in the calculation of ∆. Byzantine mem-
bers can also pretend that they have no information, causing
correct members to transmit their entire state to them and
thus causing unnecessary load on the correct members and
on the network. In order to reduce the opportunities of
Byzantine members to launch this attack, we will consider
gossip protocols in which each member can only gossip with
a small subset of the membership.

5.1 Partial Membership Gossip
Kermarrec et al. [17] shows that it is possible to build ef-

fective gossip protocols if each member only has a small set
of uniformly chosen members it gossips with. Each member
m selects k gossip neighbors from its view uniformly at ran-
dom where k be large enough to create a connected graph of
correct nodes. A classic result of Erdös and Rényi [11] shows
that in a graph of n nodes, if the probability of two nodes
being connected is pn = (log n+c+o(1))/n, then the proba-
bility of the graph being connected goes to exp(− exp(−c)).

6Not discussed in this paper, a CRL can be reliable dissem-
inated using the gossip protocol.

The number of correct nodes in the view, n, is expected
to be at least (1−Pbyz) ·N , where Pbyz is a configured upper
bound on the probability that a live node is Byzantine, and
N is the total of the correct and the Byzantine nodes. Then
the probability that one node is connected to another is
1 − (1 − 1/N)k ≈ k/N . Thus pn ≈ 2k/N .7

In order for the correct nodes to be connected with prob-
ability ϕ, we obtain

k ≥
N

2n
·

„

log
−n

log ϕ
+ o(1)

«

Next we determine the resulting ∆, the time to dissemi-
nate an update in this random graph. To better preserve re-
sources, each member does not update all its k gossip neigh-
bors in each round, but instead selects one neighbor for each
round in a round-robin fashion. In order to simplify calcula-
tions, we will assume conservatively that it takes k rounds to
update all gossip neighbors, and thus the dissemination runs
a factor k slower than if all neighbors were updated in each
round. If dn is the diameter of the graph of correct nodes,
then the expected amount of time to disseminate an update
reliably among the correct nodes is therefore ∆ = k ∗ dn.

An asymptotic value for dn can be determined. A recent
result of Chung and Lu [5] shows that if npn → ∞ (which in
our case it does), then the expected diameter of our graph
is (1 + o(1)) log n

log npn

. Unfortunately, it does not provide the
constants needed to tune the gossip protocol.

In order to find suitable constants, we ran simulation ex-
periments with N ranging from 16 to 16, 384 for varying Pbyz

and with k chosen as above (ignoring the o(1) term), to de-
termine if the resulting graphs of correct nodes are indeed
connected and to obtain values for ∆. We ran each exper-
iment 100 times. We encountered no disconnected graphs
in any of our 3000 experiments. In Figure 5 we report the
maximum ∆ we observed for each N and Pbyz.

5.2 Pseudo-Random Mesh
The analysis of the gossip protocol above tacitly ignores

the possibility of a Byzantine member selecting more than k
neighbors in order to increase the overall load on the correct

7We assume here that every correct node can connect to
every other correct node. This assumption can be relaxed,
but pn has to be adjusted accordingly.
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Figure 5: The maximum of 100 simulation experi-
ments of the number of rounds required to dissemi-
nate an update to all correct members as a function
of the total number of live members for various Pbyz.
In these experiments, ϕ = .99999.

members. Also, Byzantine members could “gang up” on
a small set of correct members, overwhelming them with
gossip load [3]. In order to fight such attacks, we introduce
a rule that determines who can gossip with whom. We use
the same technique that we used in Section 4.2 to determine
who monitors whom, except that we use k rings.

On each ring, a member initiates gossip only with the first
successor in its view. For ring i, a member m sets up a secure
mutually authenticated connection with the successor mi

using their private and public keys. Member m then sends
m.note and i to mi, so that mi can add m to its view if
necessary and possible (existing accusations of m.note may
prevent this). Member mi checks that 1 ≤ i ≤ k and that
mi is m’s successor in mi’s view.

One complication is that even when m and mi are both
correct, they may have different views. In particular, mi

may know a “better” gossip neighbor ni for m that is not
in m’s view. If such is the case, mi sends ni’s note to m.
Should m have plausible accusations for ni, then it returns
those to mi and terminates the attempt to gossip. If no such
accusations exist, then m was unaware of ni. In that case
m adds ni to its view and tries to gossip with ni instead.

