
CapeCode	Tutorial	
By	Christopher	Brooks	and	Edward	A.	Lee	
Version	1.0,	Dec.	5,	2017	
	
Cape	Code	is	interactive	graphical	editor	for	swarmlets	based	on	Ptolemy	II.	If	you	have	
installed	Ptolemy	II	(the	current	development	version,	not	a	release),	then	you	can	invoke	
Cape	Code	on	the	command	line	as	follows:	
	
	>	$PTII/bin/capecode	
	
For	convenience,	you	may	want	to	add	$PTII/bin	to	your	PATH	environment	variable,	in	
which	case,	you	will	not	need	to	type	$PTII/bin.	
	
You	will	see	the	welcome	window:	

	
Cape	Code	is	integrated	with	the	TerraSwarm	accessor	library.	The	current	contents	of	the	
library	appears	in	the	palette	of	available	actors,	as	shown	on	the	right	below,	and	can	be	
dragged	into	a	model	and	connected	with	other	actors	or	accessors	in	the	library.	
	
Cape	Code	includes	a	number	of	demos.	Browse	those	by	following	the	demos	link	in	the	
welcome	window	shown	above.	The	graphical	editor	is	vergil,	which	is	part	of	Ptolemy	II.	For	
a	tutorial	on	Ptolemy	II,	see	the	Ptolemy	Book	(a	free	download).	
	
The	files	for	this	tutorial	are	located	in	Ptolemy	II	tree	at	$PTII/ptolemy/demo/CapeCode.	
Solutions	to	the	exercises	below	are	also	in	that	directory,	but	we	advise	not	looking	at	them	
until	you	get	stuck.	

1. Your	first	exercise	is	to	build	a	model	that	uses	your	laptop’s	camera	(via	an	accessor)	
to	find	AprilTags	in	the	field	of	view	and	display	their	ID	and	location.	To	do	this,	
construct	a	model	that	looks	like	this:	

	
Each	icon	represents	either	an	accessor	or	a	Ptolemy	
actor.	You	can	find	them	here	in	the	CapeCode	library:		
	
Camera	 Accessors	→	cameras	
AprilTags	 Accessors	→	image	
TextDisplay	 Accessors	→	utilities	

	
A	snapshot	of	the	library	is	shown	on	the	right.	Drag	in	the	
relevant	icons	and	connect	them.	(Hint:	control-click	or	
command-click	will	create	a	relation,	the	small	black	
diamond	above,	which	is	used	to	fork	a	signal	to	multiple	
destinations.)	
	
You	can	test	your	model	using	the	following	April	tags,	
with	IDs	19,	20,	and	21:	
	

	
	
We	suggest	you	reduce	the	maxFrameRate	on	the	Camera	to,	say,	5.	Double	click	on	it	
to	edit	its	parameters.	
	
A	solution	to	this	exercise	can	be	found	in	
$PTII/ptolemy/demo/CapeCode/CapeCode1.xml.	 	

2. Your	second	task	is	to	augment	the	above	model	with	a	script	that	processes	the	tags	
from	the	AprilTags	accessor	and	outputs	a	tag	ID	(a	number)	each	time	it	sees	a	tag	
that	was	not	present	in	the	previous	frame.	In	other	words,	you	want	one	output	
event	each	time	a	new	tag	is	observed	by	the	camera.	
	
To	realize	this	script,	find	the	JavaScript	actor	in	the	Utilities	library	in	CapeCode	and	
drag	an	instance	of	that	actor	into	your	model	as	follows:	
	

	
	
Then	open	the	actor	with	right-	or	control-click	as	shown	below:	
	

	
	
Using	the	accompanying	accessor	tutorial	document,	enter	a	script	into	the	resulting	
text	box	that	defines	an	input	port	to	receive	each	frame	from	the	camera,	an	input	
port	to	receive	each	array	of	April	tags	from	the	AprilTags	accessor,	and	an	output	
port	to	produce	the	ID	of	each	newly	identified	tag.	You	will	want	to	add	an	input	
handler	that	is	triggered	each	time	a	new	image	frame	arrives.	
	
If	you	have	never	programmed	in	JavaScript	before,	feel	free	to	study	the	solution	
found	in	$PTII/ptolemy/demo/CapeCode/CapeCode2.xml.		

	 	

3. Your	third	task	is	to	make	a	distinct	sound	each	time	your	camera	spots	a	new	April	
tag.	Specifically,	you	can	use	the	ClipPlayer	accessor,	which	has	an	input	port	that	
accepts	a	resource	name	or	a	URL	that	refers	to	a	sound	file.	When	it	receives	an	event	
on	its	start	input	port,	it	will	play	the	sound.	

	
Hint:	Right-	or	control-click	on	an	accessor	or	actor	to	get	its	documentation,	as	
shown	here:	

		
There	are	three	sound	files	available	to	you	using	the	following	resource	names:	
	
 $CLASSPATH/ptolemy/demo/CapeCode/Sounds/ring.wav
 $CLASSPATH/ptolemy/demo/CapeCode/Sounds/bell.wav
 $CLASSPATH/ptolemy/demo/CapeCode/Sounds/train.wav	
	
Your	task	is	to	play	these	three	sounds	in	response	to	tags	with	IDs	19,	20,	and	21,	
shown	in	the	first	exercise.	
	
To	accomplish	this	task,	we	suggest	first	adding	another	JavaScript	actor	with	a	
custom	script	that	translates	the	IDs	19,	20,	and	21	into	the	above	resource	names,	
then	feeding	the	resulting	resource	names	to	the	clipURL	and	start	inputs	of	the	
ClipPlayer.	
	
A	solution	to	this	exercise	can	be	found	in	
$PTII/ptolemy/demo/CapeCode/CapeCode3.xml.	
	

	 	

4. Your	final	task	is	to	design	an	accessor	for	a	remote	service	that	produces	the	sound	
on	another	machine.		If	you	are	following	this	tutorial	in	a	classroom	setting,	your	
instructor	may	have	already	set	up	the	server	on	a	machine	running	locally.	Ask	the	
instructor	for	the	IP	address	and	port	of	the	server.	Otherwise,	you	can	start	the	
server	on	localhost:8089	by	opening	the	following	model	in	CapeCode	and	running	it:	
	
 $PTII/ptolemy/demo/CapeCode/WebSoundServer.xml
	
The	server	provides	a	RESTful	interface,	meaning	that	you	can	access	the	service	
using	HTTP.	An	ordinary	browser	can	be	used	to	access	the	service.	If	you	are	running	
the	above	sound	server	on	your	local	machine,	then	point	your	browser	to	the	
following	URL	to	cause	the	service	to	produce	a	sound:	
	
 http://localhost:8089/train
	
The	sounds	provided	are	“train”,	“bell”,	and	“ring”,	just	like	the	previous	exercise.	
	
Your	accessor	for	this	service	should	use	the	http-client	module,	which	is	described	
in	the	accompanying	accessor	tutorial	document	and	also	on	this	web	page:	
	
				https://www.icyphy.org/accessors/wiki/Version1/Http-client
	
You	will	want	your	accessor	to	have	a	parameter	specifying	the	IP	address	and	port	of	
the	service,	e.g.	“localhost:8089”. Alternatively,	you	could	have	two	parameters,	
one	for	the	host	IP	address	or	name	and	the	other	for	the	port.	
	
A	solution	to	this	exercise	can	be	found	in	
$PTII/ptolemy/demo/CapeCode/CapeCode4.xml.	
	

