
The Almagest 3-1

Ptolemy Last updated: 10/9/97

Chapter 3. Block and related classes

Authors: Joseph T. Buck

Other Contributors: J. Liu

This section describes Block, the basic functional block class, and those objects derived from
it. It is Blocks more than anything else that a user of Ptolemy deals with. Actors as well as col-
lections of actors are Blocks. Although the Target class is derived from class Block, it is doc-
umented elsewhere, as it falls under control of execution .

3.1 Class Block
Block is the basic object for representing an actor in Ptolemy. It is derived from NamedObj (see
section 1.8). Important derived types of Block are Star (see section 3.2), representing an atomic
actor; Galaxy , representing a collection of actors that can be thought of as one actor, and Uni-
verse , representing an entire runnable system. A Block has portholes (connections to other
blocks — , states (parameters and internal states — , and multiportholes (organized collections
of portholes — . While the exact data structure used to represent each is a secret of class Block,
it is visible that there is an order to each list, in that iterators return the contained states, port-
holes, and multiportholes in this order. Iterators are a set of helper classes that step through the
states, portholes, or multiportholes that belong to the Block, see the menu entry. Furthermore,
Blocks can be cloned, an operation that produces a duplicate block. There are two cloning func-
tions:makeNew, which resembles making a new block of the same class, andclone, which
makes a more exact duplicate (with the same values for states, for example). This feature is
used by the KnownBlock class to create blocks on demand.

3.1.1 Block constructors and destructors

Block has a default constructor, which sets the name and descriptor to empty strings and the
parent pointer to null, and a three-argument constructor:

Block(const char* name,Block* parent , const char* descriptor);

Block’s destructor is virtual and does nothing, except for the standard action of destroying
the Block’s data members. In addition, Block possesses two types of “virtual construc-
tors”, the public member functionsmakeNew andclone.

3.1.2 Block public “information” members
int numberPorts() const;
int numberMPHs() const;
int numberStates() const;

The above functions return the number of ports, the number of multiports, or the number
of states in the Block.

virtual int isItAtomic() const;

3-2 Block and related classes

U. C. Berkeley Department of EECS

virtual int isItWormhole() const;

These functions returnTRUE or FALSE , based on whether the Block is atomic or not, or a
wormhole or not. The base implementations returnTRUE for isItAtomic, FALSE for isIt-
Wormhole.

virtual StringList print(int verbose) const;
OverridesNamedObj::print. This function gives a basic printout of the information in
the block.

GenericPort* genPortWithName(const char* name);
PortHole* portWithName(const char* name);
MultiPortHole* multiPortWithName(const char* name);
virtual State *stateWithName(const char* name);

These functions search the appropriate list and return a pointer to the contained object
with the matching name.genPortWithName searches both the multiport and the regular
port lists (multiports first). If a match is found, it returns a pointer to the matching object
as aGenericPort pointer.

int multiPortNames (const char** names , const char** types ,
 int* io , int nMax) const;

Get a list of multiport names.

StringList printPorts(const char* type , int verbose) const;

Print portholes as part of the info-printing method.

virtual Scheduler* scheduler() const;

Return the controlling scheduler for this block. The default implementation simply recur-
sively calls thescheduler() function on the parent, or returns 0 if there is no parent.
The intent is that eventually a block with a scheduler will be reached (the top-level uni-
verse has a scheduler, and so do wormholes).

virtual Star& asStar();
virtual const Star& asStar() const;

Return reference to me as a Star, if I am one. Warning: it is a fatal error (the entire program
will halt with an error message) if this method is invoked on a Galaxy! Check withisIt-
Atomic before calling it.

virtual Galaxy& asGalaxy();
virtual const Galaxy& asGalaxy() const;

Return reference to me as a Galaxy, if I am one. Warning: it is a fatal error (the entire pro-
gram will halt) if this method is invoked on a Star! Check withisItAtomic before call-
ing it.

virtual const char* domain() const;

Return my domain (e.g. SDF, DE, etc.)