If at any point in time m should determine a better gos-
sip neighbor for ring i than mi, then m terminates the ex-
isting connection. Note that newly joining and recovering
members should gossip with at least t+1 different members
before they can be reasonably certain that they will be in-
tegrated into the “true” membership (as opposed to a fake
membership created by Byzantine members [29]).

The neighbors thus chosen form a convenient low-diameter
mesh that connects the correct members. Fireflies exposes
the set of neighbors in its API, so that applications can
gossip about information other than membership or use the
mesh for multicast dissemination (as discussed in Section 7.2).

6. EVALUATION
With some moderate assumptions, such as having the

graph of correct nodes be connected, we can formally prove
that all correct nodes will be included in the view of correct
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members and that stopped nodes will almost certainly be re-
moved from the views. In this section, we present the results
of experiments that validate the performance of Fireflies.

Our prototype implementation is written in Python. The
code can run both on a simulated network, or on a real net-
work. In all experiments below, we used t = 12, resulting in
25 rings. We used k = 8 (corresponding to ϕ = .999), mean-
ing that each member had about 16 neighbors for gossiping.
Each member gossiped once every 3.75 seconds on average
(resulting in one gossip per minute with every neighbor), al-
though the Fireflies code randomizes the intervals at which
a member gossips in order to prevent synchronized “waves”
of gossip. The probabilistic upper bound on the time for
gossip to spread, ∆, was chosen to be 5 minutes. Members
pinged each of their monitorees every 30 seconds.

We will first describe some experiments performed on the
simulated network, and then present experience gained from
a deployment of the code on PlanetLab [24].

6.1 Simulation
In order to trigger frequent mistaken failure detections,

we set Pmistake to .001. Both the MTTF (Mean Time To
Failure) and MTTR (Mean Time To Recovery) of the correct
members was set to 6 hours. The intervals between stopping
and going were exponentially distributed. The total number
of members N ranged from 16 to 256. Each experiment
ran for six simulation hours, and each experiment was run
at least eight times. The graphs below show averages and
95% confidence intervals, except where the intervals were
too small.

First we looked at the overhead in the absence of Byzan-
tine members. Figure 6 shows the average number of notes
sent (created or forwarded) per correct member per hour as
a function of the number of members for various Ploss, the
probability of message loss. In each case, we see a clear linear
trend as a function of the number of members, as expected.
Without loss, the expected number of notes is N/12, as on
average there is one recovery every 12 hours. With loss,
mistakes are made, leading to an increase in the number of
notes generated. Due to adaptive pinging this is almost, but
not completely, independent of Ploss. For example, for 5%
loss the rate of notes sent is higher than for 10% loss. The
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differences are due to rounding of τ , the pinging threshold
above which a failure is assumed. The effect is that sig-
nificantly fewer mistakes may be made than specified with
Pmistake.

Figure 7 shows the average number of accusations sent
per correct member per hour as a function of the number of
members for various Ploss. Because accusations can be made
on multiple rings, these rates are higher than for notes, but
they do not depend much on the message loss probability.
Partially this is due to the success of our adaptive pinging
protocol, but it is also due to the dissemination of a mistaken
accusation being squelched by the ensuing rebuttal.

Next we introduced Byzantine members. We varied Pbyz

from 0 to 0.2. We looked at two types of attacks. One is
an “aggressive attack,” where Byzantine members accused
other members at any opportunity, and refrain from for-
warding notes (rebuttals) from these members. The other
is a “passive attack,” where Byzantine members never ac-
cuse stopped members, and do not forward accusations of
stopped members, in an effort to make stopped members
appear correct. Neither style of attack was successful in any
of our tests. Figure 8 shows the average number of accusa-

tions sent by correct members for various Pbyz and styles of
attack. The attacks had a moderate effect on traffic gener-
ated, but the amount stayed well within a factor of two of
the case in which there were no Byzantine attacks.

