Chapter 11. SR domain

Authors: Stephen Edwards
Other Contributors: Christopher Hylands

11.1 Introduction

Synchronous Reactive (SR) is a statically scheduled simulation domain in Ptolemy
designed for concurrent, control-dominated systems. Simple stars for the SR domain are easy
to write, but more complex ones that take full advantage of the domain are more subtle. Stars
can be written in either C++ or Itcl.

11.2 Communication in SR

Time in SR is divided into discrete instants. In each instant, the communication chan-
nels in SR contain a valued event, have no event, or are “undefined,” corresponding to when
the system could not decide whether there was an event or not. These channels are not buff-
ered, unlike Ptolemy’s dataflow domains, and do not hold their values between instants.

Stars in the SR domain have input and output ports, much like they do in other
domains. However, primarly because absent events are different from undefined ones, the
interface to these ports are unique.

Because SR domain ports are unbuffered, output ports can be read just like input ports.
It is often convenient to do this when checking to see whether the value on an output port is
already correct and does not need to be changed.

Input/Output Porthole Interface

int SRPortHole::known()
ReturnTRUEwhen the value in the port is is known.

int SRPortHole::present()
ReturnTRUEwhen the value in the port is present.

int SRPortHole::absent()
ReturnTRUEwhen the value in the port is absent.

Particle & InSRPort::get()
Return the patrticle in the port. This should only be called vphesent()
returnsTRUE

Output Porthole Interface

Particle & OutSRPort::emit()
Force the value on the output port to be present and return a reference to the
output particle.

11-2 SR domain

void OutSRPort::makeAbsent()
Force the value on the output port to be absent.

11.3 Strict and non-strict SR stars

Broadly, there are two types of stars in the SR domain: strict and non-strict. If any
input to a strict star is unknown, then all of its outputs are unknown. A two-input adder, for
example, behaves like this--it cannot say anything about its output until the values of both
inputs are known. A non-strict star, by contrast, can produce some outputs before all of its
inputs are known. A two-input multiplexer is an example: when the selection input is known,
it can ignore the unselected input.

Non-strict stars are the key to avoiding deadlocked situations when there are cyclic
connections in the system. If all the stars in a cycle are strict, they each need all of their inputs
before producing an output--all will be left waiting. The deadlock can be broken by introduc-
ing a non-strict star into the cycle that can produce an output without having all inputs from
other stars in the cycle

A number of methods set attributes of SR stars. These should be called in the
setup() method of a star as appropriate. By default, none of these attributes is assumed to
hold.

SRStar::reactive()
Indicate the star is reactive--it needs at least one present input to produce a
present output.

Star::nolnternalState()
Indicate the star has no internal state--its behavior in an instant is a function
only of the inputs in that instant, and not on history.

By default, a star in the SR domain is strict. Here is (abbreviptiady source for a two-
input adder:

defstar {
name { Add }
domain { SR }
input {
name { inputl }
type {int }

input {
name { input2 }
type {int }

}

output {
name { output }
type {int }

}

setup {
reactive();

U. C. Berkeley Department of EECS

The Almagest 11-3

nolnternalState();

}
go {
if (inputl.present() && input2.present()) {
output.emit() <<
int(inputl.get()) + int(input2.get());
} else {
Error::abortRun(*this,
"One input present, the other absent");

}
}
}

Non-strict stars inherit from tH@RNonStrictStar class. Here is abbreviated source
for a non-strict two-input multiplexer:

defstar {

name { Mux }

domain { SR }

derivedFrom { SRNonStrictStar }

input {
name { truelnput }
type {int }

}

input {
name { falselnput }
type {int }

}

input {
name { select }
type {int }

output {
name { output }
type {int }
}
setup {
nolnternalState();
reactive();
}
go {
if (loutput.known() && select.known()) {
if (select.present()) {
if (int(select.get())) {
Il Select is true--
I/l copy the true input if it's known
if (truelnput.known()) {
if (truelnput.present()) {
output.emit() <<
int(truelnput.get());
} else {

Ptolemy Last updated: 10/10/97

11-4

U. C. Berkeley

/I true input is absent:
/I make the output absent
output.makeAbsent();
}
}
} else {
Il Select is false--
/[copy the false input if it's known
if (falselnput.known()) {
if (falselnput.present()) {
output.emit() <<
int(truelnput.get());
} else {
/ false input is absent:
I/l make the output absent
output.makeAbsent();

}
}
}

} else {
Il Select is absent:
/l make the output absent
output.makeAbsent();

}

SR domain

Department of EECS