3.1.3 Other Block public members
virtual void initialize();

The Almagest 3-3

Ptolemy Last updated: 10/9/97

overridesNamedObj::initialize . Block::initialize initializes the portholes
and states belonging to the block, and callssetup(), which is intended to be the “user-
supplied” initialization function.

virtual void preinitialize();

Perform a "pre-initialization" step. The default implementation does nothing. This method
is redefined by HOF stars and other stars that need to rewire a galaxy before the main ini-
tialization phase starts. Blocks must act safely if preinitialized multiple times (unless they
remove themselves from the galaxy when preinitialized, as the HOF stars do). Preinitialize
is invoked byGalaxy::preinitialize , which see.

virtual int run();

This function is intended to “run” the block. The default implementation does nothing.

virtual void wrapup();

This function is intended to be run after the completion of execution of a universe, and
provides a place for wrapup code. The default does nothing.

virtual Block& setBlock(const char* name,Block* parent =0);

Set the name and parent of a block.

virtual Block* makeNew() const

This is a very important function. It is intended to be overloaded in such a way that calling
it produces a newly constructed object of the same type. The default implementation
causes an error. Every derived type should redefine this function. Here is an example
implementation of an override for this function:

Block* MyClass::makeNew() const { return new MyClass;}
virtual Block* clone() const

The distinction betweenclone andmakeNew is that the former does some extra copying.
The default implementation callsmakeNew and thencopyStates, and also copies addi-
tional members likeflags; it may be overridden in derived classes to copy more infor-
mation. The intent is thatclone should produce an identical object.

void addPort(PortHole& port)
void addPort(MultiPortHole& port)

Add a porthole, or a multiporthole, to the block’s list of known ports or multiports.

int removePort(PortHole& port)
Removeport from the Block’s port list, if it is present.1 is returned ifport was present
and0 is returned if it was not. Note thatport is not deleted. The destructor for class Port-
Hole calls this function on its parent block.

void addState(State& s);
Add the states to the Block’s state list.

virtual void initState();

Initialize the States contained in the Block’s state list.

3-4 Block and related classes

U. C. Berkeley Department of EECS

StringList printStates(const char* type ,int verbose) const;

Return a printed representation of the states in the Block. This function is used as part of
the Block’sprint method.

int setState(const char* stateName , const char* expression);

Search for a state in the block namedstateName. If not found, return0. If found, set its
initial value toexpression and return1.

3.1.4 Block protected members
virtual void setup();

User-specified additional initialization. By default, it does nothing. It is called by
Block::initialize (and should also be called if initialize is redefined).

Block* copyStates(const Block& src);
method for copying states during cloning. It is designed for use by clone methods, and it
assumes that the src argument has the same state list as thethis object.

3.1.5 Block iterator classes

There are three types of iterators that may be used on Blocks: BlockPortIter, BlockStateIter,
and BlockMPHIter. Each takes one argument for its constructor, a reference to Block. They
step through the portholes, states, or multiportholes, of the Block, respectively, using the stan-
dard iterator interface. There are also variant versions with a “C” prefix (CBlockPortIter, etc)
defined in the fileConstIters.h that take a reference to a const Block and return a const
pointer.

3.2 Class Star
Class Star represents the basic executable atomic version of Block. It is derived from Block .
Stars have an associated Target , an index value, and an indication of whether or not there is
internal state. The default constructor sets the target pointer toNULL, sets the internal state flag
to TRUE, and sets the index value to-1 .

3.2.1 Star public members
int run();

Execute the Star. This method also interfaces to the SimControl class to provide for con-
trol over simulations. All derived classes that override this method must invoke
Star::run.

StringList print(int verbose = 0) const;

Print out info on the star.