6.2 Experience on PlanetLab
PlanetLab [24] is a world-wide collection of over 600 ma-

chines at over 275 sites connected to the Internet in 30 coun-
tries. PlanetLab can be used to test new scalable protocols
and to deploy novel distributed services. We first deployed
Fireflies on PlanetLab in early February 2005, and found
the experience useful to find pragmatic problems and test
solutions. However, the overheads we measured, some of
which are presented below, are specific to PlanetLab only.

In this section we describe our experiments and indicate
where further work on Fireflies is needed. Our prototype
implementation uses TCP for gossip but UDP for pinging
as our adaptive pinging protocol needs to determine when
messages get lost.

While the majority of PlanetLab nodes tend to be fairly
well-connected, some of the nodes are very heavily loaded,
to the point of making some of these nodes effectively un-
reachable. Other nodes are only partially reachable, either
due to configuration problems or due to heavy packet loss.
For example, some nodes cannot send or receive UDP mes-
sages. This has two consequences for Fireflies. First, a node
that cannot receive UDP packets will accuse its successors,
even if they are correct. This is not a problem, as these
successors will use their enabled bitmaps to disable the cor-
responding rings. Second, such a node will be accused by
its predecessors. The accusations are effectively rebutted,
and this accused member is not removed from the views as
long as it is able to gossip new notes (using TCP). Unfor-
tunately, the member cannot disable all rings (which would
have its own problems), leading to a continuous background
gossip of accusations and rebuttals. Besides a communica-
tion overhead on the network, these superfluous messages
increase the load on machines.

6.3 Measurement Study
We now describe the results of one of our recent Planet-

Lab experiments, run February 24, 2006. The parameters
were set the same as in the simulations above, except that
Pmistake was set to a more sensible .00001. For signatures we
used SHA1 and RSA with 1024 bit keys. This resulted in a
public key certificate of 163 bytes, a note of 49 bytes, and
an accusation of 52 bytes.

Each time a member m1 gossips with member m2, they
first exchange a collision-resistant hash of their sets of notes
and accusations. If they are different, a full state reconcili-
ation is done using the algorithm described in [22].

The experiment started with Fireflies agents running on
280 PlanetLab machines. During the experiment about 10
of those machines became unresponsive and fell out of the
experiment. 10% of the Fireflies agents were configured
to mount false accusations aggressively (chosen randomly),
while another 10% where configured to mount a passive at-
tack, not accusing and not forwarding accusations for failed
members. At 7pm, we terminated 80 of the Fireflies agents,
chosen randomly. At 7am, we restarted the agents.

Each agents writes a checkpoint to its log every 10 sec-
onds. If an agent has not written a checkpoint to its log
during a 2 minutes period of the experiment it is considered
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Figure 9: PlanetLab results: (a) size of the membership; (b) # accusations / second; (c) # bytes written per
member per second.

failed in that period. The number of live agents in each time
period is shown in Figure 9(a). We can observe that there
is a fair bit of membership churn not under our control.

Figure 9(b) shows the aggregate rate of accusations cre-
ated per second, divided into total and false accusations
from Byzantine members. Two peaks can be clearly distin-
guished: when the agents are terminated, and when they
are restarted. The first peak is obvious: the terminated
agents are accused. The second peak is caused by several
rejoining agents becoming unresponsive due to some heavily
loaded PlanetLab machines’s inability to accommodate the
extra CPU and network overhead incurred when reintegrat-
ing the recovering agents into the membership. Accidental
accusations from correct members gives aggressive Byzan-
tine members opportunities to issue new false accusations,
adding to the temporary flurry of communication.

Figure 9(c) shows the mean and maximum number of
bytes sent per correct member per second. The bandwidth
follows the rate of accusations, but is never above 500 bytes
per member per second. The various peaks are caused by
real failures. We have witnessed in our experiments various
unexpected behavior on PlanetLab nodes. Sometimes the

local file system on a node disappears or runs out of disk
space, preventing logs to be written. Sometimes nodes are
wrongly configured with an unroutable IP address. Some-
times nodes become unaccessible due to network outages,
CPU overload, or, rarely, actual crashes. There have even
been bugs in Fireflies agents causing them to crash or be-
have erratically. But the Fireflies infrastructure as a whole
has survived all of these problems.

7. CURRENT APPLICATIONS
There are clear limitations to what Fireflies can offer.

Byzantine members can disguise themselves as correct mem-
bers by executing the protocol, or as stopped members by
not executing at all, and so a correct member cannot de-
termine which members are Byzantine unless they reveal
themselves by sending messages that prove that they are
not following the protocol. Also, views trail membership
changes, and may be stale at any time. The question then
is how Fireflies can be useful.

In this section, we provide examples of using Fireflies for
building intrusion-tolerant network overlays. In particular,



we show how Fireflies is used to support a Distributed Hash
Table and a multicast protocol.

7.1 DHT
DHTs that are intrusion-tolerant are increasingly neces-

sary. For example, the P6P overlay protocol is an IPv6 tun-
neling technology built over a DHT, and requires that links
between correct members are fair [33]. An intrusion-tolerant
DHT can be trivially implemented on Fireflies, simply by
routing messages for an object identifier to the member in
the view with the closest member identifier (assuming object
and member identifiers are chosen from the same identifier
space). Such an implementation is called a One Hop DHT
(OHDHT),8 as messages are not routed through intermedi-
ate members.

Other DHTs provide its members with only a partial view
of the membership in order to increase scalability, and mes-
sages sent between members often take multiple hops. In a
OHDHT, messages are less likely to get lost or intercepted
along the way and encounter lower latency.

7.2 Multicast
A more interesting use of Fireflies is to build an intrusion-

tolerant multicast protocol. For example, the Vigilante worm
containment system [6] assumes a hypothetical intrusion-
tolerant multicast primitive. Our protocol is heavily based
on Chainsaw [23], which floods each message on the neighbor
mesh. Flooding is done efficiently: when a member receives
a large message, it notifies its neighbors only of the message
identifier. Each member collects such notifications from its
neighbors and requests the message from one. If no response
is received within a short period of time, another neighbor
is selected (see below). Measurements on Chainsaw have
shown that this protocol is as efficient as the best multicast
protocols based on DHTs [23], and the measurements of our
version of the protocol support this as well.

Because the neighbor mesh connects all correct members,
a message from a correct member is guaranteed to be deliv-
ered to all correct members. In order to prevent forging and
prevent forwarding of illicit traffic, members sign messages
and check signatures before accepting received messages.
Correct members prefer uploading messages to neighbors
from which they recently received a message. This strategy
has two positive effects. First, it avoids using links to Byzan-
tine members that are not forwarding messages. Second, it
discourages freeloading. A paper that describes and eval-
uates our multicast protocol in the presence of Byzantine
members and free-loaders is forthcoming.

As an alternative to using a pseudo-random mesh, Fire-
flies’ complete membership information could be used to
build Harary graphs [16], which can tolerate a fraction of
Byzantine nodes and can thus form the basis of a secure
broadcast protocol [20].

8. CONCLUSION
We presented Fireflies, a weakly-consistent, scalable pro-

tocol that supports network overlays and tolerates Byzan-
tine members with high probability. Fireflies may be used
to support an intrusion-tolerant Distributed Hash Table, or
for building intrusion-tolerant overlay routing networks, or

8Not to be confused with an O(1) hop DHT, although OHD-
HTs are a member of that class.

simply to organize computer resources in, say, a wide-area
computational or storage grid.

Fireflies consists of three subprotocols. First, an adap-
tive pinging protocol makes the probability of a mistaken
failure detection independent of message loss. Second, an
intrusion-tolerant gossip protocol disseminates information
between correct members within a probabilistic time bound.
Third, the membership protocol uses accusations and rebut-
tals to implement the membership information that Fireflies
provides, and which in turn induces a pseudo-random mesh
that can be used for overlay routing.

Our evaluation shows that, at least for moderately sized
memberships, Fireflies performs well. As the rate of fail-
ures and recoveries tends to grow linearly with the size of
membership, the amount of information received per mem-
ber has to grow at least linearly as well. We show that the
amount sent (point-to-point) per correct member grows lin-
ear with the churn rate, almost independent of the behavior
of Byzantine members (with a relative membership of up to
20%). The observed overheads for memberships up to about
280 members are low, and we believe that Fireflies will be
able to scale up to another order of magnitude without dif-
ficulty.

Availability
The code (including the simulation code) is available on
SourceForge (http://sourceforge.net/projects/fireflies).
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