Star& asStar();
const Star& asStar() const;

These simply return a reference tothis, overridingBlock::asStar.

int index() const;

Return the index value for this star. Index values are a feature that assists with certain

The Almagest 3-5

Ptolemy Last updated: 10/9/97

schedulers; the idea is to assign a numeric index to each star at any level of a particular
Universe or Galaxy.

virtual void setTarget(Target* t);
Set the target associated with this star.

void noInternalState();

Declare that this star has no internal state (This function may change to protected in future
Ptolemy releases).

int hasInternalState();

ReturnTRUE if this star has internal state,FALSE if it doesn’t. Useful in parallel schedul-
ing.

3.2.2 Star protected members
virtual void go();

This is a method that is intended to be overridden to provide the principal action of execut-
ing this block. It is protected and is intended to be called from therun() member func-
tion. The separation is so that actions common to a domain can be provided in the run
function, leaving the writer of a functional block to only implementgo().

3.3 Class Galaxy
A Galaxy is a type of Block that has an internal hierarchical structure. In particular, it contains
other Blocks (some of which may also be galaxies). It is possible to access only the top-level
blocks or to flatten the hierarchy and step through all the blocks, by means of the various iter-
ator classes associated with Galaxy. While we generally define a different derived type of Star
for each domain, the same kinds of Galaxy (and derived classes such as InterpGalaxy — are
used in each domain. Accordingly, a Galaxy has a data member containing its associated do-
main (which is set to null by the constructor). PortHoles belonging to a Galaxy are, as a rule,
aliased so that they refer to PortHoles of an interior Block, although this is not a requirement.

3.3.1 Galaxy public members
void initialize();

System initialize method. Derived Galaxies should not redefine initialize; they should
write asetup() method to do any class-specific startup.

virtual void preinitialize();

Preinitialization of a Galaxy invokes preinitialization of all its member blocks. Preinitial-
ization of the member blocks is done in two passes: the first pass preinits atomic blocks
only, the second all blocks. This allows clean support of graphical recursion; for example,
a HOFIfElseGr star can control a recursive reference to the current galaxy. The IfElse star
is guaranteed to get control before the subgalaxy does, so it can delete the subgalaxy to
stop the recursion. The second pass must preinit all blocks in case a non-atomic block
adds a block to the current galaxy.Galaxy::preinitialize is called fromGal-
axy::initialize . (It would be somewhat cleaner to have the various schedulers invoke
preinitialize() separately frominitialize() , but that would require many more

3-6 Block and related classes

U. C. Berkeley Department of EECS

pieces of the system to know about preinitialization.) Because of this decision, blocks in
subgalaxies will see a preinitialize call during the outer galaxy’s preinitialize pass and then
another one when the subgalaxy is itself initialized. Thus, blocks must act safely if preini-
tialized multiple times. (HOF stars generally destroy themselves when preinitialized, so
they can’t see extra calls.)

void wrapup();

System wrapup method. Recursively calls wrapup in subsystems

void addBlock(Block& b,const char* bname);

Add block to the galaxy and set its name.

int removeBlock(Block& b);
Remove the blockb from the galaxy’s list of blocks, if it is in the list. The block is not
deleted. If the block was present,1 is returned; otherwise0 is returned.

virtual void initState();

Initialize states.

int numberBlocks() const;

Return the number of blocks in the galaxy.

StringList print(int verbose) const;

Print a description of the galaxy.

int isItAtomic() const;

ReturnsFALSE (galaxies are not atomic blocks).

Galaxy& asGalaxy();
const Galaxy& asGalaxy() const;

These return myself as a Galaxy, overridingBlock::asGalaxy.

const char* domain() const;

Return my domain.

void setDomain(const char* dom);
Set the domain of the galaxy (this may become a protected member in the future).

Block* blockWithName(const char* name);
Support blockWithName message to access internal block list.

3.3.2 Galaxy protected members
void addBlock(Block& b)

Add b to my list of blocks.

void connect(GenericPort& source , GenericPort& destination ,
 int numberDelays = 0)

Connect sub-blocks with a delay (default to zero delay).

The Almagest 3-7

Ptolemy Last updated: 10/9/97

void alias(PortHole& galPort , PortHole& blockPort);
void alias(MultiPortHole& galPort , MultiPortHole& blockPort);

Connect a Galaxy PortHole to a PortHole of a sub-block, or same for a MultiPortHole.

void initSubblocks();
void initStateSubblocks();

Former: initialize subblocks only. Latter: initialize states in subblocks only.

3.3.3 Galaxy iterators

There are three types of iterators associated with a Galaxy: GalTopBlockIter, GalAllBlockIter,
and GalStarIter. The first two iterators return pointers to Block; the final one returns a pointer
to Star. As its name suggests, GalTopBlockIter returns only the Blocks on the top level of the
galaxy. GalAllBlockIter returns Blocks at all levels of the hierarchy, in depth-first order; if
there is a galaxy inside the galaxy, first it is returned, then its contents are returned. Finally,
GalStarIter returns only the atomic blocks in the Galaxy, in depth-first order. There is also a
const form of GalTopBlockIter, called CGalTopBlockIter. Here is a function that prints out the
names of all stars at any level of the given galaxy onto a given stream.

void printNames(Galaxy& g,ostream& stream) {
 GalStarIter nextStar(g);
 Star* s;
 while ((s = nextStar++) != 0)
 stream << s->fullName() << "\back n";
}

3.4 Class DynamicGalaxy
A DynamicGalaxy is a type of Galaxy for which all blocks, ports, and states are allocated on
the heap. When destroyed, it destroys all of its blocks, ports, and states in a clean manner.
There’s not much more to it than that: it provides a destructor, class identification functions
isA andclassName, and little else.

3.5 Class InterpGalaxy
InterpGalaxy is derived from DynamicGalaxy. It is the key workhorse for interfacing between
user interfaces, such as ptcl or pigi, and the Ptolemy kernel, because it has commands for build-
ing structures given commands specified in the form of text strings. These commands add stars
and galaxies of given types and build connections between them. InterpGalaxy interacts with
the KnownBlock class to create stars and galaxies, and the Domain class to create wormholes.
InterpGalaxy differs from other classes derived from Block in that the “class name” (the value
returned byclassName()) is a variable; the class is used to create many different “derived
classes” corresponding to different topologies. In order to use InterpGalaxy to make a user-de-
fined galaxy type, a series of commands are executed that add stars, connections, and other fea-
tures to the galaxy. When a complete galaxy has been designed, theaddToKnownList
member function adds the complete object to the known list, an action that has the effect of
adding a new “class” to the system. InterpGalaxy methods that return an int return1 for success
and0 for failure. On failure, an appropriate error message is generated by means of the Error
class.

3-8 Block and related classes

U. C. Berkeley Department of EECS

3.5.1 Building structures with InterpGalaxy

The no-argument constructor creates an empty galaxy. There is a constructor that takes a single
const char * argument specifying the class name (the value to be returned byclassName().
The copy constructor creates another InterpGalaxy with the identical internal structure. There
is also an assignment operator that does much the same.

void setDescriptor(const char* dtext)
Set the descriptor. Note that this is public, though the NamedObj function is protected.
dtext must live as long as the InterpGalaxy does.

int addStar(const char* starname , const char* starclass);

Add a new star or galaxy with class namestarclass to this InterpGalaxy, naming the
new instancestarname. The known block list for the current domain is searched to find
starclass. Returns 1 on success, 0 on failure. On failures, an error message of the form

No star/galaxy named ’starclass’ in domain ’current-domain’

 will be produced. The name is a misnomer sincestarclass may name a galaxy or a
wormhole.

int connect(const char* srcblock , const char* srcport ,
 const char* dstblock , const char* dstport ,
 const char* delay = 0);

This method creates a point-to-point connection between the portsrcport in the sub-
block srcblock and the portdstport in the subblockdstblock, with a delay value
represented by the expressiondelay. If the delay parameter is omitted there is no delay.
The delay expression has the same form as an initial value for an integer state (class
IntState), and is parsed in the same way as an IntState belonging to a subblock of the gal-
axy would be.1 is returned for success,0 for failure. A variety of error messages relating
to nonexistent blocks or ports may be produced.

int busConnect(const char* srcblock , const char* srcport ,
 const char* dstblock , const char* dstport ,
 const char* width , const char* delay = 0);

This method creates a point-to-point bus connection between the multiportsrcport in
the subblocksrcblock and the multiportdstport in the subblockdstblock, with a
width value represented by the expressionwidth and delay value represented by the
expressiondelay. If the delay parameter is omitted there is no delay. A bus connection is
a series of parallel connections: each multiport containswidth portholes and all are con-
nected in parallel. The delay and width expressions have the same form as an initial value
for an integer state (class IntState), and are parsed in the same way as an IntState belong-
ing to a subblock of the galaxy would be.1 is returned for success,0 for failure. A variety
of error messages relating to nonexistent blocks or multiports may be produced.

int alias(const char* galport , const char* block , const char * blockport);

Create a new port for the galaxy and make it an alias for the portholeblockport con-
tained in the subblockblock. Note that this is unlike the Galaxyalias method in that
this method creates the galaxy port.

The Almagest 3-9

Ptolemy Last updated: 10/9/97

int addNode(const char* nodename);
Create a node for use in netlist-style connections and name itnodename.

int nodeConnect(const char* blockname , const char* portname ,
 const char* node , const char* delay = 0);

Connect the porthole namedportname in the subblock namedblockname to the node
namednode. Return1 for success,0 and an error message for failure.

int addState(const char* statename , const char* stateclass ,
 const char* statevalue);

Add a new state namedstatename, of typestateclass, to the galaxy. Its default ini-
tial value is given bystatevalue.

int setState(const char* blockname , const char* statename ,
 const char* statevalue);

Change the initial value of the state namedstatename that belongs to the subblock
blockname to the string given bystatevalue. As a special case, ifblockname is the
stringthis, the state belonging to the galaxy, rather than one belonging to a subblock, is
changed.

int setDomain(const char* newDomain);
Change the inner domain of the galaxy tonewDomain. This is the technique used to cre-
ate wormholes (that are one domain on the outside and a different domain on the inside). It
is not legal to call this function if the galaxy already contains stars.

int numPorts(const char* blockname , const char* portname , int numP);

Hereportname names a multiporthole andblockname names the block containing it.
numP portholes are created within the multiporthole; these become ports of the block as a
whole. The names of the portholes are formed by appending#1, #2, etc. to the name of
the multiporthole.

3.5.2 Deleting InterpGalaxy structures
int delStar(const char* starname);

Delete the instance namedstarname from the current galaxy. Ports of other stars that
were connected to ports ofstarname will become disconnected. Returns 1 on success, 0
on failure. On failure an error message of the form

No instance of ‘‘starname’’ in ‘‘galaxyname’’

will be produced. The name is a misnomer sincestarclass may name a galaxy or a
wormhole.

int disconnect(const char* block , const char* port);

Disconnect the portholeport, in subblockblock, from whatever it is connected to.
This works for point-to-point or netlist connections.

int delNode(const char* nodename);
Delete the node nodename.

3-10 Block and related classes

U. C. Berkeley Department of EECS

3.5.3 InterpGalaxy and cloning
Block *makeNew() const;
Block *clone() const;

For InterpGalaxy the above two functions have the same implementation. An identical
copy of the current object is created on the heap.

void addToKnownList(const char* definitionSource,
 const char* outerDomain ,
 Target* innerTarget = 0);

This function adds the galaxy to the known list, completing the definition of a galaxy
class. The “class name” is determined by the name of the InterpGalaxy (as set by
Block::setBlock or in some other way). This class name will be returned by theclassName
function, both for this InterpGalaxy and for any others produced from it by cloning. Ifout-
erDomain is different from the system’s current domain (read from class KnownBlock), a
wormhole will be created. A wormhole will also be created ifinnerTarget is specified, or if
galaxies for the domainouterDomain are always wormholes (this is determined by asking
the Domain class). OnceaddToKnownList is called on an InterpGalaxy object, that object
should not be modified further or deleted. The KnownBlock class will manage it from this
point on. It will be deleted if a second definition with the same name is added to the known
list, or when the program exits.

3.5.4 Other InterpGalaxy functions
const char* className() const

Return the current class name (which can be changed). Unlike most other classes, where
this function returns the C++ class name, we consider the class name of galaxies built by
InterpGalaxy to be variable; it is set byaddToKnownList and copied from one galaxy to
another by the copy constructor or by cloning.

void preinitialize();

OverridesGalaxy::preinitialize() . This re-executes initialization steps that
depend on variable parameters, such as delays and bus connections for which the delay
value or bus width is an expression with variables.Galaxy::preinitialize is then
invoked to preinitialize the member blocks.

Block* blockWithDottedName(const char* name);
Returns a pointer to an inner block, at any depth, whose name matches the specification
name. For example,blockWithDottedName("a.b.c") would look first for a subgal-
axy named"a", then within that for a subgalaxy named"b", and finally with that for a
subgalaxy named"c", returning either a pointer to the final Block or a null pointer if a
match is not found.

3.6 Class Runnable
The Runnable class is a sort of “mixin class” intended to be used with multiple inheritance to
create runnable universes and wormholes. It is defined in the fileUniverse.h. Constructors:

Runnable(Target* tar , const char* ty , Galaxy* g);
Runnable(const char* targetname , const char* dom, Galaxy* g);

The Almagest 3-11

Ptolemy Last updated: 10/9/97

void initTarget();

This function initializes target and/or generates the schedule.

int run();

This function causes the object to run, until the stopping condition is reached.

virtual void setStopTime(double stamp);
This function sets stop time. The default implementation just calls the identical function in
the target.

StringList displaySchedule();

Display schedule, if appropriate (some types of schedulers will return a string saying that
compile-time scheduling is not performed, e.g. DE and DDF schedulers).

virtual ~Runnable();

The destructor deletes the Target.

A Runnable object has the following protected data members:

const char* type;
Galaxy* galP;

As a rule, when used as one of the base classes for multiple inheritance, thegalP pointer
will point to the galaxy provided by the other half of the object.

A Runnable object has the private data member:

Target* target;

3.7 Class Universe
Class Universe is inherited from both Galaxy and Runnable. It is intended for use in standalone
Ptolemy applications. For applications that use a user interface to dynamically build universes,
class InterpUniverse is used instead. In addition to the Runnable and Galaxy functions, it has:

Universe(Target* s,const char* typeDesc);
The constructor specifies the target and the universe type.
Scheduler* scheduler() const;

Returns the scheduler belonging to the universe’s target.

int run();

ReturnRunnable::Run .

3.8 Class InterpUniverse
Class InterpUniverse is inherited from both InterpGalaxy and Runnable. Ptolemy user interfac-
es build and execute InterpUniverses. In addition to the standard InterpGalaxy functions, it pro-
vides:

InterpUniverse (const char* name = "mainGalaxy");
This creates an empty universe with no target and the given name. If no name is specified,
mainGalaxy is the default.

3-12 Block and related classes

U. C. Berkeley Department of EECS

int newTarget(const char* newTargName = 0);
This creates a target of the given name (from the KnownTarget list), deleting any existing
target.

const char* targetName() const;

Return the name of the current target.

Scheduler* scheduler() const;

Return the scheduler belonging to the current target (0 if none).

Target* myTarget() const;

Return a pointer to the current target.

int run();

InvokesRunnable::run .

void wrapup();

Invokes wrapup on the target.